

Monetary policy and its distributive implications on wealth inequality in Canada

Author: Chanya Chawla

Advisors: Amartya Lahiri and Nicole Fortin

Research Questions

- What are the distributive impacts of monetary policy changes in terms of wealth inequality on different deciles of the wealth distribution?
- Which transmission channels are most relevant as drivers of wealth inequality induced by monetary policy changes?
- Hypothesis: The housing channel will play a relatively significant role for Canada, as compared to the United States.

Estimation Strategy

Step 1: Create a monetary policy shock series

- Use Instrumental Variable (IV) regression to extract the unanticipated component of monetary policy from the actual policy rate.
- IV: 3 month ahead Canadian Bankers' Futures Acceptance Rate (BAX).
- Regress the 3 month treasury bills rate on the Policy Rate with BAX as the IV.

Step 2: Macro-Analysis

- Estimate a 8 by 8 Proxy (SVAR) model and construct impulse response functions for our interest variables.
- Baseline model: CPI, IP, 3 months Treasury bills rate (Policy indicator) and the Yield spread (control variable).
- Additional variables: S&P Canada Aggregate Bond Index Total Return, S&P TSX Composite Total Return Index, New Housing Price Index, and the 5-year conventional mortgage lending rate.

Equation 3: Structural Form of the VAR

$$AY_t = C + \sum_{j=1}^p B_j Y_{t-j} + \varepsilon_t$$

Step 3: Micro empirical simulations

- Use the IRFs from the macro-analysis to simulate the effect of these changes on wealth inequality using household-level microdata from the Canadian Survey of Financial Security (SFS).
- Use accounting equation 1 to estimate the average net worth nominal return for each household.
- Obtain ratios for the weight of these variables.
- Multiple these ratios by the elasticities of each of these variables.
- Use accounting equation 2 to convert everything into real terms to get

Table 2. Macroanalysis: Means for Economic and Financial Variables of Interest					
Variable	Mean	Standard Deviation	Source		
Industrial Production (base year=1961)	100.95	10.66	Stats Canada		
Consumer Price Index (base year=2002)	133.08	8.12	Bank of Canada		
3-month treasury bills rate	0.95	0.81	Bank of Canada		
S&P/TSX Composite index	54,044.48	12,499.95	Refinitiv		
S&P Canada Aggregate Bond Index	454.54	38.91	Refinitiv		
New housing price index (base= 2016/12)	103.66	0.54	Stats Canada		
5-year conventional mortgage lending rate	4.00	0.54	Bank of Canada		
The data has been used in monthly frequency from Jan, 2013 - Dec. 2022.					

Key Findings

- Following a 100 basis point contractionary monetary policy shock: • Net worth decreases for all deciles.
- 10th, 20th and 30th percentiles experience the sharpest decrease in net worth (6.27%, 8.49%, and 7.72% respectively for the one year horizon). Key Factors: Housing price decline and increased debt liabilities.
- Stock and bond price changes have minimal impact.

Impulse Response Functions

Figure 4: Responses to a 100 basis point Contractionary Monetary Policy Shock

		-10.00% -
	NET WORTH GROWTH RATE	10.00% 5.00% -5.00% -10.00%
	NET WORTH GROWTH RATE	0.00% - -2.50% - -5.00% - -7.50% -
•	A Ir h r P	Contr contr ousing ousef ooneta olicym
•	Al Al Cl ev Ka Ec	lbert, J. /orth in lves, F., eteroge oyne, J /idence aplan, G

5 00%

0.00% -

Contribution to Literature

This study shows that some of the conclusions of Albert and Gomez (2021) don't apply to Canada because of the relative significance of the housing channel.

onclusions & Future Implications

ractionary monetary policy shock increases wealth inequality. ada, housing prices are a key driver of these effects due to high ng-to-net-worth ratios.

hold balance sheet composition plays a crucial role in transmitting ary policy shocks across the wealth distribution.

makers must consider these distributional impacts when developonetary policy to avoid exacerbating wealth inequality.

References

. F., & Gómez-Fernández, N. (2021). Monetary Policy and the Redistribution of Net the US. Journal of Economic Policy Reform, 1-15.

, Bustamante, C., Guo, X., Kartashova, K., Lee, S., Pugh, T., ... & Ueberfeldt, A. (2022). eneity and monetary policy: A thematic review.

., Ferreira, C., & Surico, P. (2020). Monetary policy when households have debt: new e on the transmission mechanism. The Review of Economic Studies, 87(1), 102-129. G., Moll, B., & Violante, G. L. (2018). Monetary policy according to HANK. American ic Review, 108(3), 697-743.