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Abstract 

 

The use of hedonic regression models on the sales of detached housing units is widespread in the real estate 

literature. However, these models do not address the need to decompose the sale price into structure and 

land components. For many purposes, it is necessary to obtain separate estimates for the price and quantity 

of housing structures and the land that these structures sit on. The builder’s model accomplishes this 

decomposition but it takes a producer’s perspective and requires an exogeneous structure price index. In 

the present paper, a consumer approach to the decomposition problem is taken and this “new” approach to 

the decomposition problem does not require the use of an exogenous building price index. The paper uses 

data on sales of detached houses in Richmond, British Columbia in order to implement the new 

approach. The property price indexes generated by the new approach are compared to the corresponding 

indexes generated by a traditional time product dummy hedonic regression model. The traditional hedonic 

regression approach does generate reasonable overall property price indexes, but the two approaches do not 

generate similar land and structure subindexes.  
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1. Introduction 

 

In order to fill out the cells in a nation’s balance sheets, it is necessary to decompose property value into 

land and structure components. The national balance sheets are used to construct measures of household 

wealth (which influences consumption decisions) and to construct estimates of the capital stock (by type of 

asset) that is used by the production sector. Information on the amount of land (and its price) is necessary 

for determining the productivity performance of the country. Also, there is renewed interest in land taxation 

and again, it is necessary to decompose property values into land and structure components in order to tax 

the land component of property value.2  The problem is that information on the value of the land component 

of property value is almost completely lacking. Thus in this paper, we will attempt to partially fill this 

statistical gap by indicating how sales of residential property values could be decomposed into land and 

structure components using the perspective of a purchaser of a residential property.   

 

We used quarterly data for eleven years on the sales of detached houses in a suburb of Vancouver, Canada 

to illustrate our approach to the decomposition problem. The data will be explained in Section 2.  

 

Constructing price indexes for residential properties is difficult because basically, each property with a 

structure in each time period is a unique product since each property has a unique location and each structure 

has a unique age and the value of a residential property depends on the location of the property and on the 

age of the structure. This fact means that it is not possible to apply traditional index number theory to the 

construction of a property price index since traditional theory relies on matching prices over time of exactly 

the same products over time. Since a property (with a structure) is not the same product over time, the 

traditional matched model approach to index number theory cannot be used. Instead of the traditional 

approach to index number theory, the hedonic regression approach to index construction regresses the value 

of a residential property on the characteristics of the property. The most important price determining 

characteristics of a property are: (i) the location of the property; (ii) the age of the structure (older structures 

tend to be of less value to purchasers); (iii) the area of the land plot (bigger is better) and (iv) the floor space 

area of the structure (bigger is better). Many other property characteristics can be important as well. In 

section 3, we will assume that purchasers of residential properties have separate utility functions for the 

land and structure components of a property and we will show how these utility functions can be estimated 

by regressing property value on the characteristics of the property. We will start off by assuming very simple 

functional forms for these utility functions and make them more complicated by adding more property 

characteristics to these utility functions in subsequent regressions of property values on property 

characteristics. The resulting hedonic regressions are nonlinear but they are nested; i.e., we use the 

estimated coefficients of a previous regression as starting values for the subsequent regression. This nested 

approach to estimating a final model that is fairly complex worked well for our data set. A biproduct of our 

approach is the estimation of a geometric depreciation rate for the structure component of property value. 

Regressions that attempt to provide decompositions of property prices into land and structure components 

frequently run into a multicollinearity problem due to a positive correlation between land plot size and 

structure size. We address this problem by smoothing the structure component of property value.  

 

The regressions that are presented in section 3 use the data for the entire sample. We estimate four models 

that show the importance of including the location of the residential property, the age of the structure, the 

area of the land plot and the floor space area of the structure. Our final model explains about 87% of the 

 
2 See Kumhof, Tideman, Hudson and Goodhart (2021) and Muellbauer (2024) on the importance of land taxation.  
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variation in the prices of the residential properties in Richmond over our sample period. Section 4 

aggregates the separate land and structure price indexes into overall property price indexes.  

 

In section 5, we will look at the problems associated with constructing a real time index. Suppose that we 

have estimated a hedonic regression model for the first 20 quarters and the data for quarter 21 becomes 

available. Then the data for quarter 1 could be dropped and the data for quarter 21 could be added to the 

new hedonic regression. The period 21 results for the new regression could be linked to the results of the 

previous regression and the previous price index series for land and for structures could be updated.3 This 

is the rolling window approach to hedonic regressions which was introduced by Shimizu, Nishimura and 

Watanabe (2010). However, this approach to updating a price index can lead to a chain drift problem; i.e., 

the price level for the newly added period is not independent of the method used to link the new index level 

to prior index levels.4 In section 4, we will deal with the problems associated with producing real time price 

indexes that are free from chain drift by using an expanding window approach.  

 

In Section 6, we look at the more traditional property price hedonic regressions which use the logarithm 

of the property’s selling price as the dependent variable and enter the various characteristics of the property 

as independent variables along with time dummy variables in a linear regression. We follow the example 

of McMillen (2003) and Shimizu, Nishimura and Watanabe (2010) and show how these traditional log price 

hedonic regressions can be manipulated to give estimates for a geometric depreciation rate for the structure 

component of property value. We compare this new imputed depreciation rate with the geometric 

depreciation rates that we obtained in Section 3. We also compare the overall property price index that is 

generated by the traditional log price hedonic regression approach with the overall property price index 

generated by our nonlinear regression model and we find that there is a fairly close comparison. However, 

we show that the traditional log price hedonic regression approach generates rather different land and 

structure price subindexes.  

 

Section 7 concludes. 

    

2. Data 

 

The data for this study were obtained from the Multiple Listing Service for the city of Richmond, British 

Columbia, Canada.5 Richmond is a suburb of the city of Vancouver which lies immediately to the south of 

Vancouver. There were a total of 16,204 observations on the sales of detached houses in the Richmond 

region for the period from January 2008 to December 2018.6 However, not all of these observations were 

used in our hedonic regressions: before doing the estimation, we deleted the tails of the distributions of the 

dependent variable (the selling price of the property) and the explanatory characteristics. Including range 

outliers in the regression can distort the results to a considerable degree. Because the number of 

 
3 There are decisions that must be made on exactly how to link the results of the new regression to previous results. 

The same problem arises when a rolling window multilateral index number method is used to construct price indexes 

for “normal” products; see Ivancich, Diewert and Fox (2011), de Haan (2015),  Krsinich (2016), Chessa (2021) and 

Diewert and Fox (2022; 360-361) for discussions of the issues surrounding linking the results from a new panel of 

data with the results from a previous panel. 
4 For examples showing the magnitude of the chain drift problem, see de Haan and van der Grient (2011), Australian 

Bureau of Statistics (2016) and Fox, Levell and O’Connell (2023).  
5 We obtained the data from Raymond Chan, who obtained the data from the MLS@ system (Multiple Listing Service), 

a branch of the Canadian Real Estate Association, for research purposes at Simon Fraser University. 
6 The monthly sales data were aggregated into quarterly data. Sales of newly constructed houses are included in our 

data set. 
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observations at the tails of each characteristic distribution is small, a hedonic regression surface cannot be 

reliably measured at these observations that have extreme values for the underlying property characteristics.  

 

The definitions for the variables used in the regressions and their units of measurement are as follows: 

 

V = selling price of the property in millions of dollars; 

L = size of the lot area measured in thousands of square feet; 

S = structure area (total floor area) measured in thousands of square feet; 

A = age of the structure in years; 

NBE = number of bedrooms; 

NBA = number of bathrooms.7 

 

We now explain the details of our deletion process. Before deleting any observations, we used the 

Government of British Columbia Property Assessment website to find any missing data on the 

characteristics of the detached house properties that were sold in each quarter of our sample. We dropped 

381 observations that had missing values for the age A and 1 observation that did not have information on 

the size of land plot area. We also removed 15 observations that were floating homes. Since selling prices 

V increased over the years in our sample, we examined the histograms of the selling prices by quarter. We 

found that the distribution of selling prices for each year is right-skewed, with the mass of the distribution 

of the selling prices concentrated on the left part of the histograms. To avoid the problem that a few 

observations at the top end of the selling price are spread over a large range of prices, we removed properties 

that were extremely expensive with selling prices higher than 18 million and then we dropped the remaining 

observations with prices in the top 1%  of sales by year and in the bottom 1% of sales by year. Through this 

process, 332 observations were dropped from the sample. 

 

At the next stage, we deleted outliers for the explanatory variables. Before deleting outliers, we dropped 81 

observations that had missing values for covered parking spaces8 and 10 observations with zero bedrooms. 

To determine the range of the main explanatory variables, we examined the histograms of these variables. 

As mentioned earlier, the purpose of removing the outliers is to avoid having only a few observations at 

either the bottom end or top end of the distribution. After several rounds of trimming, the final dataset 

included 13,988 observations with the following characteristics:9 

 

• The land plot area L is between 3000 and 12300 square feet; 

• Floor space area S (also called living area or structure area) is between 1000 and 4800 square 

feet; 

• The age A of the structure is less than or equal to 60 years; 

• The structure has 1 to 6 bathrooms (NBA); 

• The structure has 2 to 7 bedrooms (NBE); 

• The structure has 1 to 3 kitchens; 

• The structure has less than 4 covered parking spots; 

• For the sales prices, we deleted the bottom 1% and approximately the top 1% of selling prices by 

year. 

 

We did not use the kitchen or parking characteristics in our regressions; these variables were used to 

eliminate properties with an unusual number of kitchens or parking spots. 

 

 
7 A half bathroom is regarded as a full bathroom in this paper. 
8 A covered parking space could be in a separate garage building or it could be part of the main structure.  
9 Thus we deleted 13.6% of our observations. This seems to be a high number of deletions but we feel that accurate 

hedonic surfaces cannot be estimated when the number of observations is sparse at the edges of the hedonic surface.  
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In addition to the above variables, we had information on which one of 6 postal code regions for Richmond 

was assigned to each property.10 

 

The basic descriptive statistics for the above variables are listed in Table 1 below. 

 

Table 1: Descriptive Statistics for the Variables 

 

Name No. of Obs. Mean Std. Dev Minimum Maximum Unit of Measurement 

V 13988 1.2309 0.5573 0.450 4.200  1000000 dollars 

A 13988 25.885 17.131 0 60  No. of Years    

L 13988 6.5171 1.9031 3.003 12.296  1000 ft2 

S 13988 2.6348 0.7667 1.006 4.795  1000 ft2 

NBA 13988 4.3837 0.9931 2 7  Number 

NBE 13988 3.5538 1.3153 1 6  Number 

 

It can be seen that detached houses in Richmond sold for a considerable amount of money over our sample 

period; i.e., they sold for an average of $1,230,900. 

 

3. The Basic Models using the Purchaser Perspective 

 

Our fundamental problem is to decompose the value of a residential property into additive land and structure 

components. Our attempt to solve this imputation problem proceeds as follows. We assume initially that 

the total value of a property is equal to the floor space area of the structure, say S square feet, times the 

purchaser’s subjective valuation per square foot t during quarter t, plus the area of the land plot, say L 

square feet, times the purchaser’s subjective valuation per square foot αt. Now think of a sample of 

properties of the same general type, which have sale prices or values Vtn in quarter t11 and structure and 

land areas, Stn and Ltn, for n = 1,...,N(t) where N(t) is the number of sales in period t. Assume that these 

property values are equal to the sum of the land and structure values plus error terms tn which we assume 

are independently normally distributed with zero means and constant variances. This leads to the following 

hedonic regression model for period t where the t and t are the parameters to be estimated in the 

regression:12 

 

(1) Vtn = tLtn + tStn + tn ;                                                                                       t = 1,...,44; n = 1,...,N(t). 

 

The hedonic regression model defined by (1) applies to properties in the same general location and to 

structures of the same general quality. The parameter t can be interpreted as a quarter t average per unit 

price of land and the parameter t can be interpreted as a quarter t average per unit price of structures. The 

model defined by (1) can accommodate residential properties that have no structure on them: Stn is simply 

 
10 We grouped the properties based on the forward sortation area (FSA), which is a geographical area defined based 

on the first three characters in a Canadian postal code. 
11 In the empirical work which follows, t will run from 1 to 44 where Quarter 1 is the first quarter of 2008 and Quarter 

44 is the last quarter of 2018.  
12 Other papers that have suggested hedonic regression models that lead to additive decompositions of property values 

into land and structure components include Clapp (1980; 257-258), Bostic, Longhofer and Redfearn (2007; 184), 

Diewert (2008; 19-22) (2011), Francke and Vos (2004), Francke (2008; 167), Koev and Santos Silva (2008), de Haan 

and Diewert (2013), Rambaldi, McAllister, Collins and Fletcher (2010), Diewert, de Haan and Hendriks (2011) 

(2015), Diewert and Shimizu (2015) (2016) (2020) (2022) and Burnett-Issacs, Huang and Diewert (2020). 
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set equal to 0 for these properties. This is an advantage of our additive decomposition of property value into 

the sum of land and structure values. 

 

It is likely that a purchaser‘s valuation of the structure on the property declines as the age of the structure 

increases. Older structures will be worth less than newer structures due to the depreciation of the structure. 

Assuming that we have information on the age of the structure n at time t, say A(t,n), and assuming  a 

geometric (or declining balance) depreciation model, a more realistic hedonic regression model than that 

defined by (1) above is the following purchaser’s valuation model:13 

 

(2) Vtn = tLtn + t(1 − )A(t,n)Stn + tn ;                                                                      t = 1,...,44; n = 1,...,N(t) 

 

where the parameter  reflects the net geometric depreciation rate as the structure ages one additional year. 

In general, we would expect an annual net depreciation rate to be around 2 to 3 percent per year.14 Note that 

(2) is now a nonlinear regression model whereas (1) was a simple linear regression model. The period t 

imputed constant quality price of land is the estimated coefficient for the parameter t and the imputed price 

or marginal utility value of a unit of a newly built structure for period t is the estimate for t. The period t 

quantity of land for property n is Ltn and the period t quantity of structure for property n, expressed in 

equivalent quality adjusted units of a new structure, is (1 − )A(t,n)Stn where Stn is the floor space area of the 

structure for property n in period t. It should be noted that a constant geometric depreciation rate may not 

provide an adequate description of depreciation in many situations where for example, some structures last 

for centuries. Thus more complex models of depreciation may have to be used in many situations. 

 

A referee noted that equation (2) is identical to the simplest version of the Builder’s Model that also attempts 

to decompose property value into land and structure components.15 The Builder’s Model sets the parameters 

t equal to a building construction cost index times a constant. This model can be justified for the sales of 

newly constructed houses but is less well justified for properties with older structures. Moreover, the 

Builder’s Model requires an appropriate exogenous construction cost index, which is typically difficult to 

find. The present model does not use a construction cost index; the t are estimated. Thus the present model 

takes a consumer or purchaser perspective and could be called the Purchaser’s Model.16  

 

There is a major practical problem with the hedonic regression model defined by (2): The multicollinearity 

problem. Experience has shown that it is usually not possible to estimate sensible land and structure prices 

in a hedonic regression like that defined by (2) due to the multicollinearity between lot size and structure 

size.17 Thus in order to deal with the multicollinearity problem, we assumed that the 44 structure valuation 

quarterly parameters t in (2) can be described by 12 annual parameters, 1, 2, …, 12, as follows:  

 

(3) 1  = 1 ;   2  =  (3/4)1  + (1/4)2 ;    3  =  (1/2)1 + (1/2)2 ;  4  =  (1/4)1 + (3/4)2 ; 

 
13 We interpret our models as demand side models; see Rosen (1974) for a classification of hedonic models into supply 

and demand side models.  
14 This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true” gross structure 

depreciation rate less an average renovations appreciation rate. Since we do not have information on renovations and 

major repairs to a structure, our age variable will only pick up average gross depreciation less average real renovation 

expenditures.   
15 See Diewert (2008) (2010), Diewert, de Haan and Hendriks (2011) (2015), de Haan and Diewert (2011), Diewert 

and Shimizu (2015) (2016) (2022) and Burnett-Issacs, Huang and Diewert (2020) for materials on this model. 
16 See Rosen (1974) for a classification of hedonic models into supply and demand side models. 
17 See Schwann (1998), Diewert, de Haan and Hendriks (2011) (2015) and Diewert (2011) on the multicollinearity 

problem. 
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     5   = 2 ;   6  =  (3/4)2  + (1/4)3 ;    7  =  (1/2)2 + (1/2)3 ;  8  =  (1/4)2 + (3/4)3 ; 

     9   = 3 ;   10 =  (3/4)3  + (1/4)4 ;    11 = (1/2)3 + (1/2)4 ;   12 = (1/4)3 + (3/4)4 ; 

             … 

     41  = 11 ;  42 =  (3/4)11 + (1/4)12 ;  43 = (1/2)11 + (1/2)12 ; 44 = (1/4)11 + (3/4)12 ; 

 

Basically, we replaced the 44 quarterly parameters t by a linear spline function with break points or knots 

at the beginning of each year. Thus instead of estimating 44 t, we only estimated 12 annual parameters 1, 

…, 12. This specification of the structure valuation parameters has the effect of smoothing the t.18 A referee 

suggested that more complex smoothing procedures should be used such as the Continuously Changing 

Coefficient smoothing procedure suggested by von Auer (2007), which is a form of polynomial smoothing. 

Other reasonable smoothing methods include the use of quadratic or cubic splines with endogenous break 

points. However, the present paper works with the above very simple model that could be the starting point 

for a better but more complex model (which might be difficult for National Statistical Offices to explain to 

the public).  

 

Model 1 is defined by equations (2) with the t defined by equations (3). This model has 44 quarterly land 

valuation or price parameters (the t), 12 annual structure valuation parameters (1,…,12) and one (net) 

geometric structure depreciation rate  for a total of 57 parameters with 13,988 observations.19 The R2 

(between the observed values and the predicted values) was 0.8207, which is satisfactory for such a simple 

model. The estimates for the annual structure price parameters 1
*
 ,…, 12

* were 0.233, 0.223, 0.260, 0.285, 

0.314, 0.330, 0.321, 0.317, 0.400, 0.425, 0.411 and 0.430. Using these estimates for 1
*

 - 12
*, definitions 

(3) were used to form the quarterly structure prices, t
* for t = 1,…,44. The estimated depreciation rate * 

was 1.98% per year. Land prices grew from 1
* = $57.34 per ft2 in the first quarter of 2008 to 44

* = $149.08 

per ft2 in the last quarter of 2018, a 2.60-fold increase over the sample period. Structure prices grew from 

1
* = $233.45 per ft2 in the first quarter of 2008 to 44

* = $425.60 per ft2 in the last quarter of 2018, a 1.82-

fold increase over the sample period.20 

 

The estimated land and structure valuation coefficients, αt
* and t

*, were turned into the land and structure 

price indexes for Model 1, PL1
t  αt

*/α1
* and PS1

t  t
*/1

* and these indexes are listed in Table 3 below.  

 

In order to take into account possible neighbourhood effects on the price of land, we introduced (forward 

sortation area) postal code dummy variables, DPC,tn,j, into the hedonic regression defined by (2) and (3). 

These 6 dummy variables are defined as follows: for t = 1,...,44; n = 1,...,N(t); j = 1,...,6:21 

 

 
18 An alternative strategy to solve the multicollinearity problem would be to smooth the αt instead of the t. For a 

property with a new structure, t should be approximately equal to the per unit floor space area construction cost. Thus 

the movements in t should be approximately equal to the movements in an appropriate construction cost index. In 

general, construction cost indexes are not as volatile as land cost indexes so we chose to smooth the t instead of the 

αt.  
19 In order to estimate the αt and t, 44 quarterly time dummy variables were used in the regression. The lowest number 

of sales in a quarter was 92 and the highest number was 631. The average number of sales in a quarter was 317.9.   
20 From the Altus Group (2015) Construction Cost Guide for 2015, we find the following range of house 

construction costs per square foot for the Vancouver area: Speculative Basic Quality: $100 - $165; Speculative 

Medium Quality: $165 - $225; Speculative High Quality: $225 - $350; Custom Built: $400 - $1,000. It can be seen 

that our estimated valuations for units of structure are within the range of construction costs for the Greater 

Vancouver area. The above ranges also indicate the difficulty in obtaining a representative construction cost index 

for detached houses. 
21 The number of observations over the sample period in the 6 postal code neighbourhoods are as follows:  468, 1041, 

1038, 2930, 4404 and 4107. 
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(4) DPC,tn,j  1 if observation n in period t is in Postal Code j of Richmond; 

                  0 if observation n in period t is not in Postal Code j of Richmond.  

    

We now modify the model defined by (2) and (3) to allow the level of land prices to differ across the 6 

postal-code areas in Richmond. The new nonlinear regression model is defined by equations (3) and (5): 

 

(5) Vtn = t(j=1
6 jDPC,tn,j)Ltn + t(1 − )A(t,n)Stn + tn ;                                             t = 1,...,44; n = 1,...,N(t).                                       

                                                                           

Comparing the models defined by equations (2) and (5), it can be seen that we have added an additional 6 

neighbourhood relative land valuation parameters, 1,...,6, to the model defined by (2). The higher is 1, 

the greater is the utility of owning a square foot of land in Postal Code 1 relative to owning a square foot 

of land in the other Postal Codes. However, looking at (5), it can be seen that the 44 land aggregate price 

level parameters (the t) and the 6 location parameters (the j) cannot all be identified. Thus we need to 

impose at least one identifying normalization on these parameters. We chose the following normalization: 

 

(6) 1  1. 

 

Thus Model 2 defined by equations (3) (5) and (6) has 5 additional parameters compared to Model 1. Note 

that if we initially set all of the j equal to unity, Model 2 collapses down to Model 1. We made use of this 

fact in running our sequence of nonlinear regressions. Our models are nested so that we can use the final 

parameter estimates from a previous model as starting parameter values in the next model’s nonlinear 

regression.22 

 

The final log likelihood (LL) for Model 2 was an improvement of 1257.586 over the final LL for Model 1 

(for adding 5 new neighbourhood parameters) which, of course, is a highly significant increase. The R2 

increased to 0.8512 from the previous model R2 of 0.8207. The new estimated depreciation rate turned out 

to be 0.0184 or 1.84% per year. The price of land increased 2.90 fold and the price of structures increased 

1.87 fold over the sample period. The Model 2 land and structure price indexes, PL2
t  αt

*/α1
* and PS2

t  

t
*/1

*, are listed in Table 3 below. The estimated postal code coefficients 2
*,…, 6

* were 1.1467, 1.9539, 

1.7260, 2.0055 and 1.9576.  

 

In our next model, we introduced some nonlinearities into the pricing of the land area for each property. As 

mentioned in section 2, the land plot areas in our sample of properties ran from 3,000 to 12,300 ft2. Up to 

this point, we have assumed that land plots in the same neighbourhood are valued by purchasers at a 

constant marginal utility per square foot of lot area. However, it is likely that there is some nonlinearity in 

this valuation schedule; for example, it is likely that large lots are valued at marginal utility that is below 

the marginal utility of medium sized lots. In order to capture this nonlinearity, we initially divided up our 

13,988 observations into 5 groups of observations based on their lot size. The Group 1 properties had lots 

less than 4,500 ft2, the Group 2 properties had lots greater than or equal to 4,500 ft2 and less than 6,000 ft2, 

the Group 3 properties had lots greater than or equal to 6,000 ft2 and less than 7,500 ft2, the Group 4 

properties had lots greater than or equal to 7,500 ft2 and less than 9,000 ft2,  and the Group 5 properties had 

 
22 In order to obtain sensible parameter estimates in our final (quite complex) nonlinear regression model, it is desirable 

to follow our procedure of sequentially estimating gradually more complex models, using the final coefficients from 

the previous model as starting values for the next model. We used both Shazam and RStudio to perform the nonlinear 

regressions; see White (2004). 
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lots greater than or equal to 9,000 ft2.23 The four land values Lt (in units of thousand ft2) used to define the 

boundaries of the above 5 groups are defined as follows: 

 

(7) L1  4.5 ; L2  6 ; L3  7.5 ; L4  9.   

 

 For each observation n in period t, we define the 5 land dummy variables, DL,tn,k, for k = 1,...,5 as follows: 

 

(8) DL,tn,k  1 if observation tn has land area that belongs to group k; 

                 0 if observation tn has land area that does not belong to group k. 

 

These dummy variables are used in the definition of the following piecewise linear function of Ltn, fL(Ltn), 

defined as follows: 

 

(9) fL(Ltn)  DL,tn,11Ltn + DL,tn,2[1L1+2(Ltn−L1)] + DL,tn,3[1L1+2(L2−L1)+3(Ltn−L2)] 

                   + DL,tn,4[1L1+2(L2−L1)+ 3(L3−L2)+4(Ltn−L3)]  

                   + DL,tn,5[1L1+2(L2−L1)+3(L3−L2) )+4(L4−L3)+5(Ltn−L4)] 

 

where the k are unknown parameters and the Lt are defined by (7). The function fL(Ltn) defines a relative 

valuation function for the land area of a property as a function of the plot area. Basically, we are assuming 

that all purchasers of the residential properties in scope have the land utility function u(Ltn) for property n 

in quarter t equal to (j=1
6 jDPC,tn,j)fL(Ltn) and the corresponding structure utility function U(Stn) for 

property n in quarter t is equal to (1 − )A(t,n)Stn. These are very strong assumptions.       

 

The new nonlinear regression model is the following one: 

 

(10) Vtn = t(j=1
6 jDPC,tn,j)fL(Ltn) + t(1 − )A(t,n)Stn + tn ;                                       t = 1,...,44; n = 1,...,N(t).                                       

                                                                           

Comparing the models defined by equations (5) and (10), it can be seen that we have added an additional 5 

land plot size parameters, 1,...,5, to the model defined by (5). However, looking at (9) and (10), it can be 

seen that the 44 land price parameters (the t), the 6 postal code parameters (the j) and the 5 land plot size 

parameters (the k) cannot all be identified. Thus we impose the following identification normalizations on 

the parameters for Model 3 defined by (3), (10) and (11): 

 

(11) 1  1; 1  1. 

 

Note that if we set all of the k equal to unity, Model 3 collapses down to Model 2. The final log likelihood 

for Model 3 was an improvement of 1076.866 over the final log likelihood for Model 2 (for adding 4 new 

lot size parameters) which is a highly significant increase. The R2 increased to 0.8683 from the previous 

model R2 of 0.8512. The new estimated geometric depreciation rate for structures turned out to be 0.0328 

or 3.28% per year. The price of land increased 2.37 fold over the sample period while the price of structures 

increased 1.84 fold. Thus the new model has given rise to somewhat different land prices and the new 

depreciation rate is considerably higher than the depreciation rates in Models 1 and 2. The sequence of 

 
23 The number of properties falling into each group were 2927, 2397, 4236, 3162 and 1266. The use of linear splines 

to model land prices as a function of lot size was first used by Diewert, de Haan and Hendriks (2011) and Diewert 

(2011).  
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marginal utility land quality adjustment factors generated by this model are as follows: 1 = 1 (imposed), 

2
* = 0.26174, 3

* =  0.45155, 4
* = 0.64362 and 5

* = 0.25290. Thus the marginal utility land valuations 

as functions of lot size are not monotonic. The Model 3 land and structure price indexes, PL3
t  αt

*/α1
* and 

PS3
t  t

*/1
*, are listed in Table 3 below. 

  

For our final model, we introduced bathroom and bedroom variables into the hedonic regression as variables 

that could affect the quality of the structure on a property. The number of bathrooms in our sample ranged 

from 1 to 6 bathrooms. Thus define the following 6 dummy variables, DBA,tn,i: for t = 1,...,44; n = 1,...,N(t); 

i = 1,...,6:24 

 

(12) DBA,tn,i  1 if observation n in period t is a house with i bathrooms; 

                    0 if observation n in period t does not have i bathrooms.  

    

We used the bathroom dummy variables defined above in order to define the following bathroom quality 

adjustment function, gBA(NBA,tn), as follows: 

 

(13) gBA(NBA,tn)  (i=1
6 iDBA,tn,i). 

 

Finally, we introduced the number of bedrooms into the hedonic regression. The number of bedrooms in 

our sample ranged from 2 to 7 bedrooms. Thus define the following 6 dummy variables, DBE,tn,i, for t = 

1,...,44; n = 1,...,N(t); i = 2,3,...,7:25 

 

(14) DBE,tn,i  1 if observation n in period t is a house with i bedrooms; 

                    0 if observation n in period t does not have i bedrooms.  

    

There were not a sufficient number of properties that had only two bedrooms (118) or had seven bedrooms 

(247), so we combined cell 2 with cell 3 and combined cell 7 with cell 6. Thus we ended up with 4 cells 

and 4 dummy variables of the form DBE,tn,i defined by (14). We use the bedroom dummy variables defined 

above in order to define the following bedroom quality adjustment function, gBE(NBE,tn): 

 

(15) gBE(NBE,tn)  (i=3
6 iDBE,tn,i). 

 

The new nonlinear regression model is the following one:26 

 

(16) Vtn = t(j=1
6 jDPC,tn,j)fL(Ltn) + t(1 − )A(t,n)gBA(NBA,tn)gBE(NBE,tn)Stn + tn ;       t = 1,...,44; n = 1,...,N(t). 

 

Comparing the models defined by equations (10) and (16), it can be seen that we have added an additional 

6 bathroom parameters i and 4 additional bedroom parameters i to the model defined by (5). However, it 

 
24 The number of observations in each of the 6 bathroom cells was 419, 2236, 5664, 2243, 1700, 1726.  
25 The number of observations in each of the 6 bedroom cells was 118, 2832, 4413, 5062, 1316, 247. 
26 The utility function u(L) that adjusts the quantity of land for observation n in period t, Ltn, into quality adjusted land 

is u(Ltn)  (j=1
6 jDPC,tn,j)fL(Ltn)  Ltn

* and the utility function U(S) that adjusts the quantity of structures for 

observation n in period t, Stn, into quality adjusted structures is U(Stn)  (1 − )A(t,n)gBA(NBA,tn)gBE(NBE,tn)Stn  Stn
*. 

McMillen’s (2003) consumer oriented approach to property hedonics assumed that all purchasers have  Cobb-Douglas 

preferences over combinations of Ltn
* and Stn

* whereas we assume that purchasers have separate preference functions, 

u(L) and U(S), for land and structures.   
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can be seen that the 44 land price parameters (the t), the 6 postal code parameters (the j), the 5 land plot 

size parameters (the k), the 6 bathroom parameters (the k) and the 4 bedroom parameters (the k)  cannot 

all be identified. Thus we impose the following identification normalizations on the parameters for Model 

4 defined by (3), (10), (13), (15), (16) and (17): 

 

(17) 1  1; 1  1; 1 = 1 and 3 = 1. 

 

There are a total of 74 unknown parameters in Model 4. Note that if we set all of the k and k equal to 1, 

then Model 4 collapses down to Model 3.  

 

The final log likelihood for Model 4 was an improvement of 264.781 over the final log likelihood for Model 

3 (for adding 8 new bathroom and bedroom parameters). The R2 increased to 0.8732 from the previous 

model R2 of 0.8633. The estimated geometric depreciation rate was * = 0.0281 or 2.81% per year. Using 

this model, the price of land increased 2.46 fold which is an increase over the 2.37 fold increase that 

occurred in Model 3. The price of structures increased 1.74 fold. The Model 4 land and structure price 

indexes, PL4
t  αt

*/α1
* and PS4

t  t
*/1

*, are listed in Table 3 below.  

 

The estimated coefficients for Model 4 are listed below in Table 2.27   

 

Table 2: Estimated Coefficients for Model 4 

 
Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat 

1
* 0.05612 21.81 26

* 0.08509 30.20 6
* 0.37699 11.65 

2
* 0.05845 23.78 27

* 0.08735 30.89 7
* 0.35703 12.08 

3
* 0.05629 19.72 28

* 0.08794 30.50 8
* 0.35625 11.96 

4
* 0.04898 15.31 29

* 0.09535 31.82 9
* 0.43007 12.16 

5
* 0.04840 17.51 30

* 0.10149 33.87 10
* 0.44799 11.99 

6
* 0.05060 22.73 31

* 0.11158 34.23 11
* 0.44581 11.87 

7
* 0.05345 24.87 32

* 0.11775 34.22 12
* 0.47408 10.74 

8
* 0.05758 24.57 33

* 0.15009 36.25 2
* 1.13450 44.50 

9
* 0.06726 26.78 34

* 0.16171 37.04 3
* 1.73000 44.99 

10
* 0.06896 27.82 35

* 0.15581 34.94 4
* 1.53320 46.29 

11
* 0.06655 26.65 36

* 0.14213 32.59 5
* 1.74750 46.34 

12
* 0.06807 27.36 37

* 0.14976 33.75 6
* 1.63530 46.76 

13
* 0.08867 31.94 38

* 0.15446 35.10 1−* 0.97187 1305.5 

14
* 0.08619 31.10 39

* 0.15917 34.77 2
* 0.31026 11.17 

15
* 0.08285 28.89 40

* 0.15487 33.09 3
* 0.46972 16.34 

16
* 0.08268 27.47 41

* 0.15792 31.77 4
* 0.66007 19.87 

17
* 0.08811 28.14 42

* 0.15205 32.57 5
* 0.27274  8.41 

18
* 0.08264 27.17 43

* 0.14105 30.06 2
* 0.81236 12.81 

19
* 0.07687 24.84 44

* 0.13826 26.47 3
* 0.86637 13.16 

20
* 0.07065 22.65 1

* 0.26785 11.23 4
* 0.85786 12.91 

21
* 0.07104 23.05 2

* 0.25412 11.45 5
* 0.83882 12.87 

22
* 0.07426 26.91 3

* 0.29867 11.67 6
* 0.91561 12.80 

23
* 0.07425 27.58 4

* 0.33483 11.91 4
* 0.96774 52.56 

24
* 0.07756 27.20 5

* 0.34908 11.68 5
* 0.90227 52.46 

25
* 0.08154 27.87    6

* 0.75694 45.30 

 

 
27 Standard errors for each estimated coefficient can be obtained by dividing the estimate by the corresponding listed 

t statistic. 



12 
 

The land price indexes generated by Models 1-4, PL1
t, PL2

t, PL3
t, PL4

t, and the corresponding structure prices, 

PS1
t, PS2

t, PS3
t, PS4

t, are listed below in Table 3. 

 

Table 3: Land and Structure Price Indexes for Models 1-4  

 
Quarter t PL1

t PL2
t PL3

t PL4
t PS1

t PS2
t PS3

t PS4
t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 1.03429 1.04492 1.03623 1.04157 0.98862 0.98534 0.98834 0.98718 

3 1.02270 1.01530 1.00517 1.00302 0.97724 0.97067 0.97668 0.97436 

4 0.81897 0.83256 0.88105 0.87275 0.96586 0.95601 0.96502 0.96155 

5 0.86209 0.85270 0.87102 0.86247 0.95448 0.94134 0.95336 0.94873 

6 0.88388 0.87278 0.90375 0.90161 0.99399 0.98373 0.99908 0.99031 

7 0.92769 0.92302 0.95703 0.95241 1.03349 1.02611 1.04480 1.03189 

8 0.99921 0.99533 1.01975 1.02594 1.07299 1.06849 1.09052 1.07347 

9 1.21342 1.20019 1.18039 1.19856 1.11249 1.11088 1.13625 1.11505 

10 1.25935 1.26292 1.21023 1.22886 1.13943 1.13169 1.17369 1.14880 

11 1.20008 1.20113 1.17133 1.18592 1.16637 1.15251 1.21113 1.18255 

12 1.22499 1.22994 1.19849 1.21292 1.19331 1.17333 1.24857 1.21630 

13 1.67840 1.71518 1.54366 1.58005 1.22025 1.19415 1.28602 1.25006 

14 1.60468 1.64631 1.49572 1.53585 1.25180 1.21649 1.30086 1.26336 

15 1.51471 1.56576 1.44633 1.47636 1.28334 1.23883 1.31571 1.27665 

16 1.50904 1.54416 1.44676 1.47328 1.31489 1.26116 1.33055 1.28995 

17 1.62407 1.69986 1.53951 1.57003 1.34643 1.28350 1.34540 1.30325 

18 1.49395 1.56524 1.44804 1.47258 1.36301 1.30903 1.38039 1.32930 

19 1.40415 1.42607 1.35843 1.36977 1.37959 1.33456 1.41537 1.35535 

20 1.23604 1.23821 1.23902 1.25885 1.39616 1.36010 1.45036 1.38140 

21 1.26681 1.27912 1.24682 1.26590 1.41274 1.38563 1.48535 1.40745 

22 1.34289 1.34866 1.30788 1.32329 1.40347 1.37171 1.46370 1.38882 

23 1.31616 1.34908 1.30660 1.32308 1.39420 1.35780 1.44206 1.37019 

24 1.36682 1.39764 1.35620 1.38200 1.38494 1.34388 1.42041 1.35156 

25 1.44230 1.48147 1.41957 1.45299 1.37567 1.32996 1.39876 1.33293 

26 1.54831 1.57025 1.48575 1.51619 1.37084 1.33152 1.39324 1.33221 

27 1.56188 1.60358 1.52464 1.55647 1.36601 1.33308 1.38771 1.33148 

28 1.59471 1.62161 1.53541 1.56704 1.36118 1.33464 1.38219 1.33076 

29 1.77298 1.77770 1.65843 1.69898 1.35635 1.33620 1.37666 1.33003 

30 1.84837 1.88539 1.75741 1.80854 1.44593 1.40812 1.45738 1.39893 

31 2.01062 2.06941 1.92450 1.98833 1.53551 1.48003 1.53810 1.46783 

32 2.14408 2.21320 2.03030 2.09810 1.62508 1.55194 1.61882 1.53672 

33 2.79336 2.89867 2.56353 2.67442 1.71466 1.62386 1.69953 1.60562 

34 3.07233 3.18879 2.76067 2.88151 1.74112 1.66125 1.72084 1.62234 

35 2.90058 3.01479 2.67023 2.77631 1.76758 1.69865 1.74214 1.63906 

36 2.56677 2.72080 2.43911 2.53261 1.79404 1.73605 1.76345 1.65579 

37 2.79210 2.84140 2.54910 2.66850 1.82050 1.77345 1.78475 1.67251 

38 2.87762 2.93606 2.64755 2.75237 1.80549 1.78428 1.77036 1.67048 

39 2.99580 2.99926 2.71455 2.83628 1.79049 1.79511 1.75597 1.66844 

40 2.89693 2.86556 2.64936 2.75963 1.77548 1.80595 1.74158 1.66640 

41 2.99874 2.95208 2.71392 2.81395 1.76047 1.81678 1.72719 1.66436 

42 2.85707 2.77317 2.61565 2.70945 1.78135 1.83431 1.76513 1.69075 

43 2.68382 2.57442 2.43619 2.51334 1.80223 1.85184 1.80306 1.71714 

44 2.59995 2.49497 2.37305 2.46374 1.82311 1.86937 1.84099 1.74353 

 

Chart 1 plots the 4 land price indexes and Chart 2 plots the four structure price indexes. 
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It can be seen that the different models generate substantially different land and structure price indexes at 

times, although they all pick up the same trends. We prefer the Model 4 indexes since this model fits the 

data best.  

 

In the following section, we will use the results from Models 1-4 to construct overall property price indexes.  

 

4. Property Price Indexes for the Geometric Depreciation Models 

 

The previous section showed how the value of property n in period t, Vtn, could be decomposed into the 

sum of a land component, a structure component and an error term. In the case of Model 1, the land 

component was equal to t
*Ltn and the structure component was equal to t

*(1 − *)A(t,n)Stn. In the present 

section,  we show how the various decompositions of property value can be aggregated to give us overall 

property price indexes for Richmond.  
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Using the estimated coefficients from Model 1, quarter t aggregate land QL1
t is defined as the sum of the 

land that was purchased in quarter t: 

 

(18) QL1
t  n=1

N(t)Ltn ;                                                                                                                     t = 1,…,44. 

 

The corresponding aggregate quarter t predicted land price is defined as follows:28 

 

(19) PL1
t = αt

* ;                                                                                                                                    t = 1,…,44. 

 

The Model 1 quarter t constant quality aggregate structure quantity is defined as the following sum: 

 

(20) QS1
t  n=1

N(t) (1 − *)A(t,n)Stn ;                                                                                                    t = 1,…,44.   

 

The corresponding constant quality aggregate quarter t structure price is defined as follows:29 

 

(21) PS1
t = t

* ;                                                                                                                                    t = 1,…,44 

 

 where the t
* are defined in terms of the estimated annual structure prices 1

*,…, 12
* for Model 1 using 

equations (3). 

 

Define the quarter t total property value Vt by summing over the individual quarter t transactions, Vtn: 

 

(22) Vt  n=1
N(t) Vtn ;                                                                                                                        t = 1,…,44.                                                                                                                    

 

Quarter t predicted aggregate property value Vt* is defined as PL1
tQL1

t plus PS1
tQS1

t for t = 1,…,44. However, 

due to the error terms in the hedonic regression that defined Model 1, Vt* will not equal Vt. In order to make 

the predicted value of property transacted in quarter t equal to the actual quarter t property value, we will 

not use definitions (18) to define the QL1
t; instead we will use the following definitions: 

 

(23) QL1
t  [Vt − PS1

tQS1
t]/PL1

t ;                                                                                                      t = 1,…,44. 

 

If the fits in the various nonlinear regression models in the previous section are poor, the use of definitions 

(23) will tend to make the aggregate land quantity levels more volatile than those produced by the original 

definitions (18). 

 

We use definitions (19), (20), (21) and (23) to define preliminary values for PL1
t, QL1

t, PS1
t and QS1

t for t = 

1,…,44. Finally, we normalize the price indexes PL1
t and PS1

t to equal one for t = 1 and normalize the 

companion quantity indexes (in the opposite direction) so that aggregate land and structure values remain 

unchanged for each quarter.30 In an abuse of notation, we denote the normalized series by PL1
t, QL1

t, PS1
t and 

 
28 In the previous section, PL1

t was not defined by (19); instead it was defined by αt
*/α1

*. This change of definition is 

not material. Our aggregate indexes are invariant to changes in the units of measurement. However, the algebra is 

simpler if we use the new definitions for the PL1
t in this section.  

29 In the previous section, PS1
t was not defined by (21); instead it was defined by t

*/1
*. 

30 Thus the normalized quarter t aggregate prices of land and structures are equal to PL1
t/PL1

1 and PS1
t/PS1

1 for t = 

1,…,44. The corresponding normalized aggregate constant quality quantities of land and structure are equal to PL1
1QL1

t 

and PS1
1QS1

t for t = 1,…,44. 



15 
 

QS1
t for t = 1,…,44. The Model 1 aggregate normalized price series PL1

t and PS1
t are listed in Table 3 above 

and the corresponding normalized quantity series QL1
t and QS1

t are listed in Table 4 below.  

 

The same strategy for forming aggregate price and quantity indexes for the aggregate land and structure 

was followed using the results of Models 2-4. The preliminary constant quality land and structure price 

levels for quarter t were defined using the estimated coefficients from the relevant regression for the αt
* and 

the t
* and using definitions (20) and (23) in order to define the corresponding Model j constant quality 

quarter t structure and land levels, QSj
t and QLj

t. However, Model 4 used a different definition for QS4
t instead 

of using definition (20). The Model 4 counterpart definitions to definitions (20) are the following: 

 

(24) QS4
t  n=1

N(t) (1 − *)A(t,n)gBA(NBA,tn)gBE(NBE,tn)Stn ;                                                                   t = 1,…,44 

 

where the functions gBA(NBA,tn) and gBE(NBE,tn) are defined by (13) and (15). The resulting normalized 

aggregate price indexes for land (PL2
t, PL3

t and PL4
t) and structures (PS2

t, PS3
t and PS4

t) are listed in Table 3 

and the corresponding quantity indexes for land (QL2
t, QL3

t and QL4
t) and structures (QS2

t, QS3
t and QS4

t) are 

listed in Table 4. These quantity indexes are quality adjusted aggregate amounts of land  and structures 

purchased in quarter t.  

 

Table 4: Land and Structure Quantity Indexes for Models 1-4  

 
Quarter t QL1

t QL2
t QL3

t QL4
t QS1

t QS2
t QS3

t QS4
t 

1 141.53 135.005 188.209 173.795 151.965 158.486 105.282 119.696 

2 131.37 124.668 173.552 160.044 144.554 150.726 100.113 113.543 

3 52.77 51.163 71.288 65.768 60.298 62.794 42.226 48.167 

4 36.13 34.093 47.084 43.531 41.941 43.634 29.653 33.391 

5 81.64 79.810 111.817 103.599 100.252 104.127 72.038 80.868 

6 176.21 170.935 241.171 222.679 204.673 213.473 141.358 159.969 

7 195.15 187.607 259.380 239.982 220.005 229.261 153.310 174.291 

8 133.50 128.019 176.185 163.026 152.168 158.393 107.287 120.552 

9 175.83 170.411 233.271 215.810 184.458 192.675 126.041 143.405 

10 143.56 137.832 193.293 178.448 154.709 161.710 104.924 119.942 

11 114.58 110.603 153.177 141.401 121.782 127.286 82.672 94.590 

12 147.18 142.351 195.785 181.193 156.201 163.299 105.754 120.788 

13 227.25 218.369 297.908 275.783 208.539 218.853 136.871 160.103 

14 140.00 134.499 185.784 171.672 134.780 141.349 88.783 102.673 

15 103.73 99.545 138.485 128.223 111.268 116.277 75.711 86.638 

16 78.59 76.366 105.924 97.874 78.014 81.867 51.048 59.671 

17 102.71 98.268 139.563 128.786 107.128 112.199 71.496 83.522 

18 86.53 82.408 116.364 107.333 95.951 100.129 66.329 76.735 

19 59.60 58.166 81.625 75.493 70.561 73.493 49.561 57.271 

20 56.75 55.499 77.603 71.686 67.782 70.631 47.321 53.960 

21 80.95 77.762 111.110 102.261 92.286 96.318 63.550 73.519 

22 124.95 121.465 170.552 157.698 138.606 144.719 95.146 110.632 

23 126.76 121.347 171.812 158.713 148.484 154.772 103.579 119.594 

24 98.81 95.489 132.600 122.551 118.404 123.206 83.921 95.940 

25 134.15 129.474 178.659 165.268 149.892 156.302 104.428 119.703 

26 146.60 142.157 198.753 183.642 153.352 160.709 101.857 119.181 

27 145.80 139.435 193.142 178.840 163.965 171.110 113.300 130.186 

28 119.71 115.220 157.557 146.153 124.379 129.891 85.579 98.570 

29 187.02 182.082 249.463 230.943 200.133 209.060 137.521 158.393 

30 247.04 238.514 326.199 302.158 252.441 264.136 170.416 196.696 

31 187.82 181.143 246.991 228.912 193.092 202.208 129.249 149.187 

32 177.00 171.609 234.840 217.547 184.157 192.647 124.774 144.689 

33 217.82 210.400 285.066 264.114 198.800 209.029 128.586 151.318 

34 191.86 184.719 256.132 237.050 193.206 202.742 127.113 149.646 

35 78.22 74.951 103.352 95.664 81.785 85.646 54.800 64.580 

36 59.79 55.874 78.241 72.267 61.474 64.365 41.353 48.762 

37 102.33 99.183 139.589 128.840 115.819 121.089 78.856 91.331 
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38 146.94 140.769 196.039 181.423 163.337 170.616 112.243 130.735 

39 82.77 80.082 110.898 102.635 87.907 92.005 59.402 68.474 

40 75.01 72.567 100.447 92.999 84.441 88.189 58.046 66.352 

41 63.41 61.041 85.594 79.062 70.874 74.160 47.844 55.549 

42 76.62 74.545 103.335 95.688 91.223 95.227 62.950 72.240 

43 57.56 56.580 78.712 72.756 68.612 71.533 47.904 55.481 

44 37.89 37.266 51.542 47.614 42.901 44.798 29.554 34.077 

 

It can be seen that allowing land prices to vary with the size of the land plot (Models 3 and 4) substantially 

changed the relative sizes of constant quality land and structures: the quantity of land increased and the 

quantity of structures decreased. This is due to the substantial increase in the structure depreciation rate that 

occurred using Models 3 and 4.  

 

We conclude this section by forming aggregate residential property price indexes for Richmond. The price 

and quantity series for land and structures, PLk
t, PSk

t, QLk
t, QSk

t for k = 1,2,3,4, are listed in Tables 3 and 4. 

The fixed base and chained Fisher (1922) ideal indexes for the 4 models, PFFBk
t and PFCHk

t for k = 1,2,3,4, 

are listed in Table 5 along with simple mean and median property price indexes, PMean
t and PMed

t. 

 

Table 5: Mean, Median and Fisher Fixed Base and Chained Property Price Indexes 

 

t PMean
t PMed

t PFFB1
t PFFB2

t PFFB3
t PFFB4

t PFCH1
t PFCH2

t PFCH3
t PFCH4

t 
1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 1.02951 1.03249 1.01050 1.01253 1.01888 1.01920 1.01050 1.01253 1.01888 1.01920 

3 1.01586 0.99223 0.99881 0.99095 0.99476 0.99112 0.99902 0.99111 0.99497 0.99141 

4 0.97355 0.92797 0.89646 0.90054 0.91233 0.91013 0.89818 0.90180 0.91344 0.91141 

5 0.96893 0.95339 0.91147 0.90172 0.90192 0.89896 0.91163 0.90232 0.90278 0.90002 

6 0.94239 0.94350 0.94197 0.93354 0.93846 0.93824 0.94304 0.93490 0.94048 0.94023 

7 1.02121 0.99294 0.98311 0.97920 0.98907 0.98534 0.98456 0.98084 0.99103 0.98724 

8 1.10511 1.07345 1.03796 1.03532 1.04584 1.04573 1.03911 1.03670 1.04744 1.04733 

9 1.19644 1.16102 1.16145 1.15238 1.16473 1.16486 1.16223 1.15372 1.16639 1.16614 

10 1.18198 1.17952 1.19720 1.19207 1.19725 1.19644 1.19840 1.19406 1.19895 1.19785 

11 1.19860 1.16384 1.18267 1.17500 1.18544 1.18456 1.18368 1.17665 1.18684 1.18568 

12 1.24940 1.22599 1.20863 1.19953 1.21626 1.21429 1.20965 1.20122 1.21765 1.21542 

13 1.42792 1.39548 1.45014 1.44407 1.45688 1.45214 1.45129 1.44625 1.46091 1.45487 

14 1.37706 1.35311 1.42677 1.42012 1.42927 1.42929 1.42866 1.42365 1.43301 1.43204 

15 1.41403 1.38701 1.39494 1.38942 1.39982 1.39537 1.39990 1.39712 1.40530 1.40080 

16 1.37850 1.34181 1.41041 1.39454 1.40702 1.40117 1.41316 1.39873 1.41063 1.40413 

17 1.40934 1.37218 1.48132 1.47646 1.47181 1.46315 1.48619 1.48458 1.47763 1.46874 

18 1.41398 1.33898 1.42563 1.42579 1.42363 1.41350 1.43186 1.43625 1.43035 1.42110 

19 1.44566 1.34181 1.39113 1.37582 1.37940 1.36372 1.39868 1.38779 1.38666 1.37263 

20 1.37613 1.38418 1.32107 1.30524 1.31695 1.31016 1.33051 1.31860 1.32537 1.32032 

21 1.32865 1.27119 1.34346 1.33734 1.33300 1.32437 1.35378 1.35126 1.34336 1.33553 

22 1.38609 1.31568 1.37450 1.36115 1.36373 1.35016 1.38491 1.37527 1.37482 1.36156 

23 1.39267 1.33305 1.35742 1.35387 1.35637 1.34281 1.36736 1.36769 1.36599 1.35354 

24 1.47522 1.46610 1.37645 1.36798 1.38016 1.36911 1.38564 1.38129 1.38852 1.37896 

25 1.47599 1.43008 1.40747 1.39913 1.41200 1.40329 1.41586 1.41114 1.41991 1.41168 

26 1.41785 1.38347 1.45700 1.44245 1.45349 1.44247 1.46457 1.45326 1.46094 1.44908 

27 1.53497 1.53284 1.45933 1.45602 1.47477 1.46320 1.46859 1.46955 1.48422 1.47278 

28 1.53412 1.49492 1.47475 1.46809 1.48096 1.47127 1.48193 1.47875 1.48914 1.47873 

29 1.61533 1.56003 1.55743 1.54051 1.55782 1.54870 1.56664 1.55310 1.56711 1.55736 

30 1.66373 1.66667 1.64248 1.63112 1.65212 1.64425 1.64963 1.64237 1.66014 1.65100 

31 1.83267 1.85452 1.76719 1.75483 1.78882 1.77950 1.77547 1.76799 1.79805 1.78738 

32 1.94461 1.95621 1.87740 1.85979 1.88511 1.87151 1.88703 1.87441 1.89557 1.88122 

33 2.26298 2.26907 2.25662 2.23665 2.27418 2.26170 2.25984 2.24486 2.28005 2.26324 

34 2.36593 2.40113 2.39370 2.37667 2.40168 2.38106 2.41482 2.40569 2.42033 2.39823 

35 2.33795 2.35876 2.31769 2.30848 2.34297 2.31525 2.34296 2.34274 2.36752 2.34086 

36 2.14660 2.04802 2.17085 2.19134 2.20110 2.17718 2.19131 2.22424 2.22263 2.20073 

37 2.24194 2.25989 2.28263 2.25950 2.27404 2.25882 2.31486 2.30100 2.30208 2.28896 

38 2.33350 2.33757 2.31785 2.30953 2.33052 2.30519 2.34776 2.35064 2.36038 2.33779 

39 2.35418 2.36441 2.37335 2.35225 2.37543 2.36446 2.39718 2.38607 2.39878 2.38710 

40 2.35776 2.35876 2.30963 2.28881 2.32031 2.30909 2.34139 2.32973 2.35122 2.34037 
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41 2.31262 2.37288 2.35139 2.33418 2.36005 2.34234 2.38210 2.37563 2.38765 2.37179 

42 2.40062 2.39956 2.28620 2.25635 2.30209 2.28258 2.32641 2.30408 2.33882 2.32155 

43 2.27803 2.20410 2.21585 2.17758 2.20285 2.17872 2.25708 2.22442 2.23972 2.21915 

44 2.19225 2.25989 2.19257 2.15530 2.18067 2.16666 2.22892 2.19794 2.21367 2.20149 

 

The above indexes are plotted in Chart 3 below. 

 

 
 

 

It can be seen that the Mean and Median price index series, PMean
t and PMed

t, are more volatile than the Fisher 

indexes which are very close to each other. However, PMean
t and PMed

t do capture the trends in Richmond 

property prices over the sample period. The Model 4 fixed base and chained Fisher indexes differ by 1.6% 

for the final quarter in our sample so chain drift is not a major problem with the Model 4 aggregate property 

price indexes.  

 

Our conclusion here is that it appears that Model 1, which has only a single geometric depreciation rate and 

uses information on land plot size, structure size and the age of the structure, generates an aggregate 

property price index which approximates our subsequent hedonic regression Models which require 

additional information on housing characteristics. However, in order to obtain more accurate depreciation 

rates and to obtain more accurate subindexes for the land and structure components, additional information 

on property characteristics is required. Information on property location, the floor space area of the 

structure, the land plot area and the age of the structure can be sufficient to generate land and structure price 

indexes that are reasonably accurate, provided that the fit of the hedonic regression is reasonably high.31  

 
31 Some information on the quality of the structure is useful for improving the fit of the model. We used the number 

of bathrooms and bedrooms as indicators of structure quality because these structure characteristics were readily 

available. But many additional characteristics of the structure could be used as quality adjusting characteristics such 

as the type of construction, the “greenness” of the structure, the footprint of the structure and so on. Also there are 

characteristics which affect the quality of the land component of property value, such as distance to the nearest bus 

stop or subway station, distance to schools and hospitals, landscaping and possible views. An alternative to using 



18 
 

A referee noted that it is often difficult to obtain an estimate for the age of a structure and the following 

question was raised: What happens to Model 4 if we omit the Age variable? Thus we ran the Model 4 

regression without the age variable and the log likelihood fell from 2771.88 to 1060.3398. The R2 between 

the observed and predicted variable fell from 0.8732 to 0.8380. The Land, Structure and overall Property 

Price indexes that resulted when we dropped the Age variable captured the observed trends in the Model 4 

indexes but had a considerable amount of bias. At the end of the sample period, the ratio of the new Land 

Price index to the Model 4 index was 2.167/2.464 = 0.879, the ratio of the new Structure Price index to the 

Model 4 index was 1.960/1.744 = 1.124 and the ratio of the new overall Chained Fisher Property Price 

index to the Model 4 Chained Fisher Property Price index was 2.089/2.201= 0.949. Thus it seems to be 

important to include the Age variable in resale property price hedonic regressions in order to avoid bias. 

 

The above regressions used the data for the entire sample period. In the following section, we address the 

problems associated with the production of a real time index.  

 

5. The Construction of Real Time Price Indexes 

 

The period t price and quantity levels for land and structures that were constructed in the previous section 

were constructed for a window of 44 quarters. How exactly should the quarter 45 indexes be constructed 

when the data for quarter 45 becomes available? More generally, how should real time land and structure 

price levels and indexes be constructed? We address these questions in this section. 

 

We introduce some notation so that we can explain alternative price updating methods more precisely. Let 

Pt be a period t price level that is derived from a hedonic regression for t = 1,2,…,T. Our Models 1-4 generate 

two sets of price levels: one for constant quality land and another for constant quality structures. Think of 

the Pt as representing one of these series for one of our hedonic regression models and let Qt be the 

companion period t quantity level.32 We would like our price levels to satisfy the following transitivity 

relations:33 

 

(25) Pt/Pr = (Pt/Ps)(Ps/Pr) ;                                                                                                       1  r < s < t  T. 

 

The above relations are equivalent to Fisher’s (1922; 270) Circularity Test for bilateral index number 

formulae. If the estimated price levels from a hedonic regression satisfy (25), then the resulting price index 

will not have a chain drift problem which can be a serious problem as was discussed in section 1. 

 

In order to generate a real time sequence of price levels, run a hedonic regression  that uses only the data 

for periods 1 and 2. Denote the resulting period 1 and 2 price levels for regression 1 as P1(1) and P2(1). 

Define the real time price levels to be P1*  P1(1) and P2*  P2(1).  When the data for period 3 becomes 

available, run a second regression using only the data for periods 2 and 3. This second regression generates 

period 2 and 3 price levels, P2(2) and P3(2). Define the real time period 3 price level as P3*  P2*[P3(2)/P2(2)]. 

Thus we update the period 2 real time price level P2* by the price ratio or movement P3(2)/P2(2) in the price 

levels generated by our second hedonic regression that used only the data for periods 2 and 3. The third 

 
postal codes as quality adjustment factors for land is the use of spatial coordinates; see for example, Diewert and 

Shimizu (2022). Also aspects of the theoretical model could be improved; the treatment of depreciation could be 

generalized and alternative smoothing methods could be used to smooth the structure price levels. 
32 The companion period t value level is Vt = PtQt. 
33 If the Pt satisfy the equalities in (25) and Vt = PtQt for t = 1,…,T, then the Qt will also satisfy the transitivity 

conditions Qt/Qr = (Qt/Qs)(Qs/Qr) for 1  r < s < t  T.  
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bilateral hedonic regression uses only the data for periods 3 and 4 and the real time price level for period 4 

is defined as P4*  P3*[P4(3)/P3(3)]. This updating process is continued indefinitely.34 The problem with this 

methodology is that the resulting price levels are not transitive; i.e., they do not satisfy the restrictions (25) 

and hence may be subject to chain drift.  

 

Next, we consider a generalization of the above time dummy, adjacent period approach to the production 

of real time price levels. Instead of choosing to update the previous real time price levels by using bilateral 

hedonic regressions which use only the data for 2 adjacent periods, we use the data for M consecutive 

periods. First, choose M to be large enough so that the M period hedonic regression model will yield 

“reasonable” results; this will be the window length for the sequence of regression models that will be 

estimated. Second, run an initial regression model using the data for the first M periods and calculate the 

price levels pertaining to the first M periods in the data set. Next, a second regression model is estimated 

where the data consist of the initial data less the data for period 1 but adding the data for period M+1. 

Appropriate price level are calculated for this new regression model but only the rate of increase of the 

price level going from period M to M+1 is used to update the previous sequence of M index values. This 

procedure is continued with each successive regression dropping the data of the previous earliest period 

and adding the data for the next period, with one new update factor being added with each regression. If 

the window length is a year, then this procedure is called a rolling year hedonic regression model and for a 

general window length, it is called a rolling window hedonic regression model with a movement splice. This 

is exactly the procedure used by Shimizu, Nishimura and Watanabe (2010) and Shimizu, Takatsuji, Ono 

and Nishimura (2010) in their hedonic regression models for Tokyo house prices.  

 

It turns out that there are several ways for linking the results of a new hedonic regression that uses a window 

length equal to M periods to the results of a previous rolling window regression. Let the price levels 

generated by the first regression be denoted by P1(1), P2(1),…,PM(1) and set the “real time” sequence of 

price levels for the first M periods, Pt*, to equal the corresponding Pt(1); i.e., we have Pt*  Pt(1) for t = 

1,2,…,M. The second regression drops the period 1 data and adds the period M+1 data and generates the 

price levels P2(2), P3(2), …, PM+1(2). Using the movement splice, the “real time” price level for period M+1 

is defined as PM+1*  PM*[PM+1(2)/PM(2)]. Using what is called a “window splice”35, the “real time” price 

level for period M+1 is defined as PM+1*  P2*[PM+1(2)/P2(2)].36 The third regression drops the period 1 and 

2 data and adds the period M+1 and M+2 data and generates the price levels P3(3), P4(3), …, PM+2(3). Using 

the movement splice, the “real time” price level for period M+2 is defined as PM+2*  PM+1*[PM+2(3)/PM+1(3)]. 

Using the window splice, the “real time” price level for period M+2 is defined as PM+2*  P3*[PM+2(3)/P3(3)]. 

 

We calculated Rolling Window real time price levels for our data using Model 4 for window lengths M 

equal to 9 (which uses 2 years of data in the window) and 21 quarters (which uses 5 years of data) and using 

window splices to update the previous real time price levels. Denote these land price levels37 for quarter t 

 
34 This classic methodology was developed by Court (1939; 109-111) as his hedonic suggestion number two.     
35 The term and the concept of a window splice is due to Krsinich (2016). She recommended the use of window 

splicing over movement splicing because the time dummy variables in a rolling window hedonic regression are 

determined more accurately for the time dummy coefficients at the beginning of the window relative to the time 

dummy coefficients at the end of the window. In our particular context, it turns out that the Expanding Window 

approach to linking in the results of a new regression with the results of previous regressions gives the same estimates 

as the Rolling Window approach for the first M periods.  
36 Other methods for linking the results of a new rolling window regression to previous index levels are the half splice 

due to de Haan (2015) and the mean splice suggested by Ivancic, Diewert and Fox (2011) and Diewert and Fox (2022).  
37 The various price levels were normalized to equal 1 in quarter 1. 
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as PLRW9
t and PLRW21

t and the corresponding structure price levels for quarter t as PSRW9
t and PSRW21

t for t = 

1,…,44. These (normalized) series are listed in Table 6 below. For comparison purposes, the Model 4 

(normalized) land price levels PL4
t and (normalized) structure price levels PS4

t that are listed in Table 3 are 

also listed in Table 6 as PL
t and PS

t.    

   

Rather than using a Rolling Window (RW) approach to the construction of real time indexes, it is possible 

to use an Expanding Window (EW) approach. It is necessary to choose a window length M to start the EW 

indexes. The first M observations in our sample of T periods act as “training” periods. Let the price levels 

generated by the first regression be denoted by P1(1), P2(1),…,PM(1) and set the “real time” sequence of 

price levels for the first M periods, Pt*, to equal the corresponding Pt(1); i.e., we have Pt*  Pt(1) for t = 

1,2,…,M. Thus the real time price levels for the first M periods using the EW approach are the same as the 

corresponding RW price levels. Note that these price levels satisfy the transitivity conditions (25) so there 

is no chain drift problem with these price levels. However, let us assume that the previous price levels P1*, 

P2*, …,PM* cannot be revised. We use the window method for price updating the real time price levels. Thus 

the EW “real time” price level for period M+1 is defined as PM+1*  P1*[PM+1(2)/P1(2)]. The third regression 

adds the period M+1 and M+2 data to the initial data set and generates the price levels P1(3), P2(3), …, 

PM+2(3). Using the window splice, the “real time” price level for period M+2 is defined as PM+2*  

P1*[PM+2(3)/P1(3)]. The process continues in the same manner until the period T data has been added to the 

regression.38 The final Nonrevisable Expanding Window series does not satisfy the transitivity conditions 

(25) but the final price level PT* for the EW series cannot be unrealistically too high or too low because PT* 

is the final price level for a sequence of price levels that does satisfy the transitivity conditions (25).  

 

There are at least two potential problems with the Expanding Window price levels: 

 

• The EW sequence of real time price levels Pt* could differ substantially from the sequence of  price 

levels generated by the final hedonic regression Pt(T−M+1) for some t < T. 

• The Expanding Window sequence of hedonic regressions does not allow for gradual changes in the 

underlying utility functions u(L) for land and U(S) for structures whereas the Rolling Window 

sequence of hedonic regressions does allow for changes in preferences.  

 

Problem 1 can be addressed by comparing the real time EW price levels with the price levels generated by 

the final hedonic regression that uses the data for all T periods. If the discrepancies between the two series 

are not too large, then the EW price levels could be accepted as being reasonable.  

 

Problem 2 can be addressed by looking at the fits of the various regressions that are used to calculate the 

EW price levels. If the fits are low, then other multilateral methods should be considered.  

 

We calculated Expanding Window real time price levels for our data using Model 4 for window lengths M 

equal to 9 and 21 quarters and using window splices to update the previous real time price levels. Denote 

 
38 Chessa (2016) (2021) introduced the concept of using an expanding window in a multilateral index number context. 

The idea of using an infinitely expanding window of observations arose in Diewert (2023) in his discussion of the 

multilateral index Predicted Share Method that used dissimilarity measures to link the current period price levels to 

past period price levels. The expanding window approach was used by Diewert and Shimizu (2023) in their analysis 

of laptop prices in Japan. Diewert (2024) discussed adapting this approach to other multilateral methods based on the 

use of econometrics. Note that the “real time” nature of the EW and RW approaches starts at period M; i.e., at the end 

of the training periods. 
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the resulting land price levels for quarter t as PLEW9
t and PLEW21

t and the corresponding structure price levels 

for quarter t as PSEW9
t and PSEW21

t for t = 1,…,44. These (normalized) series are listed in Table 6 below.      

 

Table 6: Rolling Window and Expanding Window Land and Structure Price Indexes 

 
t PL

t PLEW21
t PLEW9

t PLRW21
t PLRW9

t PS
t PSEW21

t PSEW9
t PSRW21

t PSRW9
t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 1.04157 1.04166 1.03185 1.04166 1.03185 0.98718 0.98485 0.99578 0.98485 0.99578 

3 1.00302 1.00391 0.99139 1.00391 0.99139 0.97436 0.96969 0.99156 0.96969 0.99156 

4 0.87275 0.88160 0.86760 0.88160 0.86760 0.96155 0.95454 0.98734 0.95454 0.98734 

5 0.86247 0.86711 0.84312 0.86711 0.84312 0.94873 0.93938 0.98311 0.93938 0.98311 

6 0.90161 0.90979 0.88758 0.90979 0.88758 0.99031 0.98195 1.01087 0.98195 1.01087 

7 0.95242 0.95706 0.95204 0.95706 0.95204 1.03189 1.02451 1.03864 1.02451 1.03864 

8 1.02594 1.02665 1.03260 1.02665 1.03260 1.07347 1.06707 1.06640 1.06707 1.06640 

9 1.19855 1.19573 1.20370 1.19573 1.20370 1.11505 1.10964 1.09416 1.10964 1.09416 

10 1.22886 1.22706 1.16812 1.22706 1.21480 1.14880 1.14359 1.23600 1.14359 1.15256 

11 1.18591 1.18617 1.11280 1.18617 1.18387 1.18255 1.17754 1.29871 1.17754 1.18908 

12 1.21292 1.21488 1.20064 1.21488 1.17767 1.21631 1.21149 1.23715 1.21149 1.27892 

13 1.58004 1.56808 1.55734 1.56808 1.49917 1.25006 1.24544 1.25955 1.24544 1.33390 

14 1.53585 1.52887 1.54184 1.52887 1.43525 1.26336 1.25508 1.22264 1.25508 1.36243 

15 1.47636 1.47300 1.45909 1.47300 1.42278 1.27666 1.26472 1.28369 1.26472 1.33410 

16 1.47327 1.47169 1.41790 1.47169 1.42596 1.28996 1.27436 1.37081 1.27436 1.36041 

17 1.57003 1.56896 1.58571 1.56896 1.64999 1.30325 1.28400 1.25192 1.28400 1.16711 

18 1.47258 1.47069 1.41603 1.47069 1.50472 1.32930 1.31908 1.40624 1.31908 1.25410 

19 1.36976 1.36006 1.32909 1.36006 1.38509 1.35535 1.35417 1.40346 1.35417 1.32525 

20 1.25885 1.25410 1.21518 1.25410 1.21193 1.38140 1.38926 1.44445 1.38926 1.48010 

21 1.26590 1.25501 1.25501 1.25501 1.22365 1.40745 1.42434 1.42434 1.42434 1.50054 

22 1.32329 1.31211 1.31211 1.34098 1.21939 1.38882 1.39880 1.39880 1.34857 1.53310 

23 1.32308 1.36420 1.36420 1.41656 1.29266 1.37019 1.31088 1.31088 1.24143 1.41459 

24 1.38200 1.42802 1.42802 1.42602 1.36276 1.35156 1.27967 1.27967 1.28957 1.38873 

25 1.45299 1.45382 1.45382 1.43116 1.49632 1.33293 1.32164 1.32164 1.35035 1.23002 

26 1.51619 1.52769 1.52769 1.45990 1.62215 1.33221 1.31074 1.31074 1.40423 1.17966 

27 1.55647 1.56318 1.56318 1.51666 1.62158 1.33149 1.31694 1.31694 1.37624 1.25780 

28 1.56703 1.57755 1.57755 1.55284 1.54853 1.33076 1.30242 1.30242 1.32731 1.38038 

29 1.69898 1.67202 1.67202 1.72186 1.58764 1.33004 1.36025 1.36025 1.28647 1.49259 

30 1.80853 1.84124 1.84124 1.88504 1.68483 1.39893 1.34641 1.34641 1.28974 1.54054 

31 1.98832 2.03660 2.03660 2.05088 1.94990 1.46783 1.39287 1.39287 1.37239 1.49883 

32 2.09810 2.16672 2.16672 2.13286 2.13293 1.53672 1.43434 1.43434 1.46884 1.50325 

33 2.67442 2.70642 2.70642 2.67946 2.84672 1.60562 1.54747 1.54747 1.54888 1.41486 

34 2.88150 2.83541 2.83541 2.81785 3.07239 1.62234 1.69454 1.69454 1.68860 1.49225 

35 2.77631 2.73598 2.73598 2.71981 2.85159 1.63907 1.72019 1.72019 1.72556 1.65114 

36 2.53260 2.46702 2.46702 2.42830 2.40038 1.65579 1.77708 1.77708 1.81264 1.90698 

37 2.66850 2.67392 2.67392 2.62955 2.50141 1.67252 1.69209 1.69209 1.72788 1.91258 

38 2.75237 2.80720 2.80720 2.93296 2.54660 1.67048 1.61442 1.61442 1.52002 1.89453 

39 2.83627 2.86427 2.86427 2.99884 2.78636 1.66844 1.64555 1.64555 1.55180 1.72410 

40 2.75963 2.73936 2.73936 2.87089 2.81076 1.66640 1.70214 1.70214 1.62284 1.64716 

41 2.81395 2.80326 2.80326 2.75905 2.99400 1.66436 1.68677 1.68677 1.75465 1.45593 

42 2.70945 2.75446 2.75446 2.75951 2.94929 1.69075 1.63650 1.63650 1.65789 1.46803 

43 2.51333 2.51890 2.51890 2.65528 2.61424 1.71714 1.71084 1.71084 1.60647 1.68311 

44 2.46374 2.46374 2.46374 2.56718 2.35815 1.74353 1.74353 1.74353 1.66330 1.98155 

 

Here are some points to notice about the above indexes: 

 

• The Rolling Window and Expanding Window indexes for both land and structures that used the 

same number of periods as training periods (9 and 21 quarters) are equal for the training period 

quarters.  

• The two Expanding Window indexes for land are equal to each other for quarters 22-44 and 

similarly for the two EW structure indexes. 
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• The two EW indexes for land, PLEW9
t and PLEW21

t, are equal to the Model 4 land index PL
t for t = 44. 

Similarly, PSEW9
44 and PSEW21

44 are equal to the Model 4 structure index PS
44.    

 

Charts 4 and 5 plot the alternative Expanding Window and Rolling Window (normalized) price levels for 

Land and for Structures. The Model 4 indexes for Land are plotted as PL
t on Chart 4 and the Model 4 indexes 

for Structures are plotted as PS
t on Chart 5.  

 

 
 

The two Expanding Window series, PLEW9
t and PLEW21

t can barely be distinguished from the transitive Model 

4 land price series, PL
t. Thus the two real time EW land price series do not suffer from a major chain drift 

problem. The 21 quarter Rolling Window land price series, PLRW21
t, is more volatile than the EW series and 

the 9 quarter Rolling Window land price series, PLRW9
t, is even more volatile. However, the two RW series 

do capture the trends in Land prices.   
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Chart 5 shows that the real time Expanded Window structure price indexes that use the 9 and 21 quarter 

training periods, PSEW9
t and PSEW21

t, cannot be distinguished from each other. However, these Expanding 

Window structure indexes are much more volatile than the Model 4 structure price index PS
t that used the 

data for all 44 quarters and is free from chain drift. This is an indication that the training period should be 

longer than 21 quarters in order to obtain less volatile indexes that are closer to being transitive.  The Rolling 

Window structure price index that used 21 quarters of training data, PSRW21
t, shows a great deal of volatility 

around PS
t and the index that used only 9 quarters of training data, PSRW9

t, is even more volatile. However, 

all 4 EW and RW indexes do capture the trends in structure prices that are defined by PS
t = PS4

t. 

 

Two referees asked how a Rolling Window approach using a mean splice would work for our data and so 

we computed land, structure and overall Mean Splice indexes using a Rolling Window consisting of 21 

quarters. The resulting Mean Splice Rolling Window land and structure indexes using a 21 quarter training 

period were almost identical to the corresponding Expanding Window indexes using a 21 quarter training 

period. Thus we have not included these Mean Splice indexes in the above Charts. In a recent 

comprehensive simulation, Auer (2024) showed that half splice and mean splice seemed to produce more 

reliable results than window splice and movement splice so there is room for additional research to 

determine the “best” way for linking the results of a new set of indexes with an existing set of indexes. 

 

The overall conclusion that emerges from these charts is that the Expanded Window and Rolling Window 

with Mean Splice indexes based on the Model 4 specification of land and structure utility functions that use 

5 years of training data led to relatively smooth land and structure subindexes that were largely free from 

chain drift. However, choosing a longer training period would probably improve the smoothness and 

transitivity of the resulting EW and RW indexes.  

 

Finally, the price levels for land and structures that were generated by the 5 alternative sets of estimates 

presented in Table 6 can be combined with the Model 4 utility functions to generate aggregate property 

price indexes as was done in the previous section. Using chained Fisher indexes to aggregate over the 

structures and land indexes listed on Table 6 leads to 5 alternative aggregate property price indexes. The 

aggregate Fisher property price index that corresponds to the Model 4 aggregate prices, PL
t and PS

t listed in 

Table 6, is equal to the chained Fisher property price index PFCH4
t that is listed in Table 5. Instead of using 

PL
t and PS

t listed in Table 6, we could use PLEW21
t and PSEW21

t and construct an alternative chained Fisher 

property price index. It turns out that this alternative property price index cannot be distinguished from 

PFCH4
t that is listed in Table 5. Using the remaining 3 pairs of price indexes for land and structures that are 

listed in Table 6 led to alternative aggregate chained Fisher property price indexes that also could not be 

distinguished from PFCH4
t. Thus the various methods that were used to extend the aggregate property price 

index in real time, in the end, led to more or less the same aggregate property index. 

 

In the following section, we use our data to construct “traditional” log price time dummy hedonic 

regressions and compare the resulting “traditional” indexes to the indexes generated by our additive 

approach to the property decomposition problem. 

 

 6. Estimating Structure Depreciation Rates from Traditional Log Price Hedonic Regression Models 

 

A way of rationalizing the traditional log price time dummy hedonic regression model for properties with 

varying amounts of land area L and constant quality structure area S* is that the utility that these properties 

yield to purchasers is proportional to the Cobb-Douglas utility function LS* where  and  are positive 
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parameters (which do not necessarily sum to one).39 Initially, we assume that the constant quality structure 

area S* is equal to the floor space area of the structure, S, times an age adjustment, (1−)A, where A is the 

age of the structure in years and  is a positive depreciation rate that is less than 1. Thus S* is related to S 

as follows: 

 
(26) S*  S(1−)A. 

 

In any given time period t, we assume that the nominal value of a property, Vt, with the amount of land L 

and the amount of quality adjusted structure S* is equal to the following expression: 

 

(27) Vt = ptLS* 

            = ptL [S(1−)A]                                                                                                                 using (26) 

            = ptL S(1−)A 

            = ptL SA 

 

where pt can be interpreted as a period t property price index and the constant  is defined as follows: 

 

(28)   (1−). 

 

Thus if we deflate Vt by the period t property price index pt, we obtain the real value or utility ut of the 

property with characteristics L and S*; i.e., we have: 

 

(29) Vt/pt = LS*  ut. 

 

Thus ut is the aggregate real value of the property with characteristics L and S*. 

 

Define t as the logarithm of pt and  as the logarithm of ; i.e.,  

 

(30) t  lnpt ;   ln. 

 

After taking logarithms of both sides of the last equation in (27) and using definitions (30), we obtain the 

following equation:40 

 

(31) lnVt = t + lnL + lnS + A. 

    

Suppose that we have N(t) sales of properties in a neighbourhood in period t and the purchase price of 

property n is Vtn. Suppose that we have data for T periods. The characteristics associated with property n in 

period t are Ltn, Stn and Atn. Assuming that the property purchaser valuation model defined by (31) holds 

approximately, the logarithms of the period t property prices will satisfy the following equations: 

 

(32) lnVtn = t + lnLtn + lnStn + Atn + tn ;                                                               t = 1,...,T; n = 1,...,N(t); 

 

 
39 The early analysis in this section follows that of McMillen (2003; 289-290) and Shimizu, Nishimura and Watanabe 

(2010; 795). McMillen assumed that + = 1. We follow Shimizu, Nishimura and Watanabe in allowing  and  to 

be unrestricted. Our depreciation model is somewhat different from the models of these authors. 
40 Log price hedonic regressions for property prices date back to Bailey, Muth and Nourse (1963). 
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where the tn are independently distributed error terms with 0 means and constant variances. It can be seen 

that (32) is a traditional log price time dummy hedonic regression model with a minimal number of 

characteristics. The unknown parameters in (32) are the constant quality log property prices, 1,...,T, and 

the taste parameters ,  and . Once these parameters have been determined, the geometric depreciation 

rate  which appears in equations (27) can be recovered from the regression parameter estimates as follows:  

 

(33)  = 1 − e/.   

 

We now explain how the hedonic regression model defined by (32) can be manipulated to provide a 

decomposition of property value in period t into land and quality adjusted structure components. 

 

To justify the hedonic regression (32), we assume that there is a period t constant quality price of property 

in period t equal to pt (as before) and the period t value of a property with characteristics L and S* is given 

by the following period t property valuation function, V(pt,L,S*), defined as follows: 

 

(34) V(pt,L,S*)  ptLS* = ptu(L,S*)  

 

where the purchaser cardinal utility function u is defined as u(L,S*)  LS* and  and  are positive 

parameters which parameterize the purchaser’s cardinal utility function. pt is the period t constant quality 

price of a property with land and quality adjusted structures equal to L and S* and V(pt,L,S*) is the predicted 

selling price that is generated using the estimated coefficients from the hedonic regression (31). In our 

empirical work, our estimates for  and  are such that  +  is always substantially less than 1. This means 

that a property in a given period that has double the land and quality adjusted structure than another property 

will sell for less than double the price of the smaller property. This follows from the fact that our Cobb-

Douglas utility function, u(L,S*)  LS*, exhibits diminishing returns to scale when  +  < 1; i.e., we 

have: 

 

(35) u(L,S*) = +u(L,S*)  

 

for all  > 0 where + < 1. This behavior is roughly consistent with our Models 3 and 4 where there was 

a tendency for property prices to increase less than proportionally as L and S* increased.  

 

The marginal prices of land and constant quality structure in period t for a property with characteristics L 

and S*, tL(pt,L,S*) and tS*(pt,L,S*), are defined by partially differentiating the property valuation function 

with respect to L and S* respectively: 

 

(36) tL(pt,L,S*)   V(pt,L,S*)/L   pt LS*/L  = V(pt,L,S*)/L ; 

(37) tS
*(pt,L,S*)  V(pt,L,S*)/S*  pt LS*/S* = V(pt,L,S*)/S*. 

 

If we multiply the marginal price of land by the amount of land in the property and add to this value of land 

the product of the marginal price of constant quality structure by the amount of constant quality structure 

on the property, we obtain the following identity: 

 

(38) (+)V(pt,L,S*) = tL(pt,L,S*)L + tS
*(pt,L,S*)S*. 
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If + is less than one, then using marginal prices to value the land and constant quality structure in a 

property will lead to a property valuation that is less than its selling price. Thus to make the land and 

structure components of property value add up to property value, we divide the marginal prices defined by 

(36) and (37) by + in order to obtain the following adjusted constant quality prices of land and structures 

in period t, ptL(pt,L,S*) and ptS*(pt,L,S*): 

 

(39) ptL(pt,L,S*)   tL(pt,L,S*)/(+)  = (+)−1V(pt,L,S*)/L ; 

(40) ptS*(pt,L,S*)  tS*(pt,L,S*)/(+) = (+)−1V(pt,L,S*)/S*. 

         

The above material outlines a theoretical framework that could be used to generate a decomposition of 

property value into land and structure components using the results of a traditional log price time dummy 

hedonic regression model like (32). Unfortunately, any such decomposition is not likely to be satisfactory. 

Consider a hypothetical property in periods t and t+1 where the quantities of constant quality land L and 

constant quality structure S* remain constant and consider the growth of the price land and structure price 

levels for this hypothetical property defined by (39) and (40). It can be seen that pt+1,L/pt,L = pt+1,S*/pt,S* = 

V(pt+1,L,S*)/V(pt,L,S*); i.e., constant quality price change for structures and for land going from period t to 

period t+1 for a constant quality property is equal to the growth in property value going from period t to 

t+1. This means that constant quality land and structure prices move in a proportional manner for constant 

quality properties. But in fact, we observe different rates of change in land and structure prices over time.41 

Moreover, the Cobb-Douglas utility function assumption implies that the land and structure shares of a 

constant quality property remain constant over time. This is also unlikely to be true. Also, our additive 

decomposition of property value allows for properties with no structure whereas the Cobb-Douglas model 

breaks down if Stn = 0. However, these unrealistic aspects of the Cobb-Douglas utility model for residential 

properties does not mean that this framework cannot generate useful overall property price indexes (for 

properties with structures) as we will show below. 

 

 The hedonic regression model defined by equations (32) can be generalized to the following model defined 

by equations (41), which has added the location, bathroom and bedroom dummy variables, to equations 

(32):  

 

(41) lnVtn = t + lnLtn + lnStn + Atn + j=2
6 jDPC,tn,j + j=2

6 jDBA,tn,j + j=4
6 jDBE,tn,j + tn ;  

                                                                                                                                    t = 1,…,T; n = 1,...,N(t). 

 

The postal code dummy variables, DPC,tn,j were defined by (4) for j = 1,…,6; the bathroom dummy variables, 

DBA,tn,j, were defined for (12) for  j = 1,…,6 and the bedroom dummy variables, DBE,tn,j, were defined for 

(14) for  j = 3,…,6. To prevent exact multicollinearity in the hedonic regression defined by equations (41), 

we set 1 = 0, 1 = 0 and  3 = 0.   

 

We used our Richmond data set and ran the hedonic regression defined by (41). The R2 for this regression 

turned out to be 0.8734 which is comparable to the R2 we obtained for our Model 4 nonlinear regression. 

The estimated coefficients for *, * and * were 0.39676, 0.25742 and −0.008062 respectively with T 

statistics equal to 60.64, 28.09 and −50.71. The corresponding annual structure geometric depreciation rate 

defined by (32) was *  1 − e*/* = 0.03084 or 3.084% per year. This is fairly close to the average of the 

estimated structure depreciation rates that were generated by Models 3 and 4 (3.28% and 2.81% per year). 

 
41 The price movements of residential land with no structure can be compared to movements in building costs per unit 

floor space and in general these movements are not the same. 
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The time dummy coefficients were used to generate the sequence of quarterly residential property price 

levels by exponentiating the estimated t
*. Define the quarter t property price level, PProp

t  exp(t
*) for t = 

1,…,44. Construct the Hedonic Property Price Index for quarter t as PHED
t  PProp

t/ PProp
1 for t = 1,…,44. The 

resulting Hedonic overall property price indexes PHED
t were very close to the Fisher Fixed Base and Chained 

property price indexes, PFFB4
t and PFCH4

t that were listed in Table 5 above. The partial correlations of PHED
t 

with PFFB4
t and PFCH4

t were 0.99943 and 0.99952 respectively. Thus for our particular data set, the traditional 

log price time dummy hedonic regression model generated almost the same aggregate property price index 

as was generated by our Model 4 nonlinear hedonic regression. Chart 6 below plots the two Fisher indexes 

along with the traditional hedonic property price index.  

 

 
 

 

7. Conclusion 

     

Some of the tentative conclusions we can draw from the paper are as follows: 

 

• Our consumer or purchaser approach to developing residential property price indexes that can 

generate sensible subindexes for the structure and land components of the property worked well for 

our particular data set. We solved the multicollinearity problem between structure and land size by 

smoothing (over time) the implied constant quality structure prices. 

• Our purchaser approach provides an alternative to McMillen’s Cobb-Douglas preferences 

approach. Our approach is based on separate subutility functions for the land and structure 

components of residential property value. A problem with McMillen’s approach is that it implies 

that constant quality structure price movements are equal to constant quality land price movements. 

Another problem with Cobb-Douglas preferences is that this model cannot deal with properties that 

have no structure whereas our additive decomposition approach can deal with this situation.  

• The information on property characteristics that we required in order to have a hedonic regression 

model that fits the data reasonably well was fairly modest. We required information on the purchase 
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prices for the properties in scope, the structure floor space and land plot areas, the age of the 

structure and some information on the location of the property such as postal code information or 

spatial coordinate information. Some additional information on housing characteristics that can be 

used to characterize the quality of the structure is useful. For our Model 4, we used the number of 

bedrooms and the number of bathrooms as quality indicators. Other indicators will no doubt be 

useful. 

• It is important to eliminate extreme outliers on both purchase prices and on the property 

characteristics. Isolated extreme observations at the tails of the distribution of prices and property 

characteristics lead to poorly determined hedonic surfaces.  

• Introducing splines on the land plot area proved to be very important for our example.  

• Simple mean and median property price indexes generated property price indexes that captured the 

trend in our constant quality property price indexes.  However, these indexes are much more volatile 

than our hedonic property price indexes. 

• The traditional log price time dummy variable hedonic regression approach generated overall 

property price indexes which were virtually identical to our purchaser model overall property price 

indexes when both types of model used more or less the same characteristics.42  

• The traditional log price time dummy hedonic regression approach generated an implied geometric 

structure depreciation rate which was close to our Model 3 and 4 depreciation rates. This is a very 

encouraging result. 

• Finally, we considered the problems associated with producing real time indexes as opposed to 

producing retrospective indexes. We applied the Rolling Window and Expanding Window 

methodologies to this problem and found that for our particular data set, the Expanding Window 

approach generated smoother price indexes for the land and structure components of residential 

properties in Richmond. The Rolling Window approach with mean splicing with a window of 21 

quarters produced results that were virtually the same as the Expanding Window approach.   
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