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We present a new framework in which agents with limited and heterogeneous cognitive 
ability—modeled as finite depths of reasoning—learn from their neighbors in social 
networks. Each agent tracks old information using Bayes-like formulas, and uses a shortcut 
when reasoning on behalf of multiple neighbors exceeds her cognitive ability. Surprisingly, 
agents with moderate cognitive ability are capable of partialing out old information and 
learn correctly in social quilts, a tree-like union of cliques (fully-connected subnetworks). 
Agents with low cognitive ability may fail to learn in any network, even when they receive 
a large number of signals. We also identify a critical cutoff level of cognitive ability, 
determined by the network structure, above which an agent’s learning outcome remains 
the same even when her cognitive ability increases.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Learning from social networks, a common experience for many, is cognitively demanding. In order to learn correctly, we 
need to identify old information and incorporate new, and only new information, into our beliefs. Mounting experimental 
evidence has shown that learning errors are common, and there is large heterogeneity among subjects’ learning outcomes. 
As a very recent example, Chandrasekhar et al. (2020) show in two experiments that 90% of subjects in an Indian village, 
and 50% of subjects in a Mexican college, fail to learn in simple networks. They suggest that the large heterogeneity among 
subjects may be due to their levels of education, a proxy of their cognitive ability. We present a new framework in which 
agents with limited and heterogeneous levels of cognitive ability—modeled as finite and different depths of reasoning—learn 
from their neighbors. This framework embeds classic learning rules such as naive learning, but it is rich enough to allow 
agents to make sophisticated inferences about what is new information from their neighbors. We show how an agent’s 
learning outcomes depend on her cognitive ability and characterize the associated patterns of learning errors, which are 
potentially testable in the lab and in the field.
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In this model, agents want to learn the true state, for instance, whether the MMR vaccine leads to autism in children, a 
belief contributing to severe measle outbreaks globally. An agent learns by forming and updating her estimates about the 
state distribution, such as the probability that MMR leads to autism.1 In period 1, the agent first forms an estimate using 
her initial signal. She then simultaneously reports her estimate to each neighbor and hears their reports. Next, she gets 
another signal from nature and period 1 ends. In each ensuing period, the same process repeats: she updates her estimates 
and exchanges reports with her neighbors before receiving a signal from nature.

The main innovation of our model is that agents not only form estimates about the state distribution, they also form 
estimates about their neighbors’ estimates, as a store of that neighbor’s old information. Agents of all cognitive abilities try to 
identify old information and extract new information from their neighbors’ reports. An agent with a higher cognitive ability 
identifies old information more effectively by reasoning on behalf of her neighbors. Consider Ann with a neighbor Bob. In 
each period, a naive Ann attributes Bob’s current report to a new signal Bob received from nature. She does not identify 
any old information. A slightly more sophisticated Ann—a low cognitive ability type—considers Bob’s previous report as old 
information, and only attributes the change in his report as new information. That is, she believes Bob’s previous report 
reflects his prior belief about the state, and his current report reflects his posterior belief. Then by Bayes’ rule, she extracts 
the difference as a signal (she believes) that Bob received from nature. A yet more sophisticated Ann—a moderate or higher 
cognitive ability type—can estimate what Bob should report given their previous reports. For example, Ann’s estimate about 
Bob’s report should include what Bob has learned from herself and from their common neighbors. If Bob’s actual report 
differs from her estimate, she attributes this difference, the unexpected change, to a new signal Bob received from nature. 
Agents of all cognitive abilities then update their estimates using these newly extracted signals from neighbors and their 
own signals.

Our first finding is that agents with moderate cognitive ability or above can learn in social quilts, networks in which 
every two agents who belong to the same circle are connected.2 Intuitively, a social quilt is a tree of cliques (fully-connected 
subnetworks). It includes well-known networks such as trees, stars, and some of the core-periphery networks (see Fig. 2
for an example). Because every pair of agents in a clique is connected, when information reaches one member of the 
clique, all other members who have moderate cognitive ability are able to identify it as new information. More importantly, 
everyone correctly estimates that all other members in the clique have learned this information from the same agent. Thus, 
they avoid over counting the same signal by mistake. The overall tree structure of a social quilt also ensures that each signal 
travels through the network once and only once. As a result, all information is correctly aggregated despite agents’ moderate 
cognitive abilities.

Second, we show that agents with low cognitive abilities may believe in the wrong state even when the network receives 
an arbitrarily large number of signals. The reason is that agents fail to identify old information among their neighbors. For 
example, a new signal of Ann is learned by Bob. But because Bob changed his report, Ann believes that Bob has learned a 
new signal and thus learns her own signal back from Bob. This back-and-forth process continues, and as time goes on, they 
believe in a fast-growing number of this signal. We show that faulty early signals may grow so fast that they dominate all 
the correct signals later. We hasten to add, though, even rudimentary ability to identify old information improves learning 
outcomes. Agents with low cognitive ability make far fewer learning errors per period than naive agents who don’t have 
such ability, which is consistent with experimental evidence such as Grimm and Mengel (2020). Moreover, if agents with 
higher cognitive abilities know who have low cognitive abilities, their learning outcomes on a network level may improve 
significantly.

Our third finding establishes an important cutoff property for agents’ learning. We show that there exists a cutoff level 
of cognitive ability for each agent, which is uniquely determined by the network structure. Moreover, these cutoff levels 
are often not high in real data, as we illustrate using the high school friendship network of Fig. 3. We show that if Ann 
has this cutoff level of cognitive ability, she can achieve her best learning outcome—her learning outcome when she has an 
arbitrarily high cognitive ability. But if Ann’s cognitive ability is below this cutoff, then as it increases, she makes fewer (if 
any) learning mistakes. Consequently, her neighbors are less likely to be misled by her learning mistakes. In the end, all 
agents in the network may also make fewer (if any) learning mistakes.

Literature review

We model cognitive ability as depths of reasoning. As such, it shares some similarities with the level-k model adapted 
to the social learning context (see Kubler and Weizsacker (2004) and Penczynski (2017)). Naive agents believe that every 
report reflects a new private signal. This is the same as an agent with inferential naivete in Eyster and Rabin (2010) who 
believes that each predecessor’s action only reflects his private signal. A low cognitive ability agent in our model treats the 
difference in each neighbor’s report as new information. It is as if she treats every difference in two predecessors’ actions as 

1 Her estimate is the log-likelihood ratio of the probabilities she assigns to the possible states, formally defined in Section 2. It reflects, for example, the 
log-likelihood ratio of her belief that MMR causes autism over her belief that MMR does not cause autism.

2 A path is an ordered sequence of distinct agents in which each pair of adjacent agents is connected. A circle is a path in which the first and last agent 
are connected. A tree is a network in which there is no circle.
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a new signal. A moderate cognitive ability agent i can be viewed as one who understands that her predecessor i − 1 should 
learn from his predecessor i − 2, and consider only the unexpected change as coming from a new signal, and so on. But our 
learning environment is more complex because it involves repeated exchanges of information—all agents must update their 
beliefs in each period—instead of each agent takes one action based on her belief and exits.

While novel, our way of modeling heterogeneity in cognitive ability is motivated and supported by the experimental 
literature on strategic sophistication. This literature studies whether subjects can perform iterative and higher-order reason-
ing to form the correct (higher-order) beliefs.3 It often finds limited strategic sophistication: subjects have bounded and 
heterogeneous levels of sophistication, and they have difficulty in eventually forming correct beliefs (see Nagel (1995), Ho 
et al. (1998), Costa-Gomes et al. (2001), Costa-Gomes and Crawford (2006), Shields and Xin (2012), among many others). 
Nagel (1995) shows in a guessing-the-average game that about 50% of the subjects exhibit some limited ability in forming 
first-order and second-order beliefs over the behaviors of other participants. Costa-Gomes et al. (2001) show that 70% of 
the subjects have some strategic sophistication, for instance, they can best respond to the naive type’s behavior or to use 
strict dominance arguments, but they fall far short of the sophistication required for equilibrium play. While we focus on 
learning instead of strategic interactions, each agent needs to form cognitively-constrained beliefs about each neighbor’s 
beliefs given the observed reports, which is akin to forming second-order beliefs. Moreover, even in an individual decision 
problem, Charness and Levin (2009) show that subjects suffer from the winner’s curse because they have difficulty with 
contingent reasoning, and they do worse as the environment becomes more complex. Collectively, this body of evidence 
supports modeling cognitive constraints as having limited depths of reasoning.

The vast theoretical literature on learning in networks primarily focused on two well-known benchmarks (see Golub and 
Sadler (2017) for a recent survey). First, Bayesian learning models show that agents with infinite cognitive ability can learn 
if the network is common knowledge (see Gale and Kariv (2003), Acemoglu et al. (2011), Mueller-Frank (2013), Mossel 
et al. (2015)).4 A related literature on herding and social learning shows that Bayesian agents may mislearn when it is 
rational to ignore their private information (see Bikhchandani et al. (1992) and Banerjee (1992) among many others). While 
agents in this model vary in cognitive abilities and cannot form Bayesian beliefs, they still use Bayes-like formulas to form 
cognitively-constrained beliefs. As a result, we show that they learn just like Bayesian agents in networks such as social 
quilts.

Second, many existing papers study agents who follow reasonable rules of thumb to learn because of the cognitive 
burden of Bayesian learning.5 DeGroot (1974) studies the simplest rule of thumb in which agents update their opinions by 
taking a weighted average of their neighbors’ most recent reports.6 Many papers have studied boundedly-rational learning 
in networks. In Bala and Goyal (1998), each agent updates her belief about the optimal action based on the choices made by 
her neighbors, but she does not try to infer why her neighbors choose these actions. In more recent quasi-Bayesian learning 
models such as Molavi et al. (2018), Levy and Razin (2018) and Mueller-Frank and Neri (2021), agents have the same depth 
of reasoning and treat the most recent report from each neighbor as new information. They update beliefs using a Bayes-like 
formula. In general, these agents fail to learn asymptotically. Our model is closer to the quasi-Bayesian learning models in 
which agents try to incorporate new information from their neighbors given their cognitive abilities; they do not update 
by a mechanical rule of thumb. Moreover, our model builds a bridge between Bayesian learning and DeGroot learning in 
that we allow for a wide range of cognitive abilities. A few papers have studied agents with different cognitive abilities, but 
to our knowledge, this model is the first to study how agents with finite and heterogeneous cognitive abilities learn in a 
network.7

More closely related to this model, Li and Tan (2020) study locally Bayesian learning: how Bayesian agents learn under the 
(possibly misspecified) beliefs that their local networks are the entire network. They identify an iterative learning procedure 
to implement locally Bayesian learning and relate specific features of the network to the learning outcomes. Their locally 
Bayesian agents can perform highly sophisticated reasoning on behalf of any long chain of neighbors. One can think of these 
locally Bayesian agent as one with an infinitely high level of cognitive ability. Here we present a tractable way of modeling 
agents who cannot reason in such a sophisticated way and have to use shortcuts due to their finite cognitive abilities. 
We then show that agents need only a cutoff level of cognitive ability to achieve their best, that is, their locally Bayesian 
learning outcomes.

Section 2 sets up a general model to illustrate our learning procedure and Section 3 analyze agents’ learning outcomes. In 
Section 4, we characterize an agent’s cutoff level of cognitive ability and studies its implications on her learning outcomes. 
Section 5 discusses our model and concludes.

3 Many experiments have studied learning and information aggregation. See Anderson and Holt (1997), Celen and Kariv (2004), Alevy et al. (2007), Cai et 
al. (2009), Bai et al. (2015), Mobius et al. (2015), among others. Canen et al. (2020) provides an empirical method of testing local interactions in networks.

4 In particular, Bayesian agents learn correctly if the network is common knowledge, and the message space is sufficiently fine (tagging the source to 
each signal, for instance). Even with coarse message spaces, they still learn asymptotically as long as each agent has an infinitesimally small influence.

5 See Ellison and Fudenberg (1993, 1995), DeMarzo et al. (2003), Golub and Jackson (2010), Jadbabaie et al. (2012), among many others.
6 DeGroot agents may learn asymptotically if each agent in the network has a vanishing social influence, in which case the Law of Large Number holds.
7 Mueller-Frank (2014) and Chandrasekhar et al. (2020) both consider agents with two types of cognitive abilities: they may be either naive or Bayesian. 

Mueller-Frank (2014) shows that even one Bayesian agent can significantly improve all agents’ learning outcomes.
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2. Model

Network and information

Consider a network (g, G): g = {1, 2, . . . , I} represents a finite set of agents, and G represents the set of the links among 
them, i j ∈ G if i and j are linked. Agent i (she) is a generic agent. Let Ni = { j : i j ∈ G} be the set of agent i’s neighbors and 
agent j (he) be a generic neighbor of agent i. The network is undirected, so information flows both ways: i j ∈ G if and only 
if ji ∈ G . It is also path-connected: for any i, h ∈ g , there is a path (i0i1 . . . il) such that all agents are distinct, i0 = i, il = h, 
and ikik+1 ∈ G for all k < l.8

Agent i observes only her local network, consisting of herself, all her neighbors, and all the links among them. Denote 
her local network as (gi, Gi), where gi = Ni ∪ {i} and Gi = {hj : h, j ∈ gi and hj ∈ G}. Similarly, the subnetwork that agent 
i and her neighbor j both observe is their shared local network, consisting of themselves, their common neighbors, and all 
the links among them. Denote their shared local network as 

(
gij, Gij

)
, where gij = gi ∩ g j and Gij = Gi ∩ G j . Recall that in 

a clique, every pair of agents are connected. Then, for any clique {i, i1, . . . , ik−1}, the shared local network of these k agents 
consists of themselves, their common neighbors, and all the links among them. Denote the shared local network of these k
agents as (gii1...ik−1 , Gii1...ik−1 ), where gii1...ik−1 = gi ∩ gi1 ∩ . . . ∩ gik−1 , and Gii1...ik−1 = Gi ∩ Gi1 ∩ . . . ∩ Gik−1 . For instance, in a 
4-agent clique, g = {1, 2, 3, 4} and G = {12, 13, 14, 23, 24, 34}. The shared local network of any subset of these agents is the 
clique itself: g1 = g12 = g123 = g1234 = g and G1 = G12 = G123 = G1234 = G .

There are two possible states: S = {s1, s2}. The two states are a priori equally likely: Pr(s1) = Pr(s2) = 1
2 .9 The true 

state is realized before learning begins. Agents receive signals from nature about the state. The support of agent i’s signals 
is finite: Xi = {x∅, xi,1, . . . , xi,Mi }, where Mi ≥ 2. Agent i receives the uninformative signal x∅ with probability φi

∅ ∈ (0, 1). 
For each informative signal, let φi

mn ∈ (0, 1) be agent i’s conditional probability of receiving signal xi,m if the state is sn , 
n = 1, 2.

Time is discrete: t = 0, 1, . . .. In each period up to T , agent i gets a realized private signal xi
t according to her information 

structure. The signals are independent across agents and time conditional on the state. No informative signal arrives at or 
after period T , which is randomly drawn from a geometric distribution over N ∪ {∞}.10 The common knowledge among 
agents includes the prior over S , the distribution of T , and the fact that their signals are independent across agents and 
time conditional on the state.

To focus on agents with limited cognitive abilities, we assume that agents only learn from their local networks and 
do not make inferences about the entire network. Moreover, we assume that agent i only knows her own information 
structure, namely, the number of her informative signals, the probability of getting x∅ , and the conditional probability of 
getting informative signals given the state. She does not know any neighbor j’s information structure except that each 
agent’s information structure has full support. That is, M j ≥ 2, φ j

∅ ∈ (0, 1), and φ j
mn ∈ (0, 1) for all m ≤ M j and n = 1, 2. 

We further discuss the reason underlying our assumption on the agents’ information structures in Remark 3 of Sec-
tion 2.2.4.

Reports and timeline

Agent i updates her beliefs about the state distribution in each period. Because these beliefs depend on her cognitive 
ability ci (to be specified below), we denote her belief in period t as (pi,ci

t (s1), p
i,ci
t (s2)).11 Each agent can report her belief 

directly, but to simplify notations, we let her report the log-likelihood ratio of the probabilities of the two states. That is, 
agent i reports her own estimate at time t12:

bi,ci
t = log pi,ci

t (s1) − log pi,ci
t (s2).

Similarly, for each signal xi
t from nature, the log-likelihood ratio of the two states is

αii
t = log Pr

(
s1 | xi

t

)
− log Pr

(
s2 | xi

t

)
.

8 From now on, we use (i j . . .k) to denote a sequence of (possibly repeat) agents in which the order matters, and {i, j, . . . , k} to denote a set of distinct 
agents whose order does not matter.

9 Our model easily extends to any finite number of states as long as the agents have a (possibly not uniform) common prior about the state distribution 
(see the extended model in the Appendix and the proofs). We use two symmetrically distributed states here because the simpler notations allow us to 
focus on the learning rule.
10 More formally, let Pr(T = ∞) = δ and Pr(T = k) = (1 − δ)kδ for some δ ∈ (0, 1). If T = ∞, agents can receive an infinite number of signals, and if T = 1, 

agents receive their initial signal only. The latter is the focus of many existing models, while we allow the signals to arrive over time.
11 Agents are cognitively constrained and cannot form beliefs as a Bayesian agent does. Therefore these probability distributions are not their Bayesian 

beliefs. They are agent i’s cognitively-constrained beliefs, and agents with different cognitive abilities may form different beliefs based on the same set of 
reports. Throughout this paper, we refer to the cognitively-constrained beliefs as beliefs to ease exposition.
12 Her estimate is only one number because it summarizes her beliefs given the binary states.
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Fig. 1. Timeline.

In each period, agent i also forms beliefs about each neighbor j’s belief about the state distribution (to be specified below).13

Formally, (pij,ci
t (s1), p

ij,ci
t (s2)) is what agent i believes about agent j’s belief in period t . Again, we use the log-likelihood 

ratios of these beliefs. Let agent i’s estimate about agent j’s estimate at period t be

bij,ci
t = log pij,ci

t (s1) − log pij,ci
t (s2).

To simplify notations, we suppress ci and use bi
t (and bij

t ) when the relevant ci is clear. For instance, when a formula 
applies for any cognitive ability, or when all agents in the network have the same cognitive ability. When we compare agent 
i’s learning outcomes under two cognitive abilities, ci and c′

i , we explicitly express this dependence by using bi,ci
t and bi,c′

i
t .

The timeline in Fig. 1 summarizes how agent i learns in each period. Note that she reports in each period before she 
observes any new private signal.

2.1. Cognitively-constrained learning rule

We model an agent’s cognitive ability as her ability to identify old information depending on her depth of reasoning. To 
operationalize it, we assume that each agent has cognitive ability ci ∈ [0, ∞). For instance, a naive agent i (ci = 0) does not 
identify any old information. With low cognitive ability (ci = 1), agent i identifies each neighbor j’s previous report as old 
information. With higher cognitive abilities (ci ≥ 2), agent i takes past reports among all her neighbors into consideration.

Agents of all cognitive abilities use the following two Bayes-like formulas to learn.14 First, agent i extracts a signal xij
t in 

period t from agent j, which captures what she believes to be the new information agent j received from nature at the end 
of period t − 1. Specifically, agent i extracts this signal xij

t by using her estimate about agent j (bij
t ) as the prior, and agent 

j’s actual report (b j
t ) as the posterior. Using a Bayes-like formula,

b j
t = log

(
p j

t (s1)

p j
t (s2)

)
= log

(
pij

t (s1)

pij
t (s2)

· Pr(xij
t | s1)

Pr(xij
t | s2)

)
= bij

t + log

(
Pr(xij

t | s1)

Pr(xij
t | s2)

)
.

Let αi j
t be the log-likelihood ratio of the probabilities of the extracted signal xij

t given the states, which is the last term of 
the above equation. Rearrange terms, we have agent i’s signal extraction rule:

α
i j
t = b j

t − bij
t . (1)

Intuitively, agent i removes what she believes to be agent j’s old information from his most recent report. Next, she updates 
her own belief using a Bayes-like formula. Specifically, her belief in period t + 1 uses her belief in period t as the prior, and 
incorporates her own private signal and the new signals she extracted from her neighbors by formula (1). That is,

bi
t+1 = bi

t + αii
t +

∑
j∈Ni

α
i j
t . (2)

Formula (2) is agent i’s updating rule.15 Key to both formulas is agent i’s estimate about agent j’s estimate bij
t : it stores all 

the old information agent i believes agent j has. We now describe how cognitive ability determines the way agent i forms 
bij

t .
First, agents with lower cognitive abilities learn mechanically: if ci = 0, agent i does not identify any old information: 

bij,0
t = 0 for all t . By formula (1), agent i believes every report from agent j reflects a new signal: αi j

i = b j
t . Next, agent i

with ci = 1 identifies agent j’s previous report as old information:

bij,1
1 = 0 and bij,1

t = b j
t−1 for all t ≥ 2.

13 Similar to the previous footnote, these beliefs are not agents’ second-order beliefs because they are cognitively-constrained. We refer to them as beliefs 
to ease exposition.
14 Because these agents are not Bayesian, they cannot form posterior beliefs as Bayesians. Throughout this paper, we say they use a Bayes-like formula to 

reflect that they apply Bayes’ rule mechanically to what they believe to be new and independent signals.
15 To see this, note that agent i applies Bayes’ rule to signals xi

t and xij
t such that for n = 1, 2, pi

t+1(sn) ∝ pi
t (sn)Pr(xi

t | sn) ∏ j Pr(xij
t−1 | sn). Take the 

log-likelihood ratio, we have equation (2).
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By formula (1), αi j
t = b j

t − b j
t−1 for all t ≥ 2. Intuitively, she treats the entire change in agent j’s report from period t − 1 to 

period t as the new signal agent j has learned. Section 2.2 provides an example of how agents with lower cognitive abilities 
learn.

In contrast, agent i with ci ≥ 2 can form her estimates involving up to ci agents using a Bayes-like formula. To fix 
ideas, consider a triangle network with three agents {1, 2, 3}. Suppose that agent 1 has c1 = 2, so that she can form b12

t
using a Bayes-like formula. In order to do so, she needs to compute what agent 2 learns from neighbor 3’s report, which 
requires agent 1 to estimate what agent 2 believes neighbor 3 believes about the state distribution. Agent 1’s sophistication 
is reflected in her ability to change perspective: she can reason on behalf of agent 2. She uses b123

t , her estimate of agent 2’s 
estimate of agent 3’s estimate, to store agent 2’s old information about agent 3 (in agent 1’s opinion). Only then can agent 
1 compute the signal (she believes) agent 2 extracts from report b3

t . In the same way, she estimates what agent 2 learns 
from her own report. She then forms estimate b12

t by following Bayes-like formulas (4) specified below. The limitation of 
c1 = 2 is reflected in that she cannot form estimate b123

t by Bayes-like formulas. Instead, she forms degenerate estimates 
b123

t using a shortcut specified in formulas (5) and (6) below.
We now specify the learning procedure when ci ≥ 2. For each clique {i, i1, . . . , ik−1} with k ≤ ci , agent i forms and 

updates an estimate bii1 ...ik−1
t about agent i1’s estimate about . . . agent ik−1’s estimate as follows.16

Initial values: at t = 1, bi
1 = αii

0 , bii1
1 = . . . = b

i,i1,...,ik−1
1 = 0.

In each period t + 1, agent i:
Step 1: updates own estimate by applying signal extraction rule (1) and updating rule (2).
Step 2: updates her estimate about the estimate of each neighbor h ∈ gii1...ik−1 .

• Extract signals from all neighbors: extracts a new signal about what she believes that agent i1 believes . . . agent ik−1

has learned from agent h similar to formula (1).

α
ii1...ik−1h
t = bh

t − b
ii1...ik−1h
t . (3)

• Update all estimates: incorporates the new signals from (3) and forms her estimate about agent i1’s estimate about 
. . . about agent ik−1’s estimate similar to formula (2).

b
ii1...ik−1
t+1 = b

ii1...ik−1
t +

∑
h∈gii1 ...ik−1

α
ii1...ik−1h
t . (4)

Step 3: sets degenerate estimates.

• Type 1 degenerate estimate: binding cognitive constraint. In any clique {i, i1, . . . , ici }, agent i sets her (ci + 1)-agent 
estimate to be her ci -agent estimate without agent i1:

b
ii1i2...ici
t+1 = b

ii2...ici
t+1 . (5)

• Type 2 degenerate estimate: last agent is a repeat agent. For any b
ii1...ik−1l
t+1 where l ∈ {i, i1, . . . , ik−1} is a repeat agent, 

agent i sets her multi-agent estimate equal to the one without the repeat agent:

b
ii1...ik−1l
t+1 = b

ii1...ik−1
t+1 . (6)

Note that the last agent is the only place where repeat agent is allowed. Agent i does not form estimates involving 
(ci + 2) or more agents. ‖

2.2. A simple two-agent example

We use a running example with binary symmetric informative signals to illustrate the learning rule above. We assume 
that agents have identical information structures, and drop the agent index from the set of possible signals.

Example 1. The network has two agents and one link: g = {1, 2} and G = {12}. The set of possible signals is X = {x∅, x1, x2}, 
where x∅ is uninformative. Agent 1, Ann, gets the only informative signal: x1

0 = x1. Agent 2, Bob, gets no informative 
signal. Let the Bayesian posterior given the signal be Pr(s1 | x1

0) = φ, where φ ∈ ( 1
2 , 1), and the log-likelihood ratio be 

ϕ ≡ log φ − log(1 − φ).

At t = 0, Ann observes x1
0. At t = 1, Ann reports her estimate based on x1

0: b1
1 = αii

0 = ϕ . Bob reports the symmetric prior 
since he has no signal: b2

1 = 0.

16 These are again the log-likelihood ratios of what agent i believes about . . . about agent ik−1’s belief about the state distribution. Also, notice that agent 
i, i1, . . . , ik−1 must know each other to form an estimate involving each other. That is, they must be in the same shared network, or they form a clique.
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Table 1
A two-agent example with c1 = c2 = 0.

Ann Bob

b1
t b12

t α12
t−1 b2

t b21
t α21

t−1

t = 1 ϕ 0 n/a 0 0 n/a
t = 2 ϕ 0 0 ϕ 0 ϕ
t = 3 2ϕ 0 ϕ 2ϕ 0 ϕ

t ≥ 4 2t−2ϕ 0 2t−3ϕ 2t−2ϕ 0 2t−3ϕ

Table 2
A two-agent example with c1 = c2 = 1.

Ann Bob

b1
t b12

t α12
t−1 b2

t b21
t α21

t−1

t = 1 ϕ 0 n/a 0 0 n/a
t = 2 ϕ 0 0 ϕ ϕ ϕ
t = 3 2ϕ ϕ ϕ ϕ ϕ 0
t = 4 2ϕ ϕ 0 2ϕ 2ϕ ϕ

Table 3
A two-agent example with c1 = c2 ≥ 2.

Ann Bob

b1
t b12

t α12
t−1 b2

t b21
t α21

t−1

t = 1 ϕ 0 n/a 0 0 n/a
t = 2 ϕ ϕ 0 ϕ ϕ ϕ
t ≥ 3 ϕ ϕ 0 ϕ ϕ 0

2.2.1. Naive learning agent: each report reflects a new signal
Observation: agents overcount exponentially when c1 = c2 = 0. At each period, Ann treats Bob’s previous report as new in-
formation and adds it to her report. Thus b1

2 = b2
2 = ϕ , b1

3 = b2
3 = 2ϕ , and so on. As time goes on, they believe in an 

exponentially increasing number of the initial signal. Their learning outcomes are summarized in Table 1.

2.2.2. Agents with low cognitive ability: any change reflects a new signal
Observation: agents’ overcount linearly when c1 = c2 = 1. At t = 2, Ann and Bob report b1

2 = ϕ and b2
2 = ϕ . Because Ann treats 

the change in Bob’s report as new information (even though the change is due to the signal Bob just learned from her), she 
extracts a signal α12

2 = b2
2 − b2

1 = ϕ and incorporates it at t = 3. Similarly, at t = 4, Bob treats the change in Ann’s report as 
a new signal and incorporates it. In each odd period, Ann extracts a new copy of x1

0, and thus b1
t = (t + 1)/2ϕ . In each even 

period, Bob extracts a new copy of x1
0, and thus b2

t = t/2ϕ . Their learning outcomes are summarized in Table 2.

2.2.3. Agents with higher cognitive abilities: unexpected change reflects a new signal
An agent with higher cognitive ability (ci ≥ 2) understands that a neighbor learns from herself and his neighbors. When 

c1 = c2 ≥ 2, their ability to reason on behalf of a neighbor pays off. Ann and Bob learn correctly, unlike their counterparts 
with lower cognitive abilities.
Observation: agents’ learning outcomes are correct if c1 = c2 ≥ 2.

At t = 2, Ann notices that Bob’s period-1 estimate agrees with what she expects him to report: b2
1 = b12

1 = 0. Ann learns 
nothing from Bob: α12

1 = 0, and her report does not change: b1
2 = ϕ . But Bob notices that Ann’s period-1 estimate is not 

the prior: b1
1 �= b21

1 , and extracts a signal α21
1 = ϕ . Bob then adds this signal to his estimate: b2

2 = b2
1 + α21

1 = ϕ . Next, by 
equation (3), α121

1 = b1
1 − b12

1 = ϕ , and by equation (4), b12
2 = b2

1 +α121
1 = ϕ . These equations reflect that Ann expects Bob to 

learn her initial signal x1
0, and thus she correctly forms b12

2 . Bob expects Ann to learn nothing from him, so he updates to 
b21

2 = ϕ . For all t ≥ 3, the agents’ estimates and their estimates of each other’s estimate agree. There is no new information: 
α12

t = α21
t = 0, and their estimates remain unchanged. Both believe the true state is s1 with probability φ, which is the 

Bayesian posterior. Their learning outcomes are summarized in Table 3.

2.2.4. Remarks on the main assumptions
Remark 1: key component–agent i’s estimate about j’s estimate. In our model, bij

t contains all the old information that 
agent i believes agent j has learned from all reports in t − 1. Note that bij

t excludes agent j’s private signal in period t − 1, 
which arrives at the end of period t − 1. This way of storing old information is simple to implement.17 Agent i iteratively 

17 Alternatively, we can let bij
t be agent i’s updated belief about agent j’s beliefs given all information including her own private signal xi

t−1, but it is more 
complex and not necessary. Consider the following example. At t = 1, given her initial signal, agent i can update her belief about agent j’s belief because 
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computes her period-(t + 1) estimate from her period-t estimate. She begins by extracting new signals from her neighbors 
and treating all of them as independent. Then she uses her period-t estimate as her prior, applies the updating rule (2) to 
form her period-(t + 1) estimate using the extracted signals. Thus, her period-(t + 1) estimate reflects her most up-to-date 
estimate about the state distribution given her cognitive ability.

Remark 2: why do we use degenerate estimates? Each agent faces a cognitive constraint beyond which she can not process 
information in a Bayesian way. For example, when ci = 2, agent i understands that neighbor j should learn from a common 
neighbor k. She may want to compute—given the reports both i and j can observe—what agent j believes agent k believes 
about the state distribution.18 But agent i with ci = 2 cannot do it and must use degenerate estimates, which can lead to 
learning errors when agent i and k observe a different set of reports from those observed by agent i, j and k (see Example 3
below). We show, however, when the degenerate estimates are without loss in Section 4.

Remark 3: knowledge about the network. Inherited from boundedly rational learning models, our agents face an implicit 
constraint, namely, they do not know, nor do they learn about the network. We make this assumption because learning 
about the entire network from neighbors’ reports in addition to learning about the state distribution is cognitively and 
computationally intractable.19 Instead, each agent behaves as if her local network is the entire network, which imposes a 
subtle restriction on an agent’s belief about neighbors’ information structure. Under this belief, any signal agent i extracts 
from a neighbor by equation (1), must be this neighbor’s signal from nature. We assume that the agents’ beliefs about 
other’s information structure have full support, so that an agent can rationalize any extracted signal from a neighbor as one 
coming from nature.20

Remark 4: extension–one’s learning also depends on neighbors’ cognitive abilities. We assume, as a behavioral heuristic, 
that agent i’s learning rule depends only on her own cognitive ability. She does not know or form beliefs over her neighbors’ 
cognitive abilities, nor does she take into account her neighbors’ cognitive ability when she estimates their estimates. The 
reason is that these agents don’t have enough cognitive ability to form such complex beliefs. It is conceptually simple 
(but notationally cumbersome) to extend our model to allow each agent to know her neighbors’ cognitive abilities. In this 
case, an agent’s estimate of a neighbor’s estimate must depend on that neighbor’s cognitive ability, so she uses a set of 
neighbor-specific learning rules. We illustrate this case in Example 4 below.

3. Learning outcomes

Can agents learn correctly given their cognitive constraints? To answer this question, we first lay out our notions of 
correct learning. Let Xi

t be the set of signals agent i receives from nature up to and including period t . Let Xt be the union 
of Xi

t for all i ∈ g . Recall that T is the period at or after which the agents receive no informative signal, and thus XT

contains all the realized signals the network receives.

Definition 1. Agent i’s learning outcomes are correct if her estimates converge to the log-likelihood ratios of the Bayesian 
posterior for all sequences of realized signals XT : limt→∞ bi

t = log Pr(s1 | XT ) − log Pr(s2 | XT ). They are asymptotically 
correct if she learns the true state almost surely when agents receive infinitely many signals (T = ∞).

With a finite number of signals (T < ∞), the Bayesian posterior is bounded away from 0 and 1. In this case, the notion 
of correct learning requires each agent’s long-run estimate to match the log-likelihood ratio of the Bayesian posterior. With 
infinitely many signals, asymptotic learning requires that agents learn the true state with probability 1.

3.1. Correct learning with moderate cognitive ability

With moderate cognitive ability (ci = 2), agents can reason on behalf of each neighbor but no further. Despite this 
constraint, we now show that they (and all agents with higher cognitive abilities) learn correctly in the following type of 
network.

their signals are correlated unconditional on the state. But doing so requires agent i to know the information structure of agent j, which is unrealistic in 
many settings. More importantly, such computations are not needed. After agent i hears agent j’s report b j

1, she can easily back out agent j’s initial signal 
using the signal extraction rule (1).
18 This is akin to forming third-order belief and its computational difficulty. In simple dominant solvable games, Kneeland (2015) show many players 

don’t have high enough level of rationality to form such beliefs.
19 To do so requires an agent to form beliefs about the number of agents in the network and about all the possible paths through which information can 

travel to her. She also needs to update all these beliefs each time she receives new information. Computationally demanding even in a three-agent network 
(see Gale and Kariv (2003)), such complex updating in a typical network is beyond the capacity of modern computers. For instance, Valiant (1979) show 
that counting the number of s − t paths in a graph is #P-complete, and Roberts and Kroese (2007) consider algorithms to improve counting in known 
networks.
20 If this richness assumption does not hold, say, if agents are assumed to have identical information structures, then agent i may detect certain reports 

from neighbor j cannot come from j’s signal from nature. If i thinks that the report is due to information from neighbors of agent j unknown to i, then 
agent i must update her beliefs about agent j’s local network and also revise her beliefs about the state given her updated belief about the network, which 
is beyond her cognitive ability.
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Fig. 2. A social quilt.

Definition 2. A network (g, G) is a social quilt if any agents i and j who belong to the same circle are connected: i j ∈ G .

Intuitively, it is a tree-like union of cliques—each node of the tree consists of a set of fully-connected agents. Fig. 2
illustrates a social quilt, which include well-known subnetworks such as trees, cliques, stars, lines, and some of the core-
periphery networks.

Proposition 1. In a social quilt, agents learn correctly if and only if ci ≥ 2 for all agents.

Agents with moderate cognitive ability learn correctly in social quilts, because the shortcuts they use due to their cog-
nitive constraints—the degenerate estimates in expression (5) and (6)—turn out to be correct. For instance, if agent i has 
ci = 2, agent i uses her estimate about agent k’s estimate as what she believes to be agent j’s estimate about agent k’s esti-
mate (bijk

t = bik
t ). Similarly, she uses her estimate about agent j’s estimate to be what she believes to be agent j’s estimate 

about her own estimate (biji
t = bij

t ). These degenerate estimates are correct because of a special feature of social quilts: the 
shared local network of every pair of agents is a clique. To see this, suppose that agent i and j has two common neighbors, 
then the four of them form a circle. By the definition of a social quilt, these two common neighbors must be connected as 
well, and thus agent i and j’s shared local network is a four-agent clique. Clearly, within a clique, everyone observes the 
same set of reports. Consider the clique {1, 2, 3, 4} of Fig. 2. As g41 = g42 = {1, 2, 3, 4}, agent 4 thinks that agent 1 hears 
the reports from the same set of people as agent 2. If agent 4 were able to use Bayes’ rule to estimate agent 1’s estimates 
of agent 2’s estimates, b412

t , she would use the reports from agents {1, 2, 3, 4} just like her own estimates about agent 2’s 
estimates. Thus, b412

t = b42
t , and the degenerate estimates she uses are in fact correct.

Because of this special feature, each agent with moderate cognitive ability makes no local learning errors in a social 
quilt. For agent i, forming estimates about each neighbor’s estimates correctly is sufficient. She would not learn any better 
even if she could form sophisticated estimates involving more neighbors (see Proposition 4 in Section 4). In addition, agents 
make no learning errors globally because there is no chance for old information to reach an agent repeatedly though the 
unobserved part of the network. This is because a social quilt contains no simple circle—a circle of more than three agents 
in which each agent has exactly two links to others in the circle. Thus new information reaches each agent once and only 
once, who learns it correctly.

For necessity, we show that even if just one agent has low cognitive ability (say c1 = 1), all agents’ learning could 
be wrong. Suppose that agent 1 receives the only informative signal at t = 0 and reports it at t = 1. Then each neighbor 
j = 2, 3, 4 learns it and incorporates it into his estimate at t = 2. Because c1 = 1, agent 1 cannot recognize that the change in 
j’s report at t = 2 reflects what j has learned from herself. Instead, she treats this change as a new signal and incorporates 
it at t = 3. In doing so, she overcounts her initial signal by three copies. These duplicated copies are in turn treated as new 
signals by 1’s neighbors at t = 4. In this way, all agents learn more and more copies of the initial signal.21 In the limit, 
everyone believes in the state that is most likely given the initial signal. But the Bayesian posterior is interior: it cannot rule 
out any state.

The main takeaway from Proposition 1 is that from a planner’s perspective, social quilts are conducive toward agents’ 
learning even if they are not very sophisticated. For instance, to facilitate learning about a new vaccine, a planner may want 
to have each local village to be fully connected, and the village leaders connected in a tree, such as the islands-connections 
network in Jackson and Rogers (2005). In this way, the community can learn whether the vaccine is effective without being 
misled by a few faulty initial trials.

In light of Proposition 1, a natural question is whether there are other networks such that agents can learn correctly. 
This question is complex because in general, a network often contains simple circles (such as the network in Example 2) 

21 The network’s learning outcomes improve significantly if all cognitive abilities are known and agents can account for that (see Example 4) in Section 5.2.
40



W. Li and X. Tan Games and Economic Behavior 129 (2021) 32–54
and diamonds with a link (networks that are neither cliques nor simple circles, such as the network in Example 3). Li and 
Tan (2020) show that in networks with both features, agents’ learning outcomes may exhibit divergent oscillations. Thus, 
the long-run learning outcomes may not converge and the learning dynamics is difficult to characterize. To gain tractability, 
we consider a stronger notion of correct learning: Agent i’s learning outcomes are strongly correct if her estimate in every 
period is the log-likelihood ratio of the Bayesian posteriors given all information that has reached her in that period.22 The 
next result follows from Proposition 4 of this paper and Proposition 1 of Li and Tan (2020).

Corollary 1. When ci ≥ 2 for all agents, agents’ learning outcomes are strongly correct if and only if the network is a social quilt.

Intuitively, this corollary states that whenever a network is not a social quilt, agent i will make learning errors in 
incorporating information from her neighbors even if she has arbitrarily high cognitive ability. She either repeatedly counts 
old information as new, or her opinions swing back and forth. Fundamentally, she makes such errors because she cannot 
account for how information may reach her from the unobserved parts of the network.

3.2. Learning outcomes with low cognitive ability

Several papers have studied the learning outcomes of agents with ci = 0 and show that these agents cannot learn 
asymptotically (see Levy and Razin (2018), Molavi et al. (2018) and Mueller-Frank and Neri (2021)).23 Here we focus on the 
learning outcomes of agent i with ci = 1, who treat each neighbor’s previous report as his old information. We will show 
that she believes in duplicate copies of true signals as in Example 1 and fails to learn asymptotically. Such severe learning 
errors can contribute to the spread of fake news and misinformation.24 We also compare their learning patterns with those 
of the naive-learning agents. These results can be used in experiments to estimate the subjects’ heterogeneous cognitive 
abilities.

For simplicity, we consider the case of initial signals only. Let b1 be the vector of agents’ estimates at period 1.25 Its i-th 
element is agent i’s estimate bi

1 = αii
0 , the log-likelihood ratio of the two states given agent i’s initial signal. Similarly, bt

is the vector of the agents’ estimates at period t , with its i-th element being agent i’s estimate bi
t . Let A be the adjacency 

matrix of the network and its il-th entry be Ail . That is, Ail = 1 if il ∈ G and Ail = 0 otherwise. Also, Aii = 0, and I is the 
identity matrix.

If all agents have low cognitive ability, they count each change in a neighbor’s reports as a new signal. Observe that Ail

measures whether agent l can learn agent i’s initial signal in one period, since it equals 1 if and only if l ∈ Ni . Similarly, 
(Ak)il , the il-th entry of matrix Ak , measures how many walks of length k the initial signal can travel from i to l.26 It 
precisely measures how agents with ci = 1 learn. Agents’ estimates in period t are:

bt =
(

t−1∑
k=0

Ak

)
b1. (7)

Proposition 2. Consider a network with at least one circle of an odd length. Suppose all agents have low cognitive ability; then there 
exists a vector w such that if 

∑
i wiα

ii
0 �= 0, agents’ estimates converge as t → ∞.

Agents’ estimates are given by (7). As time goes on, the new information extracted by each agent with low cognitive 
ability contains an increasing number of copies of all agents’ initial signals. The number of duplicated copies grow at the 
same exponential rate. While agents may disagree in the beginning as their initial signals travel through the network, 
their eventual estimates are dominated by the same weighted average of their initial estimates.27 The network structure 

22 Formally, let d(il) be the distance, or the length of the shortest path, between agent i and agent l ∈ g , with d(ii) = 0. One period is required for agent 
l to incorporate a private signal into his report, and d(il) periods are required for the signal to travel from l to i. Therefore, at the beginning of period t , 
agent l’s signals that can reach agent i are those signals agent l received up to and including period t − d(il) − 1.
23 In particular, Molavi et al. (2018) examine a general class of naive learning procedures in which every agent uses the same function to aggregate her 

neighbors’ reports (in the form of the log-likelihood ratios). They show that these agents learn asymptotically if this function is homogeneous of degree 
one. Intuitively, this condition translates into unanimity: an agent stops learning if she and all her neighbors agree with each other. In the ci = 0 case, each 
agent treats her neighbors’ reports as new information in every period. They keep learning from their neighbors even when they are in agreement (as in 
Table 1), and thus they may fail to learn asymptotically. In the DeGroot model, however, agents repeatedly take the weighted average of their neighbors’ 
opinions, and their opinions do not change if they agree with each other. Thus, it is possible for DeGroot agents to learn asymptotically, as shown by Golub 
and Jackson (2010).
24 For example, after the Brexit referendum, only 29% of the public correctly believe that European immigrants pay £4.7b more in taxes than what they 

receive in benefits and services. These wrong beliefs also vary greatly among different groups. See “Brexit Misperceptions,” the October 2018 study by the 
Policy Institute at King’s College (https://www.kcl .ac .uk /policy-institute /research -analysis /the -publics -brexit -misperceptions).
25 Throughout this paper, we use bold font for vectors.
26 A walk from i to l is a sequence of (possibly repeated) agents (i0i1 . . . ik) such that i0 = i, ik = l and ih ih+1 ∈ G for all h < k.
27 We rule out the indeterminate knife-edge case when ∑i wiα

ii
0 = 0. Thus agents believe in the most likely state given a weighted average of their 

estimates, where vector w is proportional to the Perron-Frobenius left eigenvector of A.
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determines the weights agents use. For instance, in a clique, the weights are equal and thus all agents believe in the state 
most likely given the initial signals.

Proposition 2 immediately implies that agents with low cognitive ability may all believe in the wrong state. This occurs 
if an influential agent—whose estimate every agent places a large weight on—gets a wrong signal. One may attribute these 
learning errors to the fact that the number of initial signals is finite. But this intuition is incomplete: the Law of Large 
Numbers (LLN) may fail when all agents have low cognitive ability.

Proposition 3. In any network with three or more agents, if ci = 1 for all agents, their learning outcomes are not asymptotically correct 
with a positive probability.

We prove this result by construction: when some agents receive wrong initial signals, all agents may believe in the 
wrong state even if they receive an arbitrarily large number of correct signals later. Intuitively, the duplicate copies of the 
initial wrong signals are repeatedly learned by the agents because of their low cognitive ability. These duplicate copies then 
travel through the network, growing at an exponential rate and dominating all the later correct signals. Such failure of LLN 
could also occur when only a subset of agents have low cognitive ability.

We use a 4-agent circle to show that agents with moderate cognitive ability can learn asymptotically correctly, but they 
cannot do so with low cognitive ability.

Example 2. Four agents are connected in a circle C = (1234). Recall from Example 1 that S = {s1, s2}, X = {x∅, x1, x2}, and 
log

(
Pr(s1 | x1)/Pr(s2 | x1)

) = ϕ > 0. The true state is s1. Consider the following sequence of realized signals XT : xi
0 = x2 and 

xi
t = x1 for all t ≥ 1 and i ∈ {1, 2, 3, 4}. The correct Bayesian posterior is Pr(s1|XT ) = 1.

Clearly, x1 (resp. x2) is more indicative of state s1 (resp. s2). Under XT , everyone receives a wrong signal initially, but 
receives infinitely many correct signals x1 from period 1 onward. At t = 1, bi

1(s1) = −ϕ for all four agents.

Observation: asymptotically correct learning when ci ≥ 2 for all agents. At t = 2, each agent learns two x2, one from each 
neighbor, and one x1 from nature, so bi

2 = −2ϕ . With ci = 2, agent i expects each neighbor to learn one copy of x2 from her 
and to add it to his initial signal of x2, thus bij

2 = −2ϕ . At t = 3, agent i learns nothing from her neighbors because bij
2 = b j

2, 
and one x1 from nature, and thus bi

3 = −ϕ . At t = 4, agent i learns two x1, one from each neighbor, and an additional 
x1 from nature, and thus bi

4 = 2ϕ . For all t ≥ 5, agents learn (multiple copies of) x1 from each neighbor and one x1 from 
nature. In the limit, they believe correctly that the true state is s1.

Observation: wrong learning outcomes when ci = 1 for all agents. At t = 2, agent i’s estimate remains bi
2 = −2ϕ . But when 

ci = 1, agent i believes that each neighbors’ previous report represents his old information, and thus bij
2 = −ϕ . Then, she 

learns one copy of x2 from each neighbor in the beginning of t = 3. Similarly, in each period t ≥ 3, each agent learns one x2

from each neighbor, and one x1 from nature, and thus bi
t = −tϕ . In the limit, they believe incorrectly that the true state is 

s2. �
While agents with low cognitive ability make many learning errors, even this rudimentary ability to identify old informa-

tion can reduce learning errors significantly. To see this, we compare the learning outcomes of these agents with the naive 
learning agents. Recall that naive agents treat every report as a new signal. Then agent i’s estimate in period t is formed by 
adding up all the period-(t − 1) estimates in her local network:

bt = (A + I)bt−1 ⇒ bt = (A + I)t−1b1. (8)

In particular, the il-th entry of (A + I)t−1 reflects the number of copies of signal xi
0 that agent l extracted by period t − 1.28

Given how agents’ estimates evolve when they are naive and when they have low cognitive ability (expression (8) and (7)), 
we have:

Corollary 2. Let xi
0 be an informative signal. Then as t → ∞, the difference between the number of copies of xi

0 each agent believes in 
when they are naive and that when they have low cognitive ability (ci = 1) goes to infinity.

The difference in the number of copies of xi
0 each agent l believes in when agents are naive and when they have low 

cognitive ability is the il-th entry of 
∑t−1

k=0

((t−1
k

) − 1
)

Ak by the Binomial Theorem. This difference clearly increases in t and 
grows to infinity as t → ∞. This result suggests in actual experiments, which typically last a few rounds, agents will low 
cognitive ability make far fewer errors than naive-learning agents.

28 Levy and Razin (2018) show that as t → ∞, all agents believe in the state that is most likely given a weighted average of the initial beliefs, where the 
weights are the Perron-Frobenius eigenvector of A + I.
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Fig. 3. One component of the high-school friendship network.

4. Main property: a cutoff level of cognitive ability

We now explore how an agent’s learning outcomes depend on her cognitive ability more generally. First, as an agent’s 
cognitive ability increases, is there a limit as to how well she can learn? Second, how does this limit depend on the network 
structure? We begin with defining a cutoff level of cognitive ability for each agent. It is worth noting that each agent’s cutoff 
is uniquely determined by her (local) network structure.

Definition 3. Let ĉi be the cutoff level of cognitive ability of agent i such that:

(1) ĉi = 2: if agent i and her neighbor j’s shared local network 
(

gij, Gij
)

is a clique for all j ∈ Ni ; otherwise,
(2) ĉi = k: if k is the smallest integer such that the shared local network of agent i and any of her k − 1 neighbors (

gii1...ik−1 , Gii1...ik−1

)
is a clique.

We illustrate this definition using Fig. 3, which contains one component of the high-school friendship network from 
Coleman (1961).29

Begin with agent 1: her cutoff level is ĉ1 = 2 because she only has one neighbor and their shared local network includes 
only themselves, which is a clique. Agent 2’s cutoff is also ĉ2 = 2 because his shared local network with each neighbor is 
a clique: (g12, G12) is a line of two agents, and each (g2h, G2h) for h ∈ {3, 4, 5, 6} is a clique of five agents. Similarly, in a 
social quilt, every agent has a cutoff level of 2 because every pair of agents’ shared local network is a clique.

When does an agent’s cutoff get higher than 2? Consider agent 7 in Fig. 3. Her shared local network with neighbor 8
contains agents {7, 8, 9, 10}. It is not a clique because 9 and 10 are not connected. Clearly, the shared local network of 
{7, 8, 9} (and also {7, 8, 10}) is a clique. Then by part (2) of Definition 3, ĉ7 = 3. Interestingly, among the 146 students in 
this high-school friendship network, 119 have a cutoff of 2, 23 have a cutoff of 3, and only 4 of them have a cutoff of 5. 
These four students are {11, 13, 14, 15} in Fig. 3.30

We now show that agent i’s learning outcomes are the same, ceteris paribus, for all cognitive abilities above this cutoff.

Proposition 4. (1) Agent i’s estimates are the same when her cognitive ability is above her cutoff: bi,ci
t = bi,ĉi

t for all ci ≥ ĉi and all 
t, holding all other agents’ cognitive abilities (c−i) and sequence of realized signals XT constant. (2) Agent i’s cutoff is tight: for any 
ci < ĉi , b

i,ci
t �= bi,ĉi

t for some c−i , t, and XT .

Proposition 4 is useful because it shows that in real networks, an agent may not need a high cognitive ability to obtain 
her best learning outcomes—her learning outcomes under an arbitrarily high level of cognitive ability. On one hand, if agent 
i’s best learning outcomes are correct, then she learns correctly as long as her cognitive ability is above her cutoff level. But 
if she is unable to learn correctly at the cutoff level, then her learning outcomes will not improve. On the other hand, if an 
agent’s cognitive ability falls short of her cutoff level (ci < ĉi ), she will make learning errors due to her cognitive constraint. 
She makes fewer learning errors if she has higher cognitive ability (up to her cutoff level), which in turn will improve 

29 The full network of 146 students as cited by Feld (1991) is reproduced in Fig. A1 in the appendix.
30 To see why, notice that the shared local network of these four agents include agent 16 and 12, who are not connected themselves. But the shared 

networks of these four agents together with either agent 12 or agent 16 are cliques. Therefore the cutoff is 5 for these four agents.
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Fig. 4. A diamond with a link.

other agents’ learning outcomes. A more subtle implication of Proposition 4 is that agent i does not need to form estimates 
involving more than ĉi agents. Therefore our learning rule is even less demanding on agent i’s cognitive ability than it first 
appears.

We prove this proposition through Lemma A1 and A2 in the appendix. Lemma A1 shows why agent i’s learning outcomes 
stay the same when her cognitive ability is above ĉi , holding everything else constant. Since agent i’s neighbors are finite, 
and she only learns from her neighbors, the set of reports she can observe and make use of is finite as well. Thus, it is 
not surprising that she needs only a finite level of cognitive ability to store old information in her local network. But this 
intuition is incomplete. In fact, agent i’s cutoff does not depend on (and can be much lower than) her degree, the number 
of neighbors she has. Rather, it depends on the structure of her local network. Recall from Definition 3, the shared local 
network of i and any of her ĉi − 1 neighbors must be a clique. Within a clique, agents observe the same reports and 
thus form the same estimates. Specifically, any ĉi -agent estimate is the same as any (ĉi + 1)-agent estimate in the clique. 
Therefore, their degenerate estimates of using the former to replace the latter lead to no additional learning errors.

Lemma A1 explains why Proposition 1 apply to all agents with cognitive ability ci ≥ 2. Every agent in a social quilt 
has a cutoff of ĉi = 2, which is enough for every agent to learn correctly. But whether agent i’s learning outcomes are 
correct when her cognitive ability is at (or above) her cutoff level depends on the entire network structure. This is because 
each agent only knows and learns from her local network; she cannot avoid learning errors due to the network structure 
unknown to her. For instance, in the 4-agent circle of Example 2, each agent also has a cutoff level of ĉi = 2. But they 
make learning errors even with moderate (or higher) cognitive abilities, because they don’t know old information can travel 
around the circle and reach them again. In other words, if every agent is at (or above) her cutoff level of cognitive ability, 
their learning errors (if any) are caused by their network knowledge constraint. Such errors persist even if agents are more 
sophisticated.

Next, Lemma A2 shows that the cutoff is tight. If her cognitive ability falls short of her cutoff, agent i’s degenerate 
estimates can be based on a wrong set of shared reports. Specifically, agent i has to use degenerate estimate as in expression 
(5) to set her (ci +1)-agent estimate, which is done by removing an agent from the (ci +1) agents. When ci < ĉi , the shared 
local network of the remaining ci agents may not be a clique, and thus their shared reports may differ from those shared by 
the original (ci + 1) agents. Then, her multi-agent estimates would differ from the ones she would have formed if she is not 
cognitively constrained. Once her (ci + 1)-agent estimate is wrong, it affects her ci -agent, . . . , 2-agent estimates iteratively 
and leads to wrong estimates. To illustrate, consider the network in Fig. 4, the same as the subgraph of agents {7, 8, 9, 10}
in Fig. 3.

Recall that ĉ1 = ĉ3 = 2 while ĉ2 = ĉ4 = 3. If c2 = 2, then agent 2 cannot form her 3-agent estimate b234
t . Instead, she uses 

degenerate estimate b234
t = b24

t . But the reports seen by agent 2 and 4 are from agents {1, 2, 3, 4}, while the reports seen 
by {2, 3, 4} are from the three of them. If agent 1 gets an informative signal and reports it, these two sets of reports differ. 
Consequently, agent 2 makes learning errors. We now contrast the learning outcomes when ci ≥ 3 and when ci = 2 for all 
the agents in Fig. 4.

Example 3. Consider the diamond with a link network in Fig. 4. Let x1
0 = x3

0 = x1 be the only informative signals. As before, 
log

(
Pr(s1 | x1)/Pr(s2 | x1)

) = ϕ > 0. The log-likelihood ratio of the state distribution based on η copies of x1 is ηϕ . When 
η < 0, it means that the agent believes in |η| copies of x2 instead.

At t = 1, b1
1 = b3

1 = ϕ , and b2
1 = b4

1 = 0. At t = 2, b1
2 = b3

2 = ϕ , and b2
2 = b4

2 = 2ϕ . Then their learning outcomes depend on 
their cognitive abilities.

Observation: correct learning for agent 2 and 4 when ci ≥ 3. Agent 2 and 4 observe the entire network and have sufficient 
cognitive abilities since ĉ2 = ĉ4 ≥ 3. They know their reports b2

2 = b4
2 = 2ϕ are based on signals from agent 1 and 3. They 

do not learn from each other and their estimates remain at 2ϕ for all t ≥ 2. Agent 2 and 4 also know agent 1 and 3 do not 
know each other, and expect agent 1 and 3 to make the following learning errors.
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Table 4
Learning in a diamond with a link with ci = 3.

b1
t = b3

t b2
t = b4

t α12
t−1 = α14

t−1

t = 1 ϕ 0 n/a
t = 2 ϕ 2ϕ 0
t = 2τ + 1, τ ∈N 3ϕ 2ϕ ϕ
t = 2τ + 2, τ ∈N ϕ 2ϕ −ϕ

Since agent 1 and 3 are symmetric, we focus on agent 1. At t = 3, agent 1 learns two copies of x1, one from each 
neighbor, so b1

3 = 3ϕ . She also believes that agent 2 should learn from agent 4 just like she learns from agent 4, and thus 
b12

3 = b14
3 = 3ϕ . At t = 4, she learns two copies of x2 (the opposite of x1), one from each neighbor. This is because b2

3 = 2ϕ

while b12
3 = 3ϕ , and thus α12

3 = b2
3 − b12

3 = −ϕ . That is, she rationalizes the fact that agent 2 and 4 report two, instead of 
three, copies of x1 by believing each of them has received a copy of x2. So b1

4 = ϕ . She also believes agent 2 should learn 
from agent 4 just like she learns from 4, and thus b12

4 = b14
4 = ϕ . For all t ≥ 3, agent 1 and 3’s estimates oscillate between 

3ϕ in odd periods and ϕ in even periods. Their learning outcomes are summarized in Table 4.

Observation: diverging opinion swings when ci = 2 for all i. We keep track of only agent 1 and 2 due to symmetry. At t = 3, 
b1

3 = 3ϕ and b2
3 = 2ϕ as above. But now agent 2 does not have the ability to reason on behalf of agent 1 for agent 4. 

Instead, she sets b214
2 = b24

2 = 2ϕ using her degenerate estimate. Then, agent 2 believes agent 1 does not learn from agent 
4 just like she does not learn from 4, and thus b21

3 = 2ϕ . At t = 4, agent 2 learns two copies of x1, one from agent 1 and 
one from agent 3: b2

4 = 4ϕ . Agent 2 learns x1 from agent 1 because she thought agent 1 should report 2ϕ but he reports 
3ϕ: b1

3 = 3ϕ while b21
3 = 2ϕ . Their opinions oscillate and diverge over time (derivations are in the appendix):

(b1
5,b2

5) = (7ϕ,0), (b1
6,b2

6) = (−7ϕ,10ϕ), (b1
7,b2

7) = (27ϕ,−19ϕ), . . .

As time goes on, all agents’ estimates oscillate and move away from the log-likelihood ratio of the Bayesian posterior, which 
is 2ϕ . Not only agent 2 and 4 fail to account for the oscillations of agent 1 and 3, they exacerbate such errors. �

Local improvement in an agent’s cognitive ability could thus be valuable for the whole network. That is, if an agent 
falls short of her cutoff level of cognitive ability, then as her cognitive ability increases, she makes fewer learning errors. 
Moreover, these learning errors do not spread to her neighbors, who in turn do not mislead their neighbors. As a result, all 
agents make fewer learning errors. In the example above, all agents exhibit diverging belief oscillations when c2 = c4 = 2. 
But when c2 = c4 ≥ 3, only agent 1 and 3 have belief oscillations which are limited in scope.

5. Discussions and concluding remarks

5.1. Decisive evidence

Can agents learn correctly regardless of their cognitive abilities and the network structure? The answer is yes, if every 
agent’s signal provides decisive evidence, which occurs when all agents’ information structures are partitional over S , the 
set of possible states.31 Intuitively, decisive evidence requires that each informative initial signal rules out some states 
completely. Let S = {s1, . . . , sn} in this extension and consider initial signals only. Then as in Aumann (1976), agent i’s 
information structure can be represented by a mapping P i : S → 2S \∅, associating each state sn with a non-empty element 
P i(sn). At sn , agent i considers P i(sn) to be the set of possible states. Moreover, P i induces an information partition over 
S: for any sn ∈ S , sn ∈P i(sn), and for any sn, sn′ ∈ S , sn′ ∈P i(sn) implies P i(sn′) =P i(sn).

Proposition 5. If every agent has decisive evidence, then agents of all cognitive abilities learn correctly in any network.

Proposition 5 holds due to a special feature of decisive evidence: agents may make mistakes identifying old information, 
but they still learn correctly. All that an agent needs is the ability to use Bayes’ rule in a rudimentary manner—to remove 
impossible states given her signal and her neighbors’ reports. Thus, Proposition 5 applies to agents with low cognitive ability 
as well as naive-learning agents. Specifically, whenever agent i extracts a new signal from a neighbor, she eliminates the 
states deemed impossible according to the new signal. Even if agent i extracts the same signal from multiple neighbors 
unknowingly, she removes the same set of states as she would have given one such signal. Thus, the agents’ learning 
outcomes are correct: they believe in the states in the intersection of all possible states indicated by their initial signals.32

31 In the classic Bayesian framework, agents have a common prior and update their beliefs over an expanded space containing each agent’s beliefs about 
S , her beliefs about the network, and all her higher-order beliefs about their neighbors’ beliefs. In general, this expanded space is also partitional. To 
emphasize that our partition is only over S , we call it decisive evidence instead of partitional information.
32 This is also related to the literature on knowledge and consensus which studies under which conditions and reporting protocols, repeated commu-

nication among a finite set of individuals leads to consensus. See Aumann (1976), Geanakoplos and Polemarchakis (1982), Parikh and Krasucki (1990), 
Mueller-Frank (2013), among many others.
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The same logic holds more generally: if any agent’s signal rules out a state, all agents learn it correctly. This result suggests 
another way to reduce learning errors in a complex network. Instead of targeting influential agents as in the optimal seeding 
problem, sending a few agents with decisive evidence may be more effective.

5.2. When agents know their neighbors’ cognitive abilities

So far, agent i learns according to her cognitive ability only. If agents know their neighbors’ cognitive abilities, then they 
can apply our learning procedure and account for their neighbors’ cognitive abilities explicitly. Similar to the level-k learning 
literature, we assume that an agent with a lower cognitive ability cannot understand how her neighbor with equal or higher 
cognitive ability learns. So she just follows the learning rule for her cognitive ability like before. But an agent with a higher 
cognitive ability knows how each neighbor with a lower cognitive ability learns, and accounts for his learning errors. This 
additional ability to detect learning errors can improve agents’ learning outcomes, as illustrated below.

Example 4. Consider the two agents in Example 1. Recall that x1
0 is the only informative signal. Suppose that c1 = 1, c2 = 2, 

and their cognitive levels are common knowledge.

At t = 1, Ann reports b1
1 = αii

0 = ϕ and Bob reports b2
1 = 0. At t = 2, Ann learns nothing from Bob and reports b1

2 = ϕ , 
while Bob learns a signal from Ann and reports b2

2 = ϕ . At t = 3, Ann with c1 = 1 treats the change in Bob’s report as a 
new signal, and reports b1

3 = 2ϕ , while Bob remains at b2
3 = ϕ . At t = 4, there is no change in Bob’s report, so Ann remains 

at b1
4 = 2ϕ . The key is that Bob knows c1 = 1 and expects Ann to treat his change from b2

1 to b2
2 as a new signal in period 

3, and thus expects b1
3 = 2ϕ . So Bob learns nothing and reports b2

4 = ϕ . For t ≥ 5, b1
t = 2ϕ and b2

t = ϕ . Bob learns correctly 
despite Ann’s (single) learning error. �

The intuition of this example also extends to Proposition 1: if cognitive abilities are known, one low cognitive ability 
agent needs not mislead the entire network.

Corollary 3. Suppose that agents can account for neighbors’ cognitive abilities. All agents with cl ≥ 2 learn correctly in a social quilt if 
agents with ci < 2 are isolated. That is, each agent with ci < 2 has only one neighbor, and that neighbor j has c j ≥ 2.

While an agent with ci = 1 still makes mistakes by counting all changes in her neighbor j’s report as new, her errors 
no longer affect the rest of the network if she is isolated. Her report reaches her neighbor j, who understands and only 
passes on the part of agent i’s report that is truly due to new signals. Moreover, because agents with moderate ability (or 
above) form consensus eventually, errors made by agents with low cognitive ability are bounded. Intuitively, if agents who 
pass on information from one subnetwork to another have sufficient cognitive ability, they can account for errors made by 
the fringe.

5.3. Conclusion

Learning in networks naturally requires iterative and sophisticated reasoning because each agent needs to account for 
what a neighbor has learned from another in order to identify old information. Our novel framework equates cognitive 
ability with depth of reasoning, namely, whether an agent can estimate what one neighbor has learned from another 
neighbor given their shared history of reports. We show that agents with moderate cognitive ability may learn in some 
networks, but low cognitive ability causes and reinforces learning errors in general. In real networks, however, agents may 
not need high cognitive ability to achieve their best learning outcomes.

Theoretically, we fill a gap between models with locally Bayesian agents who have arbitrarily high cognitive ability and 
models with naive learning agents. In terms of methodology, agents in our model remain true to Bayesian learning in spirit: 
they try to extract new information to the best of their cognitive ability using Bayes-like formulas. One may alternatively 
model an agent’s limited cognitive ability as having a finite memory state space for any history of reports, which is a topic 
for further research (see for instance Hellman and Cover (1970), Piccione and Rubinstein (1997) and Wilson (2014)).

Appendix A. An extension and proofs

A.1. An extended learning rule with repeat agents

In the cognitively-constrained learning rule described in Section 2.1, agents only form (non-degenerate) estimates involv-
ing distinct agents. Recall that agent i forms all the estimates involving up to ci agents using a Bayes-like formula, that 
is, b

ii1...ik−1
t with k ≤ ci . She then uses two types of degenerate estimates. The first type is used because she cannot form 

estimates involving more than ci agents due to her cognitive ability. That is, agent i sets b
ii1 i2...ici
t = b

ii2...ici
t . The second type 

involves a repeat agent as the last agent, and agent i sets bii1...ik−1h
t = b

ii1...ik−1
t for any h ∈ {i, i1, . . . , ik−1}.
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Fig. A1. High school friendship network in Coleman (1961).

The first type of degenerate estimate is due to her cognitive constraint. One may wonder why we include the second 
type of degenerate estimate and whether it affects agents’ learning outcomes. We now present an extended learning rule 
allowing for estimates of any sequence of agents, including repeat agents. We will show that as long as ci ≥ ĉi , agent i’s 
learning outcomes using this extended learning rule are the same as those using the cognitively-constrained learning rule 
in Section 2.1 involving only distinct agents. In this case, our cognitively-constrained learning rule is without loss. If ci < ĉi
instead, Proposition 4 shows that the first type of degenerate estimate can lead to additional learning errors, which remains 
true in this extended learning rule.

Formally, suppose there are multiple possible states S = {s1, . . . , sn}, and let β i
t = (

β i
t (s1), . . . , β

i
t (sN)

)
be agent i’s esti-

mate under this extended learning rule. Similar to the agent’s estimate in the text, it is a vector of the log-likelihood ratios 
of the state probabilities: β i

t (sn) = log pi
t(sn) − log pi

t(sN) for all sn .33 Let a sequence of agents be fully-connected if it contains 
at least two distinct agents and every pair of distinct agents is connected. Agent i’s multi-agent estimates β i j

t , . . . , β i j...l
t for 

each fully-connected sequence (i j . . . l) are similarly defined. As in formula (3), agent i extracts new information from her 
neighbors using Bayes-like formulas. For example, agent i extracts the following from neighbor j,

αi j
t−1 = β

j
t−1 − β

i j
t−1.

Moreover, let the length of a sequence of agents (i j . . . l) be the total number of agents, including repeat agents, in the 
sequence. Let distinct(i j . . . l) ⊆ gi be the set of all the distinct agents in this sequence.

33 We abuse notations slightly by continue to use p for beliefs and α for extracted new signals in this extended learning rule. They simplify exposition 
and should be clear in context.
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The learning rule for ci = 0, 1 is the same as that in Section 2.1. If ci ≥ 2, the extended learning rule is as follows.

Initial values. At t = 0, agent i receives signal xi
0. At t = 1, agent i learns as in Section 2.1. In addition, all her estimates 

involving two or more agents are β i j...l
1 = 0.

For all t ≥ 2. If k ≤ ci , agent i forms all her period-t estimates β i
t and k-agent estimates β ii1...ik−1

t involving k distinct agents 
in the same way using formulas (1), (2), (3) and (4). Moreover, for any sequence of fully-connected agents (i j . . . l) with a 
length up to ci , she learns in the following two steps similar to those in Section 2.1.

Signal extraction rule-extended: she extracts new information similar to formula (3): for each h ∈ gij...l ,

αi j...lh
t−1 = βh

t−1 − β
i j...lh
t−1 . (9)

Updating rule-extended: she incorporates the information from above similar to (4):

β
i j...l
t = β

i j...l
t−1 +

∑
h∈gi j...l

αi j...lh
t−1 . (10)

Type 1A degenerate estimate: binding cognitive constraint. In any sequence (i j . . . lh) of (ci + 1) fully-connected agents, 
agent i sets her (ci + 1)-agent estimate equal to her ci -agent estimate as follows. First, if there is a repeat agent in the 
sequence, then agent i sets β i j...lh

t to be her ci -agent estimate of the sequence with the last repeat agent removed. Other-
wise, agent i uses the same degenerate estimate as in equation (5), that is, removing the second agent (agent j) from the 
sequence:

β
i j...lh
t = β i...lh

t . (11)

Similarly, this can be interpreted as agent i behaves as if she and agent j have the same estimate about what the other 
agents in the sequence believe. Agent i does not form estimates involving (ci + 2) or more agents. ‖

Because this extended learning rule allows for repeat agents explicitly, agent i only needs to form degenerate estimates 
if her cognitive constraint is binding. We now show that neither the repeat agents nor the order of agents in the sequence 
matters in agent i’s learning outcomes as long as her cognitive ability is above her cutoff. To change the order of agents, let 
σ(·) be the permutation operator such that {iσ(1), . . . , iσ(k−1)} is a permutation of agents {i1, . . . , ik−1}. Then we have:

Proposition A1. Suppose that ci ≥ ĉi . Then for all t, XT and c−i ,

1. repeat agents do not matter: for any sequence of fully-connected agents (i j . . . l) with a length up to ci , if distinct(i j . . . l) =
{i, i1, . . . , ik−1}, then β i j...l

t = β
ii1...ik−1
t ;

2. order of agents does not matter: for any clique {i, i1, . . . , ik−1} with k ≥ ĉi and any permutation σ(·) of these agents in the clique, 
let k′ = min(k, ci), then

β
ii1...iĉi−1

t = β
iiσ (1)...iσ (ĉi−1)

t = β
iiσ (1)...iσ (ĉi )

t = . . . = β
iiσ (1)...iσ (k′−1)

t .

Part 1 of Proposition A1 shows that repeat agents do not affect agent i’s estimates as long as her cognitive ability 
is above the cutoff level. To be concrete, recall agent 2 in Fig. 3 with ĉ2 = 2, and the clique {2, 3, 4, 5, 6} she belongs 
to. Let her cognitive ability be c2 = 5. Then, part 1 implies that for instance, β23432

t = β234
t . This result motivates us to 

remove the repeat agents from the learning rule in the text because it is simpler. Part 2 of Proposition A1 shows that 
forming estimates involving more than ĉi agents does not change agent i’s learning outcomes because they are identical 
to her corresponding ĉi -agent estimates. For example, agent 2 above has β23

t = β24
t = β256

t = β2654
t = β23456

t . Intuitively, 
each subset of gi involving more than ĉi agents is fully connected, and thus her ĉi -agent estimates already capture all the 
information in this subset. Together, this result shows that agent i needs to form only up to her ĉi -agent estimates involving 
distinct agents if ci ≥ ĉi .

The proposition also shows that the order of agents in estimates involving ĉi or more agents does not matter. Thus 
as long as ci ≥ ĉi , agent i’s learning outcomes are unaffected by how she sets the first type of degenerate estimates, that 
is, which agent to remove. On the other hand, if ci < ĉi , the binding cognitive constraint will lead agent i to make more 
learning errors because she has to remove one agent from her (ci + 1)-agent estimates. Regardless of which agent she 
removes, this affects her degenerate estimates because each subset of agents may have access to reports that differ from 
the reports observed by all the (ci + 1) agents. Since the qualitative nature of the learning error is similar, we remove the 
second agent (agent i1) in the learning rule in the Section 2.1.

Before the proof, we highlight an immediate corollary of this proposition.

Corollary A1. Suppose that ci ≥ ĉi . Then for all t, XT and c−i , agent i’s estimates are the same under both learning rules: βi
t = bi

t .
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By part 1 and 2 of Proposition A1, neither type of degenerate estimate affects i’s learning outcomes as long as ci ≥ ĉi . 
Then, her multi-agent estimates involving only distinct agents are the same under either learning rule: β ii1...ik−1

t = b
ii1...ik−1
t

for k ≤ ci . Her estimates are then iteratively derived from these multi-agent estimates. Therefore, her estimates under these 
two learning rules are the same when ci ≥ ĉi .

Proof of Proposition A1. First, consider any sequence of agents (i j . . . l) with a length smaller or equal to ci . The shared local 
network of (i j . . . l) is equal to (gii1...ik−1 , Gii1...ik−1 ) because they have the same distinct agents. Second, by definition, the 
shared local networks of all cliques of ĉi agents or above are fully connected. Within agent i’s local network, we have in each 
clique of k agents (ĉi ≤ k), gii1...îci−1 = giiσ(1)...iσ(ĉi−1)

= giiσ(1)...iσ(ĉi )
= giiσ(1)...iσ(k−1)

. We prove both parts of this proposition by 
induction on time t .

Clearly, the induction hypothesis is true at t = 1. By the assumption of a symmetric prior, all agent i’s estimates involving 
two or more agents are 0. Next, suppose both parts of the induction hypothesis hold at period t . Then at t + 1, for some 
agent h ∈ gii1...ik−1 , agent i believes that agent j believes . . . the signal agent l extracted from agent h is:

αi j...lh
t = βh

t − β
i j...lh
t .

Similarly, agent i believes that agent i1 believes . . . that the signal agent ik−1 extracted from agent h is:

α
ii1...ik−1h
t = βh

t − β
ii1...ik−1h
t .

We now prove that β i j...lh
t = β

ii1...ik−1h
t , and thus the two extracted signals are identical.

There are two cases. First, if the length of (i j . . . lh) is smaller or equal to ci , then β i j...lh
t = β

ii1...ik−1h
t by our induction 

hypothesis since both sequences contain the same distinct agents. If the length of the sequence (i j . . . lh) is equal to ci + 1, 
then agent i sets the (ci + 1)-agent estimates equal to her ci -agent estimates as in the learning rule. In particular, if there 
is a repeat agent in the sequence (i j . . . lh), then agent i sets β i j...lh

t+1 to be her ci -agent estimates of the sequence with the 
last repeat agent removed. These ci -agent estimates are equal to β ii1...ik−1h

t , again by our induction hypothesis since both 
sequences contain the same distinct agents. Otherwise, all ci + 1 agents in the sequence (i j . . . lh) must be distinct, that is 
distinct(i j . . . lh) = {i, i1, . . . , ik−1, h}. Then to set her degenerate estimates, agent i uses her corresponding ci -agent estimates 
by removing the second agent in the sequence. We claim that β i...lh

t = β
i...ik−1h
t . To prove this claim, note that if j = i1, then 

the remaining sequences contain the same set of distinct agents and thus are the same by the induction hypothesis. If j �= i1, 
we can first permute the sequence (ii1 . . . ik−1h) to match the sequence (i j . . . lh), so that (iiσ(1) . . . iσ(k−1)h) equals (i j . . . lh). 
Moreover, (i . . . iσ(k−1)h) equals (i . . . lh) when iσ(1) = j is removed. Since there are ci ≥ ĉi agents in these two sequences 
after j is removed, then β i...lh

t = β
i...iσ(k−1)h
t = β

i...ik−1h
t by the second part of the induction hypothesis. From expression (10), 

we have

β
i j...l
t+1 = β

i j...l
t +

∑
h∈gi j...l

αi j...lh
t = β

ii1...ik−1
t +

∑
h∈gii1 ...ik−1

α
ii1...ik−1h
t = β

ii1...ik−1
t+1 . (12)

This proves the first part of the proposition.
For the second part, consider any clique of gi , {i, i1, . . . , ik−1}, with k ≥ ĉi agents. For any h ∈ gii1...iĉi−1

,

α
ii1...iĉi−1h

t = βh
t − β

ii1...iĉi−1h

t ,

which we claim is equal to

α
iiσ (1)...iσ (ĉi−1)h

t = βh
t − β

iiσ (1)...iσ (ĉi−1)h

t .

To prove the claim, we show that β
ii1...iĉi−1h

t = β
iiσ(1)...iσ(ĉi−1)h

t . Again consider three cases. First, if ci > ĉi and h ∈
{i, i1, . . . , iĉi−1} ∪ {i, iσ(1), . . . , iσ(ĉi−1)}, then by the first part of the induction hypotheses, the repeat agent h does not 
matter. Without h, these estimates are equal by the second part of the induction hypotheses. Second, if ci > ĉi and 
h /∈ {i, i1, . . . , iĉi−1} ∪ {i, iσ(1), . . . , iσ(ĉi−1)}, the estimates are the same by the second part of the induction hypothesis. Third, 
if ci = ĉi , then both estimates above involve ci + 1 agents and thus agent i uses the degenerate estimates, that is, the 
corresponding ci -agent estimates defined in the learning rule. Using both parts of the induction hypothesis, we can show 
that these two degenerate estimates are equal regardless of whether agent h is a repeat agent or not. The counterpart of 
equation (12) shows that β

ii1...iĉi−1

t+1 = β
iiσ(1)...iσ(ĉi−1)

t+1 .
In the same way, we can show that estimates with sequences of agents longer than ĉi but smaller than ci are the same 

as the ĉi -agent estimates, β
iiβ(1)...iσ(ĉi−1) = β

iiσ(1)...iσ(ĉi ) = . . . = β
iiσ(1)...iσ(k′−1) . �
t+1 t+1 t+1
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A.2. Proofs

We present the proofs in order of appearance, but we use Proposition 4 to prove Proposition 1. Moreover, we prove all 
propositions for a more general environment with N a priori equally likely states: {s1, . . . , sN}. Thus, the estimates below 
are all vectors of log-likelihood ratios:

bi
t = (bi

t(s1), . . . ,bi
t(sN)), where bi

t(sn) = log pi
t(sn) − log pi

t(sN ).

Proof of Proposition 1. For sufficiency, we first show that in a social quilt, the cutoff cognitive ability is ĉi = 2 for all 
agents. There are a few cases. First, for any neighbor j ∈ Ni such that Ni ∩ N j = ∅, gij = {i, j} must be a clique. Second, 
for any neighbor j ∈ Ni such that Ni ∩ N j = {k}, gij = {i, j, k} also must be a clique. Third, each pair of agent i and j’s 
common neighbors k and l are connected. Otherwise, there exists a circle (ikjl) such that two agents are not connected, 
which violates the definition of a social quilt. Therefore ĉi = 2. By Proposition 1 of Li and Tan (2020), agents learn correctly 
in a social quilt when they can form estimates over any sequence of neighbors in their local networks, that is, when they 
have arbitrarily high cognitive abilities. Then, our Proposition 4 shows that the agents’ learning outcomes are the same if 
ci ≥ ĉi for all agents. Their result and our Proposition 4 together imply that all agents learn correctly if ci ≥ 2 for all agents.

For necessity, suppose that at least one agent, say agent i, has ci = 1. Let agent i receive the only informative signal xi
0. 

She reports it at t = 1. Since the network is path-connected, she has at least one neighbor, agent j. At t = 2, agent j learns 
the signal: b j

2 = bi
1. Since ci = 1, agent i treats agent j’s change in report as a new signal and incorporates it at t = 3, and 

she does the same for all her neighbors: bi
3 = (1 + |Ni |)bi

1. The change in agent i’s report in turn is treated as a new signal 
by each neighbor at t = 4 regardless of that neighbor’s cognitive ability. In this way, in each even period from t = 2 onward, 
each neighbor of i extracts at least one more copy of the initial signal, and passes it on to their neighbors. In addition, more 
copies of the initial signal are extracted if more agents have a cognitive ability of 1. As t → ∞, everyone believes in the 
state(s) most likely given the initial signal with probability 1. But the Bayesian posterior given the signal is strictly between 
0 and 1. �
Proof of Proposition 2. Recall that A is the adjacency matrix of the network. Moreover, bt is the vector of the agents’ 
estimates at period t , with its i-th row being agent i’s estimates bi

t . From the text, (Ak)il , the il-th entry of matrix Ak , 
measures how many walks of length k the initial signal can travel from i to l.

We now show by induction that the number of copies of xi
0 agent l learns at time t is the il-th entry of the matrix ∑t−1

k=0 Ak . This is clearly true when t = 1, 2. At t = 1, only agent i has learned the signal: (A0)ii = 1, (A0)ih = 0 for all h �= i. 
At t = 2, each neighbor of agent i extracts one copy of xi

0. Now suppose the claim holds at time t ≥ 2. At the beginning of 
time t + 1, the total number of copies agent l newly extracts from all her neighbors in period t + 1 is the sum of copies of 
signals l’s neighbors have learned in time t: 

∑
h∈Nl

(At−1)ih , which is exactly (At)il .
Because agents learn from any change in a neighbor’s report, there is a directed circle of length 2 among any pair of 

agents. If there is at least one circle of an odd length, then the common divisor of these circles is 1, and thus the adjacency 
matrix A is aperiodic. It is also irreducible because the network is connected by assumption. By the Perron-Frobenius 
theorem, A has both a positive right and a positive left eigenvector, v and w, corresponding to λ > 1, the largest eigenvalue 
of A. We can normalize it so that wT v = 1, where wT is the transpose of w. Moreover, limk→∞ Ak/λk = vwT .

Recall that bt =
(∑t−1

k=0 Ak
)

b1. First, observe that as k → ∞, Akb1 = λk(vwT )b1. That is, the new information agent i

learns in period t = k is a weighted average of agents’ initial estimates, where the weight agent i gives to j’s signal is 
λk vi w j . In the case of binary states, as k → ∞, if wT b1 > 0, all agents believe the new information at t = k suggests state 
s1 is more likely than s2, and vice versa. Next, agents’ estimates in period t is the sum of all the information they have 
learned in the past. Take M sufficiently large that AM is sufficiently close to A∞ . In period t > M , bt is sufficiently close to (∑M

k=0 Ak + ∑t
k=M+1 λk(vwT )

)
b1. The second term dominates the first term as t → ∞, and thus if wT b1 > (<)0, all agents 

believe in s1 (s2). Their beliefs are indeterminate if wT b1 = 0, which is ruled out by assumption. �
Proof of Proposition 3. We show by construction that agents’ learning outcomes are wrong with a positive probability even 
with an infinite number of informative signals. Let the true state be s = s∗ . There exists a possible signal xi,m belonging 
to some agent i such that for some other state s′ �= s∗ , s′ ∈ arg maxsn Pr(sn | xi,m). We focus on the case that s′ is the 
unique mostly likely state given xi,m (the case of multiple most likely states is analogous). Denote signal xi,m as x′ . Clearly, 
Pr(s′ | x′) > Pr(s∗ | x′). Consider the following sequence of finite signals: first, nature sends x′ to agent i at t = 0 and t = 1. 
Next, no informative signals reach any agents for the next D +τ periods, that is, from t = 2 to t = t∗ ≡ 2 + D +τ . This interval 
first allows both signals to travel to every other agent, which takes D periods, and then it allows agents to repeatedly learn 
copies of these signals in the next τ periods. Two steps to determine τ . Recall that the set of all possible signals that agents 
can receive from nature is X = ∪i X i . In the first step, we identify the integer k′ such that

Pr(s′ | k′ copies of x′)
∗ ′ ′ ≥ Pr(s∗ | x∗)

′ ∗ , where x∗ ≡ arg max
Pr(s∗ | x)

′ . (13)

Pr(s | k copies of x ) Pr(s | x ) x∈X Pr(s | x)
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To avoid carrying this likelihood ratio for the rest of the proof, for any signal x (or set of signals), we denote it as the 
following:

b(s′, s∗ | x) = log Pr(s′ | x) − log Pr(s∗ | x).

In the second step, we require that in each period from period t = D + τ , the repetition must be strong enough such 
that every agent l extracts at least 2k′ copies of x′ (excluding other later exogenous signals). That is, for all t ≥ D + τ , 
(At−1 + At−2)il ≥ 2k′ .

Next, we claim that regardless of the signals agents receive from nature after period t∗, all agents believe s′ is increasingly 
more likely than s∗ over time. That is, limt→∞ bh

t (s′) − bh
t (s∗) = ∞ for all h ∈ g . This is because starting from period 

t = t∗ + 1, agent l extracts at least 4k′ copies of x′ from any neighbor (2k′ copies are from herself to the neighbor and back 
to her, and the other 2k′ copies are from a neighbor of the neighbor), plus a signal from nature. The new information to 
him is(

bl
t+1(s′) − bl

t+1(s∗)
)

−
(

bl
t(s′) − bl

t(s∗)
)

≥ b
(
s′, s∗ | 3k′ copies of x′) . (14)

That is, the signal l extracts should favor s′ over s∗ at least as much as 3k′ copies of x′ since period t∗ . This shows that 
the initial condition that each agent learns at least 2k′ copies of x′ persists regardless of the exogenous signals reaching the 
network after period t∗ . Therefore the process described above lasts: in each period every agent believes more strongly that 
state s′ is more likely than s∗ , and thus all agents believe s∗ is not the true state with probability arbitrarily close to 1 as 
t → ∞.

Lastly, for any state s̃ �= s′ , we can repeat the same process above replacing s∗ with s̃. As a result, we can show that all 
agents believe in s′ with probability arbitrarily close to 1 as t → ∞. Because both the initial sequence of signal x′ and the 
number of periods up to t∗ are finite, and we do not restrict the signals starting from period t∗ + 1, agents believe in the 
wrong state with a positive probability. �
Proof of Proposition 4. We prove this proposition via the following two lemmas. First, as long as ci ≥ ĉi , agent i’s ĉi -agent 
estimates b

ii1...iĉi−1,ci

t are independent of ci .

Lemma A1. When agent i’s cognitive ability is above her cutoff, for each clique of agents, her ĉi-agent estimate remains the same 

regardless of her ci . That is, b
ii1...iĉi−1,ci

t = b
ii1...iĉi−1,ĉi

t for all cliques {i, i1, . . . , iĉi−1}, ci ≥ ĉi , c−i , t, and XT .

Proof of Lemma A1. Because the multi-agent estimates are formed iteratively, in order to show b
ii1...iĉi−1,ci

t = b
ii1...iĉi−1,ĉi

t , 
we need to show her (ĉi + 1)-agent estimates are the same. Recall that when her cognitive ability is equal to ĉi , she uses 

the degenerate estimate b
ii1...iĉi

,ĉi

t = b
ii2...iĉi

,ĉi

t by equation (5). When her cognitive ability is above the cutoff (ci > ĉi ), then 

b
ii1...iĉi

,ci

t is formed by the Bayes-like formula (4). Despite this difference, we claim that if ci > ĉi ,

b
ii1...iĉi

,ci

t = b
ii2...iĉi

,ci

t . (15)

This is true by the second part of Proposition A1 above. In other words, the (ĉi + 1)-agent estimate formed by formula (4)
is the same as that set degenerately by equation (5). Thus, agent i’s ĉi -agent estimate remains the same for all ci ≥ ĉi . �

Since the cognitively constrained learning rule is iterative, by Lemma A1, formula (1) and (3), agent i learns the same 
new information from her neighbors for all ci ≥ ĉi . Then by (2) and (4), her estimates are the same for all ci ≥ ĉi . This 
proves part 1 of Proposition 4.

Second, we show that if ci < ĉi , agent i’s ci -agent estimate under ci could differ from that under cognitive ability ĉi .

Lemma A2. Suppose that c−i ≥ ĉ−i . For any ci < ĉi , there exist some t, XT , and clique {i, i1, . . . , ici }, such that agent i’s (ci +1)-agent 

(possibly degenerate) estimate is affected by her cognitive ability: b
ii1...ici ,ci

t �= b
ii1...ici ,ĉi

t .

Proof of Lemma A2. First, suppose ci ≥ 2 and ci < ĉi . By definition, there exists some (ĉi − 1)-agent clique within gi , say 
{i, i1, . . . , iĉi−2}, whose shared local network is not a clique itself. Then there exist at least two agents h1 and h2 who are 
both connected to all the agents in {i, i1, . . . , iĉi−2}, but h1 and h2 are not connected themselves. Let agent h1 receive the 
only informative signal, which is his initial signal. Because agent i cannot form (ci + 1)-agent estimates, she uses degenerate 
estimate b

ih2 i1...ici−1,ci

t = b
ii1...ici−1,ci

t by equation (5). Notice that the latter estimate uses reports observed by all the agents 
in {i, i1, . . . , ici−1}, including reports from both h1 and h2. Thus, agent i expects each of them to believe that other agents 
should believe there is only one informative signal, the one from agent h1. Because of the degenerate estimate, she also 
expects h2 to believe so: b

ih2 i1...ici−1,ci = bh1 . However, this expectation of agent i is incorrect because agent h2 does not 
3 1
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know agent h1 and he only observes that each agent in {i, i1, . . . , iĉi−2} reports a signal, a total of (ĉi − 1) signals. When 
agent i is sufficiently sophisticated with a cognitive ability of ĉi or above, agent i would be able to set the correct expectation 
about agent h2 according to Lemma A1. That is, if her cognitive ability is at the cutoff, agent i believes b

ih2 i1...ici−1,ĉi

3 = ηbh1
1

for some integer η ≥ (ĉi − 1). Thus, b
ih2 i1...ici−1,ci

3 �= b
ih2 i1...ici−1,ĉi

3 . Second, if ci = 1, then by definition, agent i’s 2-agent 
estimate is always 0. It differs from her 2-agent estimate whenever ci ≥ 2 and there is an informative signal. �

Lemma A2 shows that if ci < ĉi , then her (ci + 1)-agent estimate differs from that she would have formed when her 
cognitive ability is above the cutoff level. If this difference occurs at period t , then her ci -agent estimates in period t + 1
differ under ci and ĉi by formula (3) and (4). This continues iteratively until in period t + ci , her estimates differ under ci
and ĉi . This proves part 2 of Proposition 4. �
Derivation of estimates in Example 3. Recall from the text that each agent’s estimate in each period depends only on how 
many copies of x1 she has extracted so far. For instance, bi

t (s1) = ηi
tϕ , bij

t (s1) = η
i j
t ϕ and similarly for their multi-agent 

estimates. Then, we claim that when ci = 2 for all agents, their estimates evolve by the following expressions.

η1
t = 2η2

t−1 − η1
t−1, and η2

t = 2η1
t−1 − η2

t−2. (16)

To begin with, we can rewrite the formula (2) such that:

ηi
t = ηi

t−1 +
∑
j∈Ni

(η
j
t−1 − η

i j
t−1).

Similarly, rewrite expression (4) for 2-agent estimates, and we have

η
i j
t = η

i j
t−1 +

∑
h∈gi j

(ηh
t−1 − η

i jh
t−1).

Recall agent 1’s cutoff is ĉ1 = 2, by Lemma A1, η121
t = η12

t and η124
t = η14

t . Since η12
t = η14

t and η2
t = η4

t , we have

η1
t = η1

t−1 + 2η2
t−1 − 2η12

t−1.

Substitute into how agent 1 extracts signals, it is easy to see that η12
t−1 = η1

t−1. Intuitively, agent 1’s cutoff level of cognitive 
ability is 2 and he expects agent 2 and 4 to agree with him in every period because he believes (incorrectly) that they 
observe the same reports. The expression for agent 1’s estimates in (16) follows immediately.

For agent 2, note that η214
t−1 = η24

t−1 by her degenerate 3-agent estimate, and η24
t−1 = η4

t−1 because 2 and 4 are symmetric 
and never learn from each other. Agent 2 also knows that agent 1 does not know 3. Therefore

η21
t = η1

t−1 + (η2
t−1 − η21

t−1).

Put it together with

η2
t = η2

t−1 + 2(η1
t−1 − η21

t−1)

and solve, we have:

2η21
t = 2η1

t−1 − η2
t−1 + η2

t .

Substitute into agent 2’s estimate, we have the expression in (16) for agent 2. �
Proof of Proposition 5. Recall that φi

mn is the probability agent i observes signal xi,m when the true state is sn , and φi
∅ is 

the probability she observes the uninformative signal. Then, decisive evidence requires that each φi
mn ∈ {0, 1 − φi

∅}. That is, 
the signal xi,m can either completely rule out state sn (when φi

mn = 0) or it is the only informative signal when sn is the 
true state (but it can be positive for multiple states). For simplicity, we consider initial signals only. Let s1 be the true state, 
and let P i(sn) = {sn′ : φi

mn = φi
mn′ = 1 − φi

∅}, which is the subset of states whose signal is the same as state sn ’s. Because 
agents believe some states are true with zero probability in this partitional model, let log 0 = −∞. Since agents can use any 
state they believe to be the true state with a positive probability to normalize, we let all agents normalize their estimates 
by reporting the log-likelihood ratios over s1. For simplicity, we focus on the case that all the initial signals are informative. 
If agent i’s initial signal is uninformative, we can replace P i(s1) with the trivial partition S , the entire state space, and the 
following proof goes through.

Note that at t = 1, for agent i, bi
1(sn) = 0 if sn ∈ P i(s1), and −∞ otherwise. Also, by assumption, bi j

1 = 0 for all j. At 
t = 2, by formula (1) of the learning rule, αi j

1 = b j
1 − bi j

1 . Clearly, for all sn ∈ P j(s1), αi j
1 (sn) = 0, and −∞ otherwise. Thus, 

what agent i learns from agent j is the same as j’s period-1 estimate: αi j = β
j . Let the intersection of the partitional 
1 1
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elements containing the true state s1 of all agents in gi be P gi
1 (s1) ≡ ∩{Ph(s1)}h∈gi . Then by formula (2), for all cognitive 

ability ci ≥ 1, agent i’s estimates are

bi
2(sn) = bi

1(sn) +
∑
h∈gi

αih
1 (sn) =

{
0 if sn ∈ P gi

1 (s1);
−∞ otherwise.

The multi-agent estimates at t ≥ 2 differ by agents’ cognitive abilities, so we consider the two separate cases: ci ≥
2 and ci = 1. For all ci ≥ 2, let P gij

1 (s1) ≡ ∩{Ph(s1)}h∈gij . By expression (4), agent i’s estimate of agent j’s estimate is 
bij

2 (sn) = 0 for sn ∈P gij
1 (s1), and −∞ otherwise. At t = 3, when β j

2 �= β
i j
2 , agent i extracts a new signal from agent j. We let 

α
i j
2 (sn) = 0 if bij

2 (sn) = b j
2(sn) = −∞ because agent i learns nothing about sn from agent j. Note from the above definitions 

that P gij
1 (s1) ⊇ P g j

1 (s1). Thus if sn /∈ P gij
1 (s1) then sn /∈ P g j

1 (s1). It then follows that if bij
2 (sn) = −∞, then b j

2(sn) = −∞. 
Then agent i only extracts new information if b j

2(sn) = −∞ but bij
2 (sn) = 0 for some sn . This implies that αi j

2 (sn) = −∞ if 
sn ∈P gij

1 (s1) \P g j
1 (s1), and αi j

2 (sn) = 0 otherwise. If ci = 1 instead, bi j
2 = b j

1, and then αi j
2 (sn) = −∞ if sn ∈P j(s1) \P g j

1 (s1), 
and αi j

2 (sn) = 0 otherwise. Let P gi
2 (s1) be the set of states agent i thinks are still possible given her extracted signals at 

t = 3. Regardless of the cognitive abilities ci ≥ 1, the set P gi
2 (s1) remains the same and P gi

2 (s1) ⊆P gi
1 (s1). Formally,

P gi
2 (s1) ≡ ∩{P gh

1 (s1)}h∈gi = ∩{P l(s1)}l∈g2
i
,

in which gd
i = {l : d(il) ≤ d} where d(il) is the distance—the length of the shortest path—between agent i and l. Also let D be 

the diameter, the longest distance between any two agents. Intuitively, P gi
2 (s1) is the intersection of the partitional elements 

containing s1 of all i’s neighbors and their neighbors. Therefore for all ci ≥ 1, bi
3(sn) = 0 if sn ∈P gi

2 (s1), and −∞ otherwise.
Iteratively, we can show that for t ≥ 2, bi

t(sn) = 0 if sn ∈ P gi
t−1(s1) ≡ ∩{Ph(s1)}h∈gt−1

i
, and −∞ otherwise. By at most 

period t = D + 1, all the initial signals have reached agent i through her neighbors according to the travel path of the 
signals. Let P g(s1) ≡ ∩{P l(s1)}l∈g be the intersection of all agents’ partitional elements containing state s1. Then agent i’s 
estimate is simply 0 if sn ∈ P g(s1), and −∞ otherwise. This holds for all networks and all cognitive levels, and thus the 
agents’ learning outcomes are correct. �
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