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potential advantage over the CES functional form that it produces finite estimates for 
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infinite. The present paper proposes a Generalized Symmetric Translog Cost Function 

which also generates finite reservation prices but is more flexible than the ST functional 
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1. Introduction 

 

Detailed price and quantity data on purchases of consumer goods by households or 

similar data on sales of consumer goods by retailers is increasingly available to national 

statistical agencies and to academic researchers. An important characteristic of these data 

sets is the fact that, typically, there are many missing observations. Or put another way, 

there is tremendous product churn in these data sets. This causes problems both for 

statistical agencies constructing Consumer Price Indexes and for economists who fit 

systems of consumer demand functions based on utility maximizing behavior in order to 

measure welfare change for households.  

 

Index number theory relies heavily on a matched model methodology: the price of a 

product in the current period is compared with the price of the identical product in a 

previous period. These price ratios that compare the price of a product over two periods 

are then aggregated up according to their economic importance to generate an overall 

estimate of consumer price inflation for the product category under consideration. This 

methodology fails when there are missing prices. Statistical agencies attempt to deal with 

the missing prices problem by either: (i) carrying forward the last available price and 

using this price as an imputation for a missing current price or (ii) using the movements 

of product prices that are available in both periods under consideration to impute the 

movement of a missing price. The first strategy is obviously flawed if there is significant 

general inflation or deflation in the product category under consideration. The second 

strategy is also suspect from the viewpoint of the economic approach to index number 

theory. When a product disappears, economic theory suggests that an appropriate 

imputed price for the disappearing product is a reservation price, which is the price 

which is just high enough to induce the consumer to buy zero units of the product.2 

Reservation prices will typically be higher than carry forward prices or product category 

inflation adjusted carry forward prices so using any form of carry forward price in place 

of a missing price leads to possible bias in official Consumer Price Indexes.  

 

Standard consumer demand theory also fails when there are a large number of missing 

products. Standard consumer demand theory works as follows. A functional form for the 

utility function or dual expenditure function for a representative household is assumed 

along with the assumption of utility maximizing behavior. A system of demand equations 

is the result with quantities purchased as functions of the prices of the products and 

“income” (or more accurately, total expenditure on the group of products that is in scope). 

Then standard econometric software is used to estimate the unknown parameters in a 

nonlinear systems approach to the estimation. However, when there are missing prices, 

the missing prices have to be replaced with reservation prices which are unknown. Thus 

standard consumer demand theory fails in the missing prices context.  

 
2 The concept of a reservation price is due to Hicks (1940; 140). 
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There is an exception to the general failure of the standard approach to fitting systems of 

consumer demand functions. If the assumed functional form for the underlying utility 

function is a Constant Elasticity of Substitution (CES) utility function, then standard 

consumer demand theory can be adapted to deal with this particular functional form.3 

Furthermore, Feenstra (1994), in a path breaking paper, showed how standard index 

number theory could be adapted to deal with new and disappearing products in the CES 

context, provided one had an estimate of the (constant) elasticity of substitution that is a 

key parameter of the CES functional form.  

 

However, a potential problem with Feenstra’s CES methodology is that the implied 

reservation price for a missing product is infinite, which does not seem to be consistent 

with consumer behavior; i.e., we expect reservation prices to be finite. This is where the 

recent paper by Feenstra and Weinstein (2017) comes into play. They discovered a 

special case of the Translog functional form for a unit cost or expenditure function which 

can deal with new and disappearing products and it generates finite reservation prices for 

the missing products. Like the CES functional form, their Symmetric Translog unit cost 

function has enough free parameters to provide a first order approximation to an arbitrary 

unit cost function plus one addition free parameter to model substitution between the 

various products. The contribution of this paper is to provide a generalization of the 

Symmetric Translog functional form that has N free parameters to model substitution 

possibilities between the N products in scope instead of just one free parameter.  

 

In section 2, we provide some background information on the general translog unit cost 

function. Section 3 introduces the Generalized Symmetric Translog (GST) unit cost 

function and derives the estimating equations generated by this functional form. Section 4 

concludes.  

 

2. Curvature Conditions for the Translog Functional Form 

 

The Feenstra and Weinstein (2017) functional form for a unit cost function is a special 

case of the general Translog unit cost function proposed by Christensen, Jorgenson and 

Lau (1975). Our generalization of the Feenstra-Weinstein functional form is also a 

special case of the Translog unit cost function. Thus it will be useful to derive some of 

the properties of the Translog functional form in this section before introducing special 

cases of it. 

 

Assume that purchasers of a group of N products have homothetic preferences that can be 

represented by a unit cost or expenditure function, c(p), where p  [p1,...,pN] is a vector of 

positive consumer prices that purchasers face during a period. Denote the vector of 

quantities that are purchased in the period by q  [q1,...,qN].  

 

 
3 See Arrow, Chenery, Minhas and Solow (1961) for the CES functional form in the production function 

context and see Diewert (2020a) for materials on estimating the CES functional form in the consumer 

context. 
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Define the logarithm of the translog unit expenditure function c(p) as follows:4 

 

(1) lnc(p)  0 + n=1
N nlnpn + ½ i=1

N j=1
N ijlnpilnpj  

 

where the parameters satisfy the restrictions n=1
N n = 1; ij = ji for all i, j and j=1

N ij 

= 0 for i = 1,...,N. Differentiating the logarithm of the general translog unit expenditure 

function defined by (1) with respect to the logarithm of the ith price leads to the 

following first order logarithmic partial derivatives: 

 

(2) lnc(p)/lnpi = i + j=1
N ijlnpj                                                                       i = 1,...,N. 

 

Suppose there are K utility maximizing purchasers of the N products in the period under 

consideration and they all have preferences that are dual to the Translog unit expenditure 

function c(p) defined by (1).5 Let qk  [q1
k,…,qN

k] denote the utility maximizing quantity 

vector and uk as the utility level for purchaser k for k = 1,…,K. We assume all purchasers 

face the same price vector p. Using Shephard’s (1953; 11) Lemma, the demand vector for 

purchaser k is qk = pc(p)uk for k = 1,…,K where pc(p) is the vector of first order partial 

derivatives of the unit expenditure function, [c1(p),…,cN(p)], where ci(p)  c(p)/pi for i 

= 1,…,N. The aggregate demand vector q can be obtained by summing the qk over the K 

purchasers: 

 

(3) q  k=1
K qk = k=1

K pc(p)uk = pc(p) k=1
K uk. 

 

Denote the inner product of the vectors p and q by pq  n=1
N piqi. The ith expenditure 

share, si(p), regarded as a function of p is defined as follows: 

 

(4) si(p)  piqi(p)/pq(p)                                                                                         i = 1,…,N 

              = pici(p) k=1
K uk/ppc(p) k=1

K uk                                                         using (3) 

              = pici(p)/c(p) 6  

              = lnc(p)/lnpi. 

 

Let the period t price vector be pt and let the period t market expenditure share vector be 

st. Then using equations (2) and (4), the following system of expenditure share equations 

can be derived:  

 

(5) si
t = i + j=1

N ijlnpj
t ;                                                                                      i = 1,...,N. 

 

The above system of share equations can serve as estimating equations in order to 

determine the unknown parameters in the Translog unit expenditure function defined by 

(1), provided that there are no missing products and all product prices pi
 are positive.  

 
4 See Christensen, Jorgenson and Lau (1975) and Diewert (1974) (1976) on the translog functional form in 

the consumer context.  
5 See Diewert (1974) for the details of this duality model. 
6 The restrictions on the c(p) defined by (1) imply that c(p) is linearly homogeneous in the components of 

p, Thus by Euler’s Theorem on homogeneous functions, c(p) = pc(p). 
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We need to check that the estimated Translog expenditure function satisfies the condition 

that the unit cost function be concave in prices. Thus we need to calculate the matrix of 

second order derivatives of the estimated unit cost function, c(p), and check whether this 

matrix is negative semidefinite at the sample prices pt.  

 

Combining equations (2) and (4) leads to equations (6) for an arbitrary p vector:  

 

(6) si(p) = i + j=1
N ijlnpj = lnc(p)/lnpi                                                           i = 1,...,N. 

 

If prices and expenditures are positive, then the logarithmic derivatives lnc(p)/lnpi are 

equal to [pi/c(p)]c(p)/pi for i = 1,...,N. Using these relationships and equations (6) for 

the share functions si(p), we obtain the following expressions for the first order partial 

derivatives of the translog cost function c(p): 

 

(7) ci(p)  c(p)/pi = c(p)si(p)/pi ;                                                                       i = 1,...,N.                             

 

Now differentiate ci(p) defined by (7) with respect to pj for i  j in order to obtain the 

following expressions for the second order partial derivatives of c(p): 

 

(8) cij(p)  2c(p)/pipj;                                                              i = 1,...,N; j = 1,...N; i  j 

                 = cj(p)si(p)pi
−1 + c(p)pi

−1[si(p)/lnpj][lnpj/pj]        differentiating (7) 

                 = [c(p)sj(p)pj
−1]si(p)pi

−1 + c(p)pi
−1[ij]pj

−1                     

                                                                             using (7) for i = j and differentiating si(p)  

                                                                             defined by (6) with respect to lnpj 

                 = c(p)pi
−1pj

−1[ij + si(p)sj(p)]. 

 

Using similar arguments, we obtain the following expressions for the second order partial 

derivatives of c(p) with respect to pi and pi again: 

 

(9) cii(p)  2c(p)/pipi;                                                                                       i = 1,...,N 

                = c(p)pi
−1pj

−1[ii + si(p)si(p) − si(p)]. 

 

Make an N by N matrix where the ijth element is equal to [ij + si(p)sj(p)] if i  j and is 

equal to [ii + si(p)si(p) − si(p)] if i = j. This matrix is equal to A + ssT − s


 where A  

[ij] is the N by N symmetric matrix of second order coefficients for the translog 

functional form defined by (1), s  [s1(p),...,sN(p)]T is the column vector of shares  

defined by (6) and s


 is a diagonal N by N matrix that has the elements of s on the main 

diagonal. Looking at (8) and (9), and assuming that all prices are positive, it can be seen 

that necessary and sufficient conditions for the N by N matrix of second order derivatives 

of the unit cost function c(p), 2c(p), to be negative semidefinite are that  A + ssT − s


 be 

negative semidefinite.    
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It can be shown that the matrix ssT − s


is negative semidefinite provided that the share 

vector s is nonnegative.7 Thus a sufficient condition for c(p) to satisfy the concavity 

conditions at a point p (where p >> 0N so that all components of the price vector p are 

positive) is that the A matrix be negative semidefinite since this will imply that 2c(p) = 

c(p) 1−p


[A + ssT − s


] 1−p


 is negative semidefinite.8 In fact, if A is negative semidefinite, 

then c(p) defined by (1) will be concave over all positive prices p that generate 

nonnegative demand vectors.  

 

The Allen (1938; 504) Uzawa (1962) elasticity of substitution between commodities i and 

j (where i  j), ij(p), is defined as follows: 

 

(10) ij(p)  c(p)cij(p)/ci(p)cj(p) ;                                                 i = 1,...,N; j = 1,...,N; i  j 

                 = 1 + [ij/si(p)sj(p)]                                                     using (7) and (8). 

 

Note that when all second order terms ij are equal to 0, the Translog unit expenditure 

function collapses down to the Cobb Douglas (1928) functional form and all elasticities 

of substitution are equal to unity, which is a well known result. 

 

There are N(N−1)/2 independent ij parameters in the general case which determine the 

N(N+1)/2 independent elasticities of substitution ij. As N increases, the number of 

independent parameters in the general Translog functional form increases to 

approximately N2/2 which will be impossible to estimate accurately (or at all). Thus in 

the following section, we suggest a Translog model that has N free parameters to model 

substitution effects. This special case turns out to be a generalization of the Feenstra and 

Weinstein Symmetric Translog expenditure function. 

 

3. A Generalization of the Symmetric Translog Expenditure Function  

 

As in the previous section, let A represent the N by N symmetric matrix of second order 

parameters (the ij) in the translog unit cost function c(p) defined by (1). Let   

[1,...,N]T be a column vector of nonnegative parameters and define the A matrix as 

follows: 

 

(11) A  T − (T1N) 


 

 

where 1N is a column vector of ones of dimension N and 


 is a diagonal N by N matrix 

with the elements of the vector  running down the main diagonal of the matrix. Thus for 

ij, ij  ij and for i = j, ii  i
2 − i(n=1

N n). It is straightforward to verify that A1N 

= 0N where 0N is a vector of 0’s of dimension N. These restrictions must be satisfied in 

 
7 We need to show that [n=1

N xnsn]2 − n=1
N xnsnxn  0 for all x1,...,xN. [n=1

N xnsn]2 = [n=1
N (xnsn

1/2)(sn
1/2)]2 

 [n=1
N (xnsn

1/2)(xnsn
1/2)][n=1

N (sn
1/2)(sn

1/2)] using the Cauchy Schwarz inequality = [n=1
N xnsnxn][n=1

N sn] 

= [n=1
N xnsnxn] since n=1

N sn = 1.  

8 The N by N matrix 
1−p


is equal to the inverse of the N by N diagonal matrix that has the elements of the 

positive price vector p running down the main diagonal. 
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order for the translog unit cost function to be linearly homogeneous in the vector of 

prices p. 

 

It is also possible to show that the A defined by (11) is a negative semidefinite symmetric 

matrix. The symmetry property is obvious. To show that A is negative semidefinite, we 

need to show that xTAx = (xT)2 − (n=1
N n)(n=1

N xnnxn)  0 for all vectors x  

[x1,...,xN]T. We have the following equalities and inequalities: 

 

(12) (xT)2 = (xT)2 

                  = [n=1
N (xnn

1/2)(n
1/2)]2  

                   [n=1
N (xnn

1/2)(xnn
1/2)][n=1

N (n
1/2)(n

1/2)]   

                                                                                  using the Cauchy-Schwarz inequality 

                  = [n=1
N xnnxn][n=1

N n] 

 

which is equivalent to the desired inequality. Note that we require n  0 so that the 

positive square root of each n is well defined. 

 

Assume that we have data on prices and quantities purchased for the N products for T 

periods; denote the price and quantity of product n in period t by pn
t and qn

t respectively 

for t = 1,...,T and n = 1,...,N. We need to allow for the possibility of missing products in 

one or more periods.9 Let S(t) and N(t) be the set and number of products that are sold in 

period t. If product n is not purchased in period t, then qn
t = 0 and the corresponding price 

is a reservation price pn
t* to be determined below. The expenditure share for product n 

that is sold in period t is sn
t  pn

tqn
t/ptqt where ptqt is the inner product of the period t 

price and quantity vectors. If product n is not sold in period t, then sn
t  0.  

 

Recall that the system of share equations for the general translog unit cost function was 

defined by equations (5) for the period t data. Below, we replace the general A matrix 

used in equations (5) with the A matrix defined by (11) above. We obtain the following 

system of share equations for period t: 

 

(13) si
t = i + j=1

N ijlnpj
t ;                                                                   t = 1,...,T; i = 1,...,N                                                                                        

            = i − i(n=1
N n)lnpi

t + i(n=1
N nlnpn

t)  

            = i − i(n=1
N n)lnpi

t + i(nS(t) nlnpn
t) + i(nS(t) nlnpn

t) 

 

If there are no missing products in period t, then the second line in (13) can be used as a 

basis for estimating equations; all period t log prices lnpi
t can be calculated. However, if 

there are missing products in period t, then the third line in (13) shows us that there is a 

problem: the prices pn
t for the missing products n that do not belong to S(t) cannot be 

 
9 In applications of this functional form to scanner data from retailers, what is typically available are data 

on products sold during a period along with their unit value price. Thus a product could be available during 

a period but if it is not sold, it will be regarded as a missing product for our purposes. 
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observed.10 Thus we cannot calculate the terms nS(t) nlnpn
t. Below, we will use the 

same method that was used by Feenstra and Weinstein (2017) to address this problem.11 

 

If there are missing products in period t, then sum the shares si
t for iS(t); i.e., form the 

sum of the shares for products i that are actually purchased in period t. This purchased 

share sum will equal 1. Thus we obtain the following equation: 

 

(14) 1 = iS(t) i − (n=1
N n)(iS(t) ilnpi

t) + (iS(t) i)(nS(t) nlnpn
t)  

                            + (iS(t) i)(nS(t) nlnpn
t) 

           = nS(t) n − (nS(t) n)(nS(t) nlnpn
t) + (iS(t) i)(nS(t) nlnpn

t) 

 

Since 1 = n=1
N n = nS(t) n + nS(t) n, we see that 1 − nS(t) n = nS(t) n. This 

equation and (14) imply the following expression for the sum of the terms involving the 

unobserved reservation prices, nS(t) nlnpn
t: 

 

(15) nS(t) nlnpn
t = (iS(t) i)−

1(nS(t) n) + (iS(t) i)−
1(nS(t) n)(nS(t) nlnpn

t).12 

 

Now use the right hand side of equation (15) to replace the term involving reservation 

prices in (13), nS(t) nlnpn
t, for all products i that are purchased in period t. We obtain 

the following system of estimating equations (for products i that are available) if there are 

missing products in period t: 

 

(16) si
t = i − i(n=1

N n)lnpi
t + i(nS(t) nlnpn

t) + i(nS(t) nlnpn
t) ;                     iS(t)         

            = i − i(n=1
N n)lnpi

t + i(nS(t) nlnpn
t) + i(nS(t) n)−

1(nS(t) n)   

                    + i(nS(t) n)−
1(nS(t) n)(nS(t) nlnpn

t) 

            = i + i(nS(t) n)−
1(nS(t) n) − i(n=1

N n)[lnpi
t − lnpt] . 

 

The logarithm of the period t beta weighted average price pt for products that are 

available in period t is defined as follows (if there are missing products in period t): 

 

(17) lnpt  (nS(t) nlnpn
t)/(nS(t) n). 

 

If there are no missing products in period t, then use the second line in equations (13) as 

the estimating equation. If there are missing products in period t, then use the second line 

in (16) as the estimating equation. The restriction i=1
N i = 1 must be imposed on the 

estimating equations. It can be seen that if there are missing products, then summing 

equations on both sides of equations (16) over all iS(t) leads to the equation 1 = 1.  

 

If there are missing products and the estimated i turns out to be positive, it can be seen 

the first two terms on the right hand side of the last equation in (16) are constants and the 

 
10 For missing products n in period t, the appropriate prices to use in equations (24) for these missing 

products are reservation prices: prices pn
t* which are just high enough to induce consumers to purchase 0 

units of these products.  
11 Feenstra (1994) used a similar technique in the CES context when there are missing products.  
12 If there are no missing prices in period t, then define nS(t) nlnpn

t = nS(t) n = nS(t) n  0. 
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third term, − i(n=1
N n)[lnpi

t − lnpt], has a straightforward interpretation. The period t 

price pt defined by (17) is a beta weighted geometric average of the prices of the 

products that are available in period t. If all of the n are positive, the last line in (16) 

shows that if the price of product i in period t, pi
t, increases, then the period t expenditure 

share for that product will decrease. The constant term i can be interpreted as the 

constant expenditure share for product i if preferences are Cobb Douglas. In the Cobb 

Douglas case, all of the n are equal to 0. But Cobb Douglas preferences are not very 

sensible when there are missing products because Cobb Douglas preferences imply 

constant expenditure shares, which cannot be the case if products vary in their availability 

across time periods. The Generalized Symmetric Translog functional form makes an 

adjustment to the Cobb Douglas constant share term i by adding the term i(nS(t) 

n)−
1(nS(t) n) to it. Note that this adjustment term varies over periods if product 

availability varies over periods. Assuming that the n are all positive, the more missing 

products that there are in period t, the bigger will be this addition to i.
13  

 

Note that nonnegativity of the n and n parameters can be imposed on the nonlinear 

regression model that is defined by equations (13) (if there are no missing products in 

period t) and the second line in (16) (if there are missing products in period t) by squaring 

the parameters.  

 

Once estimates for the n and n are available and there are missing products, then the 

logarithms of the reservation prices pi
t* can be calculated by setting si

t = 0 in equation 

(16) (provided i > 0) and solving the resulting equation for lnpi
t* as follows: 

 

(18) lnpi
t* = lnpt + [i/i(n=1

N n)] + [(nS(t) n)/(nS(t) n)(n=1
N n)] ;               iS(t). 

 

It turns out that lnpi
t* (and pi

t*) will be infinite if i equals zero.14 

 

Finally, we specialize the general Translog formula (10) for the elasticity of substitution 

between products i and to the case of the Generalized Symmetric Translog. Using 

assumptions (11) on the parameters of the A matrix, the elasticity of substitution between 

products i and j in period t for our Generalized Symmetric Translog preferences is given 

by: 

 

(19) ij(p
t) = 1 + [ij/si(p

t)sj(p
t)] ;                                                                                  i  j. 

 

Thus if i is large, then product i will tend to have a high elasticity of substitution with all 

other products that are purchased in period t. Note that formula (19) requires that the 

 
13 For global monotonicity of the Generalized Symmetric Translog functional form, we require that each i 

be nonnegative. However, for local monotonicity, it is not necessary that all n be nonnegative. A negative 

i can be offset by a sufficiently large and positive i coefficient.  
14 In the case where all of the estimated i turn out to be positive, then all of the reservation prices 

generated by this model will be finite. Note that reservation prices for missing products in the CES model 

are infinite; see Feenstra (1994).   
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fitted shares, si(p
t) and sj(p

t), be positive. This will always be the case if the estimated n 

and n are all positive. 

 

Note that formula (19) tells us something important: using this model, the elasticity of 

substitution between any pair of products will be equal to or greater than one. Thus this 

model should only be applied to a group of products that are quite substitutable with each 

other. It should not be applied to a group of products that are quite different since it is 

likely that some of the true elasticities of substitution between very different product 

groups will be less than one.   

 

We now show that our Generalized Symmetric Translog model is a generalization of the 

Symmetric Translog (ST) model introduced by Feenstra and Weinstein (2017). The A 

matrix that corresponds to the Feenstra Weinstein model has the following form: 

 

(20) A = −IN + (1/N)1N1N
T 

 

where  is a scalar parameter greater than 0, IN is the N by N identity matrix and 1N is a 

column vector of ones of dimension N. Recall from (11) that the A matrix for the 

Generalized Symmetric Translog unit cost function had the form A = T − (T1N)


. Set 

 = (/N)1/21N and substitute this value for  into (11). It can be verified that the resulting 

A matrix is equal to the right hand side of (20). Thus the Feenstra-Weinstein functional 

form is a special case of our GST functional form.  

 

The elasticities of substitution for the Feenstra-Weinstein model are given by: 

 

(21) ij(p
t) = 1 + [/Nsi(p

t)sj(p
t)] ;                                                                                    i  j. 

 

If  > 0, then all of the elasticities of substitution for the Feentra-Weinstein model will be 

greater than one and all reservation prices for missing products will be finite. 

  

Both the Symmetric Translog and Generalized Symmetric Translog functional forms 

have the property that elasticities of substitution between any pair of products must be 

equal to or greater than one. This means that these functional forms should only be used 

when the products in scope are strong substitutes for each other.15 

 

4. Conclusion 

 

Some tentative conclusions are as follows: 

 

 
15 Products i and j are strong substitutes if ij  1 and weak substitutes if 0 < ij < 1.  Diewert (2020b) noted 

the importance of strong and weak substitution in deriving inequalities between various index number 

formulae. Both the CES and Feenstra Weinstein functional forms rule out the possibility of 

complementarity between any pair of products. Products i and j are complements if ij < 0. See Hicks 

(1946; 311-312) on the definition of complementarity. The CES, Symmetric Translog and Generalized 

Symmetric Translog functional forms all rule out complementarity. 
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• The Feenstra Weinstein Symmetric Translog functional form offers a reasonable 

alternative to the use of the CES functional form. Both functional forms have only 

one free parameter to approximate N(N−1)/2 elasticities of substitution between 

all possible pairs of products. 

• The CES functional form sets all possible elasticities of substitution ij(p) for i  j 

equal to a constant   1 while the Feenstra-Weinstein (FW) functional form sets 

ij(p) = 1 + [/Nsi(p)sj(p)] where  is a positive parameter.  

• The CES functional form has the possible disadvantage of setting all reservation 

prices for missing products equal to plus infinity whereas the ST functional form 

generates finite reservation prices provided the estimated  parameter is positive.  

• Our Generalized Symmetric Translog functional form generates finite reservation 

prices provided the estimated n parameters are positive. The estimated 

elasticities of substitution for period t are given by ij(p
t) = 1 +[ij/si(p

t)sj(p
t)] 

provided that the fitted period t expenditure shares si(p
t) and sj(p

t) are positive. 

This functional form allows for much more flexibility in the resulting elasticities 

of substitution.  

• The disadvantage of the GST functional form is the complexity of the estimating 

equations. If all products are present in period t, the estimating equations are 

given by the second line in equations (13). The degree of nonlinearity in the 

coefficients of the log prices is not too bad in these equations. However, if there 

are missing products in period t, the estimating equations are given by the second 

line in equations (16). The nonlinearity in the coefficients of the log prices is 

much more severe in these equations.  

• If some estimated i’s turn out to be 0, then we can set those i equal to a small 

positive number and rerun the regression. Some preliminary results indicate that 

the resulting loss in log likelihood is small and the effect on the regression is 

minimal. However, the resulting finite reservation prices are determined by the 

arbitrary small number.16 

• Both the ST and GST functional form models should only be applied to products 

which are highly substitutable with each other since the estimated elasticities of 

substitution will be equal to or greater than one for both models. .    

       

It should be noted that the Generalized Symmetric Translog functional form is far from 

being a flexible functional form. However, in the context where the number of products 

in scope is large, it is impossible to estimate a fully flexible functional form: with N 

products, the number of parameters required to be a fully flexible unit cost function is 

(N+1)N/2 which is 5050 if N = 100. However, it is possible to estimate semiflexible 

functional forms.17 In the present context with new and disappearing products, a way 

forward is to estimate a KBF utility function where curvature conditions can be imposed 

 
16 A referee suggested an alternative method for dealing with 0 estimates for some of the n: group some of 

the products into groups where a common set of n parameters are estimated. 
17 See Diewert and Wales (1988) on the concept of a semiflexible functional form.  
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and the overall number of parameters can also be controlled; see Diewert and Feenstra 

(2019) (2022) for examples applying this approach.18    
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