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Abstract 
 

Statistical agencies increasingly are able to collect detailed price and quantity information 

from retailers on sales of consumer products. Thus elementary price indexes (which are 

indexes constructed at the first stage of aggregation for closely related products) can now 

be constructed using this price and quantity information, whereas previously, statistical 

agencies had to construct elementary indexes using just retail outlet collected information 

on prices alone. Thus superlative indexes can now be constructed at the elementary level, 

which in theory, should lead to more accurate Consumer Price Indexes. However, 

retailers frequently sell products at heavily discounted prices, which lead to large 

increases in purchases of these products. This volatility in prices and quantities will 

generally lead to a chain drift problem; i.e., when prices return to their “normal” levels, 

quantities purchased are frequently below their “normal” levels and this leads to a 

downward drift in a superlative price index. The paper addresses this problem and looks 

at the likely bias in various index number formulae that are commonly used. The bias 

estimates are illustrated using some scanner data on the sales of frozen juice products that 

are available online.   
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1. Introduction 
 

Statistical agencies increasingly are approaching retail chains and asking them to provide 

information on weekly values and quantities sold of scanner coded products and in many 

countries, this information is being provided to the relevant agency. This detailed weekly 

information on the value and quantity of sales by product means that it is possible to 

construct index numbers in real time that require product information on prices and 

quantities, such as the Fisher (1922) ideal index. The Consumer Price Index Manual
2
 that 

was published in 2004 recommended that chained superlative index numbers,
3
 such as 

the Fisher index, be used in this situation when detailed price and quantity information is 

available in real time. However, experience with scanner data has shown that the use of 

chained superlative indexes leads to chain drift; i.e., a growing divergence between the 

chained index and its counterpart fixed base index.
4
  

 

There are at least three possible real time solutions to the chain drift problem: 

 

 Use a fixed base index; 

 Use a multilateral index;
5
  

 Use annual weights for a past year. 

 

There are two problems with the first solution: (i) the results depend asymmetrically on 

the choice of the base period and (ii) with new and disappearing products, the base period 

prices and quantities may lose their representativeness; i.e., over long periods of time, 

matching products becomes very difficult.
6
 A problem with the second solution is that as 

an extra period of data becomes available, the indexes have to be recomputed.
7
 The 

                                                 
2
 See ILO, IMF, OECD, Eurostat, UN and the World Bank (2004). 

3
 See Diewert (1976) on the concept of a superlative index. Basically, a superlative price index allows for 

an arbitrary pattern of substitution effects between products. 
4
 Fisher (1922; 293) realized that the chained Carli, Laspeyres and Young indexes were subject to upward 

chain drift but for his empirical example, there was no evidence of chain drift for the Fisher formula. 

However, Persons (1921) came up with an actual empirical example where the Fisher index exhibited 

substantial downward chain drift. Frisch (1936; 9) seems to have been the first to use the term “chain drift”. 

Both Frisch (1936; 8-9) and Persons (1928; 100-105) discussed and analyzed the chain drift problem.   
5
 The use of multilateral indexes in the time series context dates back to Persons (1921) and Fisher (1922; 

297-308), Gini (1931) and Balk (1980) (1981). Fisher (1922; 305) suggested taking the arithmetic average 

of the Fisher “star” indexes  whereas Gini suggested taking the geometric mean of the star indexes.  
6
 Persons (1928; 99-100) has an excellent discussion on the difficulties of matching products over time. 

7 This is not a major problem. A solution to this problem is to use a rolling window of observations and use 

the results of the current window to update the index to the current period. This methodology was 

suggested by Ivancic, Diewert and Fox (2009) (2011) and is being used by the Australian Bureau of 

Statistics (2016). Ivancic, Diewert and Fox (2011) suggested that the movement of the indexes for the last 

two periods in the new window be linked to the last index value generated by the previous window. 

However Krsinich (2016) in a slightly different context suggested that the movement of the indexes 

generated by the new window over the entire new window period be linked to the previous window index 

value for the second period in the previous window. Krsinich called this a window splice as opposed to the 

IDF movement splice. De Haan (2015; 27) suggested that perhaps the linking period should be in the 

middle of the old window which the Australian Bureau of Statistics (2016; 12) terms a half splice. Ivancic, 

Diewert and Fox (2010) also suggested that the average of all links for the last period in the new window to 
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problem with the third possible solution is that the use of annual weights will inevitably 

result in some substitution bias. In any case, in this study, we will look at many of the 

commonly used fixed base indexes as well as six multilateral indexes and two indexes 

that use annual weights. We will develop approximate and exact relationships between 

these indexes and indicate likely differences (or “biases”) between the indexes. 

 

Statistical agencies are also using web-scraping to collect large number of prices as a 

substitute for selective sampling of prices at the first stage of aggregation. Thus it is of 

interest to look at elementary indexes that depend only on prices, such as the Carli (1804), 

Dutot (1838) and Jevons (1865) indexes, and compare these indexes to superlative 

indexes; i.e., under what conditions will these indexes adequately approximate a 

superlative index.
8
 

 

The two superlative indexes that we will consider in this study are the Fisher (1922) and 

the Törnqvist
9
 indexes. The reasons for singling out these two indexes as preferred 

bilateral index number formulae are as follows: (i) both indexes can be given a strong 

justification from the viewpoint of the economic approach to index number theory;
10

 (ii) 

the Fisher index emerges as probably being the “best” index from the viewpoint of the 

axiomatic or test approach to index number theory;
11

 (iii) the Törnqvist index has a strong 

justification from the viewpoint of the stochastic approach to index number theory.
12

 

Thus there are strong cases for the use of these two indexes when making comparisons of 

prices between two periods when detailed price and quantity data are available.  

 

When comparing two indexes, two methods for making the comparisons will be used: (i) 

use second order Taylor series approximations to the index differences; (ii) the difference 

between two indexes can frequently be written as a covariance and it is possible in many 

cases to determine the likely sign of the covariance.
13

   

 

When looking a scanner data from a retail outlet (or price and quantity data from a firm 

that uses dynamic pricing to price its products or services
14

), a fact emerges: if a product 

or a service is offered at a highly discounted price (i.e., it goes on sale), then the quantity 

sold of the product can increase by a very large amount. This empirical observation will 

allow us to make reasonable guesses about the signs of various covariances that express 

the difference between two indexes. If we are aggregating products that are close 

                                                                                                                                                 
the observations in the old window could be used as the linking factor. Diewert and Fox (2017) look at the 

alternative methods for linking.   
8
 We will also look at the properties of the CES price index with equal weights. 

9
 The usual reference is Törnqvist (1936) but the index formula did not actually appear in this paper. It did 

appear explicitly in Törnqvist and Törnqvist (1937). It was listed as one of Fisher’s (1922) many indexes: 

namely number 123. It was explicitly recommended as one of his top five ideal indexes by Warren Persons 

(1928; 86) so it probably should be called the Persons index.  
10

 The economic approach to index number theory is due to Konüs (1924). See Diewert (1976) for 

justifications for the use of these two indexes from the viewpoint of the economic approach to index 

number theory.  
11

 See Diewert (1992) or Chapter 16 of the Consumer Price Index Manual. 
12

 See Theil (1967; 136-137) or Chapter 16 of the Consumer Price Index Manual.  
13

 This second method for making comparisons can be traced back to Bortkiewicz (1923).  
14

 Airlines and hotels are increasingly using dynamic pricing; i.e., they change prices frequently. 
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substitutes for each other, then a heavily discounted price may not only increase the sales 

of the product but it may also increase the share of the sales in the list of products or 

services that are in scope for the index.
15

 It turns out that the behavior of shares in 

response to discounted prices does make a difference in analyzing the differences 

between various indexes: in the context of highly substitutable products, a heavily 

discounted price will probably increase the market share of the product but if the products 

are weak substitutes (which is typically the case at higher levels of aggregation), then a 

discounted price will typically increase sales of the product but not increase its market 

share. These two cases (strong or weak substitutes) will play an important role in our 

analysis. 

 

Sections 2 and 3 look at relationships between the fixed base and chained Carli, Dutot, 

Jevons and CES elementary indexes that do not use share or quantity information.   

 

Section 4 looks at the relationships between the Laspeyres, Paasche, Geometric 

Laspeyres, Geometric Paasche, Fisher and Törnqvist price indexes. Section 5 investigates 

how close the unweighted Jevons index is to the Geometric Laspeyres, Geometric 

Paasche PGP
t
 and Törnqvist PT

t
 price indexes. 

 

Section 6 develops some relationships between the Törnqvist index and geometric 

indexes that use average annual shares as weights. 

 

Section 7 looks at the differences between fixed base and chained Törnqvist indexes. 

 

Multilateral indexes make an appearance in section 8: the fixed base Törnqvist index is 

compared to the GEKS and GEKS-Törnqvist (or CCDI) multilateral indexes.  

 

Sections 9 and 10 compare Unit Value and Quality Adjusted Unit Value indexes to the 

Fisher index while section 11 compares the Lowe index to the Fisher index.  

 

Sections 12-14 look at various additional multilateral indexes: the Geary Khamis in 

section 12, the Weighted Time Product Dummy index in section 13 and Similarity 

Linked price indexes in section 14.  

 

The Appendix evaluates all of the above indexes for a grocery store scanner data set that 

is publically available. However, the data set had a number of missing prices and 

quantities. Some of these missing prices may be due to lack of sales or shortages of 

inventory. In addition, how should the introduction of new products and the 

disappearance of (possibly) obsolete products be treated in the context of forming a 

consumer price index? Hicks (1940; 140) suggested a general approach to this 

measurement problem in the context of the economic approach to index number theory. 

His approach was to apply normal index number theory but estimate (or guess at) 

hypothetical prices that would induce utility maximizing purchasers of a related group of 

products to demand 0 units of unavailable products. With these virtual (or reservation or 

imputed) prices in hand, one can just apply normal index number theory using the 

                                                 
15

 In the remainder of this study, we will speak of products but the same analysis applies to services. 
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augmented price data and the observed quantity data. In our empirical example in the 

Appendix, we will use the scanner data that was used in Diewert and Feenstra (2017) for 

frozen juice products for a Dominick’s store in Chicago for 3 years. This data set had 20 

observations where qtn = 0. For these 0 quantity observations, Diewert and Feenstra 

estimated positive Hicksian reservation prices for these missing price observations and 

these imputed prices are used in our empirical example in the Appendix. However, it is 

possible to use alternative positive reservation prices that do not rely on econometrics. In 

section 15 below, we will discuss one of these alternative methods for constructing 

reservation prices for observations when sales of a product are zero. We used an inflation 

adjusted carry forward and backward methodology to construct alternative reservation 

prices for the missing prices and compared selected indexes using the new reservation 

prices to the corresponding indexes using the econometrically estimated reservation 

prices. The resulting differences in our “best” index numbers for our example data set are 

listed in section A.6 of the Appendix.  

 

The Appendix lists the Dominick’s data along with the estimated reservation prices. The 

Appendix also has tables and charts of the various index number formulae that are 

discussed in the main text of the study.  
  
Section 16 concludes. 

 

2. Comparing CES Price Levels and Indexes 

 

In this section, we will begin our analysis by considering alternative methods by which 

the prices for N related products could be aggregated into a “representative” or aggregate 

price for the products for a given period.  

 

We introduce some notation that will be used in the rest of the paper. We suppose that we 

have collected price and quantity data from a retail outlet on N closely related products 

for T time periods.
16

 Typically, a time period is a month. Denote the price of product n in 

period t as ptn and the corresponding quantity during period t as qtn for n = 1,...,N and t = 

1,...,T. Usually, ptn will be the period t unit value price for product n in period t; i.e., ptn  

vtn/qtn where vtn is the total value of product n that is sold during period t and qtn is the 

total quantity of product n that is sold during period t. We assume that qtn  0 and ptn > 0 

for all t and n.
17

 The restriction that all products have positive prices associated with them 

is a necessary one for much of our analysis since many popular index numbers are 

constructed using logarithms of prices and the logarithm of a zero price is not well 

defined. However, our analysis does allow for possible 0 quantities and values sold 

during periods in the sample. Denote the period t strictly positive price vectors and 

nonnegative and non zero quantity vectors as p
t
  [pt1,...,ptN] >> 0N and q

t
  [qt1,...,qtN] > 

                                                 
16

 The T periods can be regarded as a window of observations, followed by another window of length T 

which has dropped the first period from the window and added the data of period T+1 to the window. The 

literature on how to link the results of one window to the next window is discussed in Diewert and Fox 

(2017). We will not discuss this linking problem in the present study. 
17

 In the case where qtn = 0, then vtn = 0 as well and hence ptn  vtn/qtn is not well defined in this case. In the 

case where qtn = 0, we will assume that ptn is a positive imputed price. 
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0N respectively for t = 1,...,T where 0N is an N dimensional vector of zeros. The inner 

product of the vectors p
t
 and q

t
 is denoted by p

t
q

t
  n=1

N
 ptnqtn > 0. Define the period t 

sales (or expenditure) share for product n as stn  ptnqtn/p
t
q

t
 for n = 1,...,N and t = 1,...,T. 

The period t sales share vector is defined as s
t
  [st1,...,stN] > 0N for t = 1,...,T. 

 

In most applications, the N products are closely related and they have common units of 

measurement (by weight, or by volume or by “standard” package size). In this context, it 

is useful to define the period t “real” share for product n of total product sales, Stn  

qtn/1Nq
t
 for n = 1,...,N and t = 1,...,T where 1N is an N dimensional vector of ones. 

Denote the period t real share vector as S
t
  [St1,...,StN] for t = 1,...,T. 

 

Define the generic product weighting vector as   [1,...,N]. We assume that  has 

strictly positive components which sum to one; i.e., we assume that  satisfies: 

 

(1) 1N = 1 ;  >> 0N.  

 

Let p  [p1,...,pN] >> 0N be a positive price vector. The corresponding mean of order r of 

the prices p  (with weights  ) or CES price level, mr,(p) is defined as follows:
18

 

 

(2) mr,(p)  [n=1
N
 npn

r
]

1/r
 ; r  0; 

                   n=1
N
 (pn) n     ; r = 0. 

 

It is useful to have a special notation for mr,(p) when r = 1: 

 

(3) p  n=1
N
 npn = p . 

 

Thus p is an  weighted arithmetic mean of the prices p1,p2,...,pN and it can be 

interpreted as a weighted Dutot price level.
19

  

 

From Schlömilch’s (1858) Inequality,
20

 we know that mr,(p)  ms,(p) if r  s and mr,(p) 

 ms,(p) if r  s. However, we do not know how big the gaps are between these price 

levels for different r and s. When r = 0, m0,(p) becomes a weighted geometric mean or a 

weighted Jevons (1865) or Cobb-Douglas price level and it is of interest to know how 

much higher the weighted Dutot price level is than the corresponding weighted Jevons 

price level. Proposition 1 below provides an approximation to the gap between mr,(p) 

and m1,(p) for any r, including r = 0.  

 

                                                 
18

 Hardy, Littlewood and Polya (1934; 12-13) refer to this family of means or averages as elementary 

weighted mean values and study their properties in great detail. The function mr,(p) can also be interpreted 

as a Constant Elasticity of Substitution (CES) unit cost function if r  1. The corresponding utility or 

production function was introduced into the economics literature by Arrow, Chenery, Minhas and Solow 

(1961). For additional material on CES functions, see Feenstra (1994) and Diewert and Feenstra (2017). 
19

 The ordinary Dutot (1738) price level for the period t prices p
t
 is defined as pD

t
  (1/N)n=1

N
 ptn. Thus it is 

equal to m1,(p
t
) where  = (1/N)1N.    

20
 See Hardy, Littlewood and Polya (1934; 26) for a proof of this result. 
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Define the  weighted variance of p/p  [p1/p,...,pN/p] where p is defined by (3) as 

follows:
21

 

 

(4) Var(p/p)  n=1
N
 n[(pn/p)  1]

2
 . 

 

Proposition 1: Let p >> 0N,  >> 0N and 1N = 1. Then mr,(p)/m1,(p) is approximately 

equal to the following expression for any r: 

 

(5) mr,(p)/m1,(p)  1 + (½)(r  1)Var(p/p) 

 

where Var(p/p) is defined by (4). The expression on the right hand side of (5) uses a 

second order Taylor series approximation to mr,(p) around the equal price point p = p1N 

where p is defined by (3).
22

 

 

Proof: Straightforward calculations show that the level, vector of first order partial 

derivatives and matrix of second order partial derivatives of mr,(p) evaluated at the equal 

price point p = p1N are equal to the following expressions: mr,(p1N) = p  p; 

pmr,(p1N) = ; 
2

ppmr,(p1N) = (p)
1

(r  1)(



T
) where 


is a diagonal N by N 

matrix with the elements of the column vector  running down the main diagonal and 
T
 

is the transpose of the column vector . Thus 
T
 is a rank one N by N matrix.  

 

Thus the second order Taylor series approximation to mr,(p) around the point p = p1N is 

given by the following expression: 

 

(6) mr,(p)  p + (p  p1N) + (½)(p  p1N)
T
(p)

1
(r  1)(




T
)(p  p1N) 

                  = p + (½)(p)
1

(r  1)(p  p1N)
T
(p)

1
(



T
)(p  p1N)   using (1) and (3) 

                  = p[1 + (½)(r  1)(p)
2

(p  p1N)
T
(



T
)(p  p1N)] 

                  = m1,(p)[1 + (½)(r  1)Var(p/p)]                                   using (2), (3) and (4).                         

                                                                                                                                     Q.E.D. 

 

The approximation (6) also holds if r = 0. In this case, (6) becomes the following 

approximation:
23

 

 

(7) m0,(p)  n=1
N
 (pn) n      

                   m1,(p)[1  (½)Var(p/p)] 

                  = m1,(p){1  (½)n=1
N
 n[(pn/p)  1]

2
} 

                  = [n=1
N
 npn]{1  (½)n=1

N
 n[(pn/p)  1]

2
} 

                                                 
21

 Note that the  weighted mean of p/p is equal to n=1
N
 npn/p = 1. Thus (4) defines the corresponding 

weighted variance. 
22

 For alternative approximations for the differences between mean of order r averages, see Vartia (1978; 

278-279). Vartia’s approximations involve variances of logarithms of prices whereas our approximations 

involve variances of deflated prices. Our analysis is a variation on his pioneering analysis. 
23

 Note that m0,(p) can be regarded as a weighted Jevons (1865) price level or a Cobb Douglas (1928) 

price level. Similarly, p  m1,(p) can be regarded as a weighted Dutot (1738) price level or a Leontief 

(1936) price level.  
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                   n=1
N
 npn. 

 

Thus the bigger is the variation in the N prices p1,...,pN, the bigger will be Var(p/p) and 

the more the weighted arithmetic mean of the prices, n=1
N
 npn, will be greater than the 

corresponding weighted geometric mean of the prices, n=1
N
 (pn) n . Note that if all of the 

pn are equal, then Var(p/p) will be equal to 0 and the approximations in (6) and (7) 

become exact equalities.     

 

Recall that the unit value price and quantity sold for product n during period t was 

defined as ptn and qtn for n = 1,...,N and t = 1,...,T. At this point, it is useful to define the 

Jevons (1865) and Dutot (1738) period t price levels for the prices in our window of 

observations, pJ
t
 and pD

t
, and the corresponding Jevons and Dutot price indexes, PJ

t
 and 

PD
t
, for t = 1,...,T: 

 

(8) pD
t
  n=1

N
 (1/N)ptn ; 

(9) pJ
t
  n=1

N
 ptn

1/N
 ; 

(10) PD
t
  pD

t
/pD

1
; 

(11) PJ
t
  pJ

t
/pJ

1
 = n=1

N
 (ptn/p1n)

1/N
. 

 

Thus the period t price index is simply the period t price level divided by the 

corresponding period 1 price level. Note that the Jevons price index can also be written as 

the geometric mean of the long term price ratios (ptn/p1n) between the period t prices 

relative to the corresponding period 1 prices. 

 

The weighted Dutot and Jevons period t price levels using a weight vector  which 

satisfies the restrictions (1), pD
t
 and pJ

t
, are defined by (12) and (13) and the 

corresponding weighted Dutot and Jevons period t price indexes, PD
t
 and PJ

t
,
24

 are 

defined by (14) and (15) for t = 1,...,T: 

 

(12) pD
t
  n=1

N
 nptn = m1,(p

t
) ;  

(13) pJ
t
  n=1

N
 (ptn) n = m0,(p

t
) ; 

(14) PD
t
  pD

t
/pD

1
 = p

t
/p

1
 ; 

(15) PJ
t
  pJ

t
/pJ

1
 = n=1

N
 (ptn/p1n) n .      

 

Obviously, (12)-(15) reduce to definitions (8)-(11) if  = (1/N)1N. We can use the 

approximation (7) for p = p
1
 and p = p

t
 in order to obtain the following approximate 

relationship between the weighted Dutot price index for period t, PD
t
, and the 

corresponding weighted Jevons index, PJ
t
: 

 

(16) PJ
t
  pJ

t
/pJ

1
 ;                                                                                                t = 1,...,T 

          = m0,(p
t
)/m0,(p

1
)                                                                      using (2) and (13) 

           m1,(p
t
){1  (½)n=1

N
 n[(ptn/p

t
)  1]

2
}/m1,(p

1
){1  (½)n=1

N
 n[(p1n/p

1
)  1]

2
} 

                                              using (7) for p = p
t
 and p = p

1
 where p

t
  p

t
 and p

1
  p

1
 

                                                 
24

 This type of index is frequently called a Geometric Young index; see Armknecht and Silver (2014; 4-5).  
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          = PD
t
{1  (½)n=1

N
 n[(ptn/p

t
)  1]

2
}/{1  (½)n=1

N
 n[(p1n/p

1
)  1]

2
} 

          = PD
t
{1  (½)Var(p

t
/p

t
)}/{1  (½)Var(p

1
/p

1
)}. 

 

In the elementary index context where there are no trends in prices in diverging directions, 

it is likely that Var(p
t
/p

t
) is approximately equal to Var(p

1
/p

1
).

25
 Under these 

conditions, the weighted Jevons price index PJ
t
 is likely to be approximately equal to the 

corresponding weighted Dutot price index, PD
t
. Of course, this approximate equality 

result extends to the case where  = (1/N)1N and so it is likely that the Dutot price 

indexes PD
t
 are approximately equal to their Jevons price index counterparts, PJ

t
.

26
 

However, if the variance of the deflated period 1 prices is unusually large (small), then 

there will be a tendency for PJ
t
 to exceed (to be less than) PD

t
 for t > 1.

27
  

 

At higher levels of aggregation where the products may not be very similar, it is likely 

that there will be divergent trends in prices over time. In this case, we can expect 

Var(p
t
/p

t
) to exceed Var(p

1
/p

1
). Thus using (16) under these circumstances leads to 

the likelihood that the weighted index PJ
t
 will be significantly lower than PD

t
. Similarly, 

under the diverging trends in prices hypothesis, we can expect the ordinary Jevons index 

PJ
t
 to be lower than the ordinary Dutot index PD

t
.
28

             

 

We conclude this section by finding an approximate relationship between a CES price 

index and the corresponding weighted Dutot price index PD
t
. This approximation result 

assumes that econometric estimates for the parameters of the CES unit cost function 

mr,(p) defined by (2) are available so that we have estimates for the weighting vector  

(which we assume satisfies the restrictions (1)) and the parameter r which we assume 

satisfies r  1.
29

 The CES period t price levels using a weight vector  which satisfies the 

restrictions (1) and an r  1, pCES
t
, and the corresponding CES period t price indexes, 

PCES,r
t
, are defined as follows for t = 1,...,T: 

                                                 
25

 Note that the vectors p
t
/p

t
 and p

1
/p

1
 are price vectors that are divided by their  weighted arithmetic 

means. Thus these vectors have eliminated general inflation between periods 1 and t.  
26

 The same approximate inequalities hold for the weighted case. An approximation result similar to (16) 

for the equal weights case where  = (1/N)1N was first obtained by Carruthers, Sellwood and Ward (1980; 

25). 
27

 For our empirical example considered in Appendix 1, we found that the sample mean of the PD
t
 was 

0.94581 while the sample mean of the PJ
t
 was 0.94956 so that in general, the Dutot price index was below 

the corresponding Jevons index. However, the period 1 variance, Var(p
1
/p

1
) (for  = (1/N)1N) was 

unusually large (equal to 0.072) as compared to the sample average of the Var(p
t
/p

t
) (equal to 0.063) and 

this explains why PD
t
 was generally below PJ

t
 for our particular data set. In general, for highly substitutable 

products, we expect the Jevons price index to lie below its Dutot counterpart. When we dropped the data 

for the first year, we found that the resulting sample mean of the PD
t
 was 0.86080 while the sample mean of 

the PJ
t
 was 0.86664 so that in this case, the Dutot price index was above the corresponding Jevons index (as 

expected). The data for the first year in our sample was unusual due to the absence of products 2 and 4 for 

most of the year.   
28

 Furthermore, as we shall see later, the Dutot index can be viewed as a fixed basket index where the 

basket is a vector of ones. Thus it is subject to substitution bias which will show up under the divergent 

price trends hypothesis.  
29

 These restrictions imply that mr,(p) is a linearly homogeneous, nondecreasing and concave function of 

the price vector p. These restrictions must be satisfied if we apply the economic approach to price index 

theory.  
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(17) pCES,r
t
  [n=1

N
 nptn

r
]
1/r

 = mr,(p
t
) ;  

(18) PCES,r
t
  pCES,r

t
/pCES,r

1
 = mr,(p

t
)/mr,(p

1
) . 

 

Now use the approximation (6) for p = p
1
 and p = p

t
 in order to obtain the following 

approximate relationship between the weighted Dutot price index for period t, PD
t
, and 

the corresponding period t CES index, PCES,r
t
 for t = 1,...,T: 

 

(19) PCES,r
t
  pCES,r

t
/pCES,r

1
 ;      

          = mr,(p
t
)/mr,(p

1
)                                                                          using (17) and (18) 

           [m1,(p
t
)/m1,(p

1
)][1 + (½)(r  1)Var(p

t
/p

t
)]/[1 + (½)(r  1)Var(p

1
/p

1
)] 

          = PD
t
{1 + (½)(r 1)n=1

N
 n[(ptn/p

t
)  1]

2
}/{1 + (½)(r 1)n=1

N
 n[(p1n/p

1
)  1]

2
} 

 

where we used definitions (4), (12) and (14) to establish the last equality in (19). Again, 

in the elementary index context with no diverging trends in prices, we could expect 

Var(p
t
/p

t
)  Var(p

1
/p

1
) for t = 2,...,T. Using this assumption about the approximate 

constancy of the (weighted) variance of the deflated prices over time, and using (16) and 

(19), we obtain the following approximations for  t = 2,3,...,T: 

 

(20) PCES,r
t
  PJ

t
  PD

t
 . 

 

Thus under the assumption of approximately constant variances for deflated prices, the 

CES, weighted Jevons and weighted Dutot price indexes should approximate each other 

fairly closely, provided that the same weighting vector  is used in the construction of 

these indexes.
30

  

 

The parameter r which appears in the definition of the CES unit cost function is related to 

the elasticity of substitution ; i.e., it turns out that  = 1  r.
31

 Thus as r takes on values 

from 1 to ,  will take on values from 0 to +. In the case where the products are 

closely related, typical estimates for  range from 1 to 10 when CES preferences are 

estimated. Thus if we substitute  = 1  r into the approximation (19), we obtain the 

following approximations for t = 1,...,T: 

 

(21) PCES,r
t
  PD

t
 [1  (½)Var(p

t
/p

t
)]/[1  (½)Var(p

1
/p

1
)]. 

 

The approximations in (21) break down for large and positive  (or equivalently, for very 

negative r); i.e., the expressions in square brackets on the right hand sides of (21) will 

pass through 0 and become meaningless as  becomes very large. The approximations 

become increasingly accurate as  approaches 0 (or as r approaches 1). Of course, the 

approximations also become more accurate as the dispersion of prices within a period 

becomes smaller. For  between 0 and 1 and with “normal” dispersion of prices, the 

                                                 
30

 Again, the approximate relationship PCES,r
t
  PD

t
 may not hold if the variance of the prices in the base 

period, Var(p
1
/p

1
), is unusually large or small. 

31
 See for example, Feenstra (1994; 158) or Diewert and Feenstra (2017).  
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approximations in (21) should be reasonably good. However, as  becomes larger, the 

expressions in square brackets will become closer to 0 and the approximations in (21) 

will become more volatile  and less accurate as  increases from an initial 0 value. 

 

At higher levels of aggregation where the products are not similar, it is likely that there 

will be divergent trends in prices over time and in this case, we can expect Var(p
t
/p

t
) to 

exceed Var(p
1
/p

1
). In this case, the approximate equalities (20) will no longer hold. In 

the case where the elasticity of substitution  is greater than 1 (so r < 0) and Var(p
t
/p

t
) 

> Var(p
1
/p

1
), we can expect that PCES,r

t
 < PD

t
 and the gaps between these two indexes 

will grow bigger over time as Var(p
t
/p

t
) grows larger than Var(p

1
/p

1
).    

 

In the following section, we will use the mean of order r function to aggregate the price 

ratios ptn/p1n into an aggregate price index for period t directly; i.e., we will not construct 

price levels as a preliminary step in the construction of a price index. 

 

3. Using Means of Order r to Aggregate Price Ratios 

 

In the previous section, we compared various elementary indexes using approximate 

relationships between price levels constructed by using means of order r to aggregate 

prices. In this section, we will develop approximate relationships between price indexes 

constructed by using means of order r defined over price ratios. 

 

In what follows, it is assumed that the weight vector  satisfies conditions (1); i.e.,  >> 

0N and 1N = 1. Define the mean of order r price index for period t (relative to period 1), 

Pr,
t
, as follows for t = 1,...,T: 

 

(22) Pr,
t
  [n=1

N
 n(ptn/p1n)

r
]

1/r
 ; r  0; 

                n=1
N
 (ptn/p1n) n        ; r = 0. 

 

When r = 1 and  = (1/N)1N, then Pr,
t
 becomes the period t fixed base Carli (1804) price 

index, PC
t
, defined as follows for t = 1,...,T: 

 

(23) PC
t
  n=1

N
 (1/N)(ptn/p1n). 

 

With a general  and r = 1, Pr,
t
 becomes the fixed base weighted Carli price index, 

PC
t
,
32

 defined as follows for t = 1,...,T: 

 

(24) PC
t
  n=1

N
 n(ptn/p1n). 

   

Using (24), it can be seen that the  weighted mean of the period t long term price ratios 

ptn/p1n divided by PC
t
 is equal to 1; i.e., we have for t = 1,...,T: 

 

                                                 
32

 This type of index is due to Arthur Young (1812; 72) and so we could call this index the Young index, 

PY
t
.  
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(25) n=1
N
 n(ptn/p1nPC

t
) = 1. 

 

Denote the  weighted variance of the deflated period t price ratios ptn/p1nPC
t
 as 

Var(p
t
/p

1
PC

t
) and define it as follows for t = 1,...,T: 

 

(26) Var(p
t
/p

1
PC

t
)  n=1

N
 n[(ptn/p1nPC

t
)  1]

2
. 

 

Proposition 2: Let p >> 0N,  >> 0N and 1N = 1. Then Pr,
t
/P1,

t
 = Pr,

t
/PC

t
 is 

approximately equal to the following expression for any r for t = 1,...,T: 

 

(27) Pr,
t
/PC

t
  1 + (½)(r  1)Var(p

t
/p

1
PC

t
) 

  

where Pr,
t
 is the mean of order r price index (with weights ) defined by (22), PC

t
 is the 

 weighted Carli index defined by (24) and Var(p
t
/p

1
PC

t
) is the  weighted variance of 

the deflated long term price ratios (ptn/p1n)/PC
t
 defined by (26).  

 

Proof: Replace the vector p in Proposition 1 by the vector [pt1/p11,pt2/p12,...,ptN/p1N].
33

 

Then the ratio mr,(p)/m1,(p) which appears on the left hand side of (5) becomes the ratio 

Pr,
t
/P1,

t
 = Pr,

t
/PC

t
 using definitions (22) and (24). The terms p and Var(p/p) which 

appear on the right hand side of (5) become PC
t
 and Var(p

t
/p

1
PC

t
) respectively. With 

these substitutions, (5) becomes (27) and we have established Proposition 2.           Q.E.D.   

 

It is useful to look at the special case of (27) when r = 0. In this case, using definitions 

(22) and (15), we can establish the following equalities for t = 1,...,T: 

 

(28) P0,
t
  n=1

N
 (ptn/p1n) n = PJ

t
 

 

where PJ
t
 is the period t weighted Jevons or Cobb Douglas price index defined by (15) in 

the previous section.
34

 Thus when r = 0, the approximations defined by (27) become the 

following approximations for t = 1,...,T: 

 

(29) PJ
t
/PC

t
  1  (½)Var(p

t
/p

1
PC

t
). 

 

Thus the bigger is the  weighted variance of the deflated period t long term price ratios, 

(pt1/p11)/PC
t
,..., (ptN/p1N)/PC

t
, the more the period t weighted Carli index PC

t
 will exceed 

the corresponding period t weighted Jevons index PJ
t
.  

 

When  = (1/N)1N, the approximations (29) become the following approximate 

relationships between the period t Carli index PC
t
 defined by (23) and the period t Jevons 

index PJ
t
 defined by (11) for t = 1,...,T:

35
 

                                                 
33

 In Proposition 1, some prices in either period could be 0. However, Proposition 2 requires that all period 

1 prices be positive. 
34

 Again, recall that Armknecht and Silver (2014; 4) call this index the Geometric Young index. 
35

 Results that are essentially equivalent to (30) were first obtained by Dalén (1992) and Diewert (1995). 

The approximations in (27) and (29) for weighted indexes are new. Vartia and Suoperä (2018; 5) derived 
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(30) PJ
t
/PC

t
  1  (½)Var(1/N)1(p

t
/p

1
PC

t
) 

                   = 1  (½)n=1
N
 (1/N)[(ptn/p1nPC

t
)  1]

2
.    

      

Thus the Carli price indexes PC
t
 will exceed their Jevons counterparts PJ

t
 (unless p

t
 = tp

1
 

in which case prices in period t are proportional to prices in period 1 and in this case, PC
t
 

= PJ
t
). This is an important result since from an axiomatic perspective, the Jevons price 

index has much better properties than the corresponding Carli indexes
36

 and in particular, 

chaining Carli indexes will lead to large upward biases as compared to their Jevons 

counterparts.
37

  

 

The results in this section can be summarized as follows: holding the weight vector  

constant, the weighted Jevons price index for period t, PJ
t
 is likely to lie below the 

corresponding weighted Carli index, PC
t
, with the gap growing as the  weighted 

variance of the deflated price ratios, (pt1/p11)/PC
t
,..., (ptN/p1N)/PC

t
, increases.

38
  

 

In the following section, we turn our attention to weighted price indexes where the 

weights are not exogenous constants but depend on observed sales shares. 

 

4. Relationships between Some Share Weighted Price Indexes   
 

In this section (and in subsequent sections), we will look at comparisons between price 

indexes that use information on the observed expenditure or sales shares of products in 

addition to price information. Recall that stn  ptnqtn/p
t
q

t
 for n = 1,...,N and t = 1,...,T. 

 

The fixed base Laspeyres (1871) price index for period t, PL
t
, is defined as the following 

base period share weighted arithmetic average of the price ratios, ptn/p1n, for t = 1,...,T: 

 

(31) PL
t
  n=1

N
 s1n(ptn/p1n). 

 

It can be seen that PL
t
 is a weighted Carli index PC

t
 of the type defined by (34) in the 

previous section where   s
1
  [s11,s12,...,s1N]. We will compare PL

t
 with its weighted 

geometric mean counterpart, PGL
t
, which is a weighted Jevons index PJ

t
 where the 

                                                                                                                                                 
alternative approximations. The analysis in this section is similar to Vartia’s (1978; 276-289) analysis of 

Fisher’s (1922) five-tined fork.    
36

 See Diewert (1995) on this topic. 
37

 The same upward bias holds for weighted Carli indexes relative to their weighted Jevons counterparts. 

For our frozen juice data listed in Appendix A, the 3 year sample average of the Carli indexes was 0.96277 

as compared to the corresponding sample average of the Jevons indexes which was 0.94956. 
38

 Since the Jevons price index has the best axiomatic properties, this result implies that CPI compilers 

should avoid the use of the Carli index in the construction of a CPI. This advice goes back to Fisher (1922; 

29-30). Since the Dutot index will approximate the corresponding Jevons index provided that the products 

are similar and there are no systematic divergent trends in prices, Dutot indexes can be satisfactory at the 

elementary level. If the products are not closely related, Dutot indexes become problematic since they are 

not invariant to changes in the units of measurement. Moreover, in the case of nonsimilar products, 

divergent trends in prices become more probable and thus the Dutot index will tend to be above the 

corresponding Jevons index due to substitution bias.  
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weight vector is  = s
1
. Thus the logarithm of the fixed base Geometric Laspeyres price 

index is defined as follows for t = 1,...,T:
39

 

 

(32) ln PGL
t
  n=1

N
 s1n ln(ptn/p1n). 

 

Since PGL
t
 and PL

t
 are weighted geometric and arithmetic means of the price ratios ptn/p1n 

(using the weights in the period 1 share vector s
1
), Schlömilch’s inequality implies that 

PGL
t
  PL

t
 for t = 1,...,T. The inequalities (29), with  = s

1
, give us approximations to the 

gaps between the PGL
t
 = PJ

t
 and the PC

t
 = PL

t
. Thus we have the following approximate 

equalities for  = s
1
 and t = 1,...,T:          

 

(33) PGL
t
/PL

t
   1  (½)Var(p

t
/p

1
PL

t
) = 1  (½)n=1

N
 s1n[(ptn/p1nPL

t
)  1]

2
. 

 

Using our scanner data set on 19 frozen fruit juice products listed in the Appendix for 39 

months, we found that Var(p
t
/p

1
PC

t
) for t  2 varied between 0.0024 and 0.0627 with a 

mean of 0.0234. Thus there was a considerable amount of variation in these variance 

terms. The sample mean of the ratios PGL
t
/PL

t
 was 0.9873 so that PGL

t
 was below PL

t
 by 

1.27 percentage points on average. The sample mean of the error terms on the right hand 

sides of the approximations defined by (33) was 0.9883 which is only below the sample 

mean of the ratios PGL
t
/PL

t
 by 0.1 percentage points. The correlation coefficient between 

the ratios PGL
t
/PL

t
 and the corresponding error terms on the right hand sides of (33) was 

0.9950. Thus the approximate equalities in (33) were quite close to being equalities.              

 

The fixed base Paasche (1874) price index for period t, PP
t
, is defined as the following 

period t share weighted harmonic average of the price ratios, ptn/p1n, for t = 1,...,T: 

 

(34) PP
t
  [n=1

N
 stn(ptn/p1n)

1
]
1

. 

 

We will compare PP
t
 with its weighted geometric mean counterpart, PGP

t
, which is a 

weighted Jevons index PJ
t
 where the weight vector is  = s

t
. Thus the logarithm of the 

fixed base Geometric Paasche price index is defined as follows for t = 1,...,T: 

 

(35) ln PGP
t
  n=1

N
 stn ln(ptn/p1n). 

 

Since PGP
t
 and PP

t
 are weighted geometric and harmonic means of the price ratios ptn/p1n 

(using the weights in the period t share vector s
t
), Schlömilch’s inequality implies that PP

t
 

 PGP
t
 for t = 1,...,T. However, we cannot apply the inequalities (29) directly to give us an 

approximation to the size of the gap between PGP
t
 and PP

t
. Viewing definition (34), it can 

be seen that the reciprocal of PP
t
 is a period t share weighted average of the reciprocals of 

the long term price ratios, p11/pt1, p12/pt2, ..., p1N/ptN. Thus using definition (34), we have 

the following equations and inequalities for  = s
t
 and t = 1,...,T: 

 

(36) [PP
t
]
1

 = n=1
N
 stn(p1n/ptn) 

                                                 
39

 Vartia (1978; 272) used the terms “geometric Laspeyres” and “geometric Paasche” to describe the 

indexes defined by (32) and (35). 
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                    n=1
N
 (p1n/ptn) tns  

                   = [PGP
t
]
1

                                                                           using definitions (35) 

 

where the inequalities in (36) follow from Schlömilch’s inequality; i.e., a weighted 

arithmetic mean is always equal to or greater than the corresponding weighted geometric 

mean. Note that the first equation in (36) implies that the period t share weighted mean of 

the reciprocal price ratios, p1n/ptn, is equal to the reciprocal of PP
t
. Now adapt the 

approximate equalities (29) in order to establish the following approximate equalities for 

t = 1,...,T: 

 

(37) [PGP
t
]
1

/[PP
t
]
1

  1  (½)n=1
N
 stn[(p1n/ptn [PP

t
]
1

)  1]
2
. 

                      

The approximate equalities (37) may be rewritten as follows for t = 1,...,T: 

 

(38) PGP
t
  PP

t
/{1  (½)n=1

N
 stn[(p1nPP

t
/ptn)  1]

2
}.           

 

Thus for t = 1,...,T, we have PGP
t
  PP

t
 (and the approximate equalities (38) measure the 

gaps between these indexes) and PGL
t
  PL

t
 (and the approximate equalities (33) measure 

the gaps between these indexes). Later we will show that the inequalities PGP
t
  PGL

t
 are 

likely if the N products are close substitutes for each other. 

 

Using our scanner data set listed in the Appendix, we found that the variance terms  on 

the right hand sides of (38), n=1
N
 stn[(p1nPP

t
/ptn)  1]

2
, for t  2 varied between 0.0026 

and 0.0688 with a mean of 0.0330. Thus these variances were bigger than the 

corresponding variances in (33) by one percentage point on average. This means that on 

average, PGL
t
/PL

t
 > PP

t
/PGP

t
 or on average for our sample, PGL

t 
PGP

t
 > PL

t
 PP

t
, which in turn 

implies that on average, PT
t
 > PF

t
 for our sample.

40 
The sample mean of the ratios PGP

t
/PP

t
 

was 1.0169 so that PGP
t
 was above PP

t
 by 1.69 percentage points on average. The sample 

mean of the error terms 1/{1  (½)n=1
N
 stn[(p1nPP

t
/ptn)  1]

2
} on the right hand sides of 

the approximations defined by (38) was 1.0169  which is identical to the sample mean of 

the ratios PGP
t
/PP

t
. The correlation coefficient between the ratios PGP

t
/PP

t
 and the 

corresponding error terms on the right hand sides of (38) was 0.9922. Thus the 

approximate equalities in (38) were quite close to being equalities.  

 

Suppose that prices in period t are proportional to the corresponding prices in period 1 so 

that p
t
 = tp

1
 where t is a positive scalar. Then it is straightforward to show that PP

t
 = 

PGP
t
 = PGL

t
 = PL

t
 = t and the error terms for equation t in (34) and (39) are equal to 0. 

 

Define the period t fixed base Fisher (1922) and Törnqvist
41

 price indexes, PF
t
 and PT

t
, as 

the following geometric means for t = 1,...,T: 

 

(39) PF
t
  [PL

t 
PP

t
]
1/2

 ; 

(40) PT
t
  [PGL

t 
PGP

t
]

1/2
 . 

                                                 
40

 PF
t
 and PT

t
 are defined by (39) and (40) below. 

41
 See Törnqvist (1936) and Törnqvist and Törnqvist (1937) and Theil (1967; 136-137). 
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Thus PF
t
 is the geometric mean of the period t fixed base Laspeyres and Paasche price 

indexes while PT
t 
is the geometric mean of the period t fixed base geometric Laspeyres 

and  geometric Paasche price indexes. Now use the approximate equalities in (34) and 

(38) and substitute these equalities into (40) in order to obtain the following approximate 

equalities between PT
t
 and PF

t
 for ft = 1,...,T: 

 

(41) PT
t
  [PGL

t 
PGP

t
]

1/2
  

               [PL
t 
PP

t
]

1/2
 (p

1
,p

t
,s

1
,s

t
) 

             = PF
t
 (p

1
,p

t
,s

1
,s

t
) 

 

where the approximation error function (p
1
,p

t
,s

1
,s

t
) is defined as follows for t = 1,...,T: 

 

(42) (p
1
,p

t
,s

1
,s

t
)  

                    {1  (½)n=1
N
 s1n[(ptn/p1nPL

t
)  1]

2
}

1/2
/{1  (½)n=1

N
 stn[(p1nPP

t
/ptn)  1]

2
}

1/2
. 

 

Thus PT
t
 is approximately equal to PF

t
 for t = 1,...,T. But how good are these 

approximations? We know from Diewert (1978) that PT
t
 = PT(p

1
,p

t
,s

1
,s

t
) approximates PF

t
 

= PF(p
1
,p

t
,s

1
,s

t
) to the second order around any point where p

t
 = p

1
 and s

t
 = s

1
.
42

 We also 

know that the approximations in (33) and (38) are fairly good, at least for our scanner 

data set. Thus it is likely that the error terms (p
1
,p

t
,s

1
,s

t
) are close to 1.

43
   

  

Using our scanner data set listed in the Appendix, we found that the sample mean of the 

ratios PT
t
/PF

t
 was 1.0019 so that PT

t
 was above PF

t
 by 0.19 percentage points on average. 

The sample mean of the error terms (p
1
,p

t
,s

1
,s

t
) defined by (42) was 1.0025. The 

correlation coefficient between the ratios PT
t
/PF

t
 and the corresponding error terms 

(p
1
,p

t
,s

1
,s

t
)  on the right hand sides of (41) was 0.9891. Thus the approximate equalities 

in (41) were quite close to being equalities. However, if the products were highly 

substitutable and if prices and shares trended in opposite directions, then we expect that 

the base period share weighted variance n=1
N
 s1n[(ptn/p1nPL

t
)  1]

2
 will increase as t 

increases and we expect the period t share weighted variance n=1
N
 stn[(p1nPP

t
/ptn)  1]

2
 to 

increase even more as t increases because as ptn becomes smaller, [(p1nPP
t
/ptn)  1]

2
 

becomes bigger and the share weight stn will also increase. Thus PT will tend to increase 

relative to PF as time increases under these conditions. The more substitutable the 

products are, the greater will be this tendency.  

 

Our tentative conclusion at this point is that the approximations defined by (33), (38) and 

(41) are good enough to provide rough estimates of the differences in the six price 

indexes involved in these approximate equalities. Empirically, we found that the variance 

                                                 
42

 This result can be generalized to the case where p
t
 = p

1
 and s

t
 = s

1
. 

43
 However, the Diewert (1978) second order approximation is different from the present second order 

approximations that are derived from Proposition 2. Thus the closeness of (p
1
,p

t
,s

1
,s

t
) to 1 depends on the 

closeness of the Diewert second order approximation of PT
t
 to PF

t
 and the closeness of the second order 

approximations that were used in (33) and (38), which use different Taylor series approximations. Vartia 

and Suoperä (2018) used alternative Taylor series approximations to obtain relationships between various 

indexes.  
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terms on the right hand sides of (38) tended to be larger than the corresponding variances 

on the right hand sides of (33) and these differences led to a tendency for the fixed base 

Fisher price indexes PF
t
 to be slightly smaller than the corresponding fixed base Törnqvist 

Theil price indexes PT
t
.
44

  

 

We conclude this section by developing an exact relationship between the geometric 

Laspeyres and Paasche price indexes. Using definitions (32) and (35) for the logarithms 

of these indexes, we have the following exact decomposition for the logarithmic 

difference between these indexes for t = 1,...,T:
45

 

 

(43) lnPGP
t
  lnPGL

t
 = n=1

N
 stn ln(ptn/p1n)  n=1

N
 s1n ln(ptn/p1n)    

                                = n=1
N
 [stn  s1n][lnptn  lnp1n]. 

 

Define the vectors lnp
t
  [lnpt1,lnpt2,...,lnptN] for t = 1,...,T. It can be seen that the right 

hand side of equation t equations (43) is equal to [s
t
  s

1
][lnp

t
  lnp

1
], the inner product 

of the vectors x  s
t 
 s

1
 and y  lnp

t
  lnp

1
. Let x

*
 and y

*
 denote the arithmetic means of 

the components of the vectors x and y. Note that x
*
  (1/N)1Nx = (1/N)1N[s

t
  s

1
] = 

(1/N)[1  1] = 0. The covariance between x and y is defined as Cov(x,y)  (1/N)[x  

x
*
1N][y  y

*
1N] = (1/N) xy  x

*
y

*
 = (1/N) xy

46
 since x

*
 is equal to 0. Thus the right 

hand side of (43) is equal to N Cov(x,y) = N Cov(s
t
  s

1
,lnp

t
  lnp

1
); i.e., the right hand 

side of (43) is equal to N times the covariance of the long term share difference vector, s
t
 

 s
1
, with the long term log price difference vector, lnp

t
  lnp

1
. Hence if this covariance is 

positive, then lnPGP
t
  lnPGL

t
 > 0 and PGP

t
 > PGL

t
. If this covariance is negative, then PGP

t
 

< PGL
t
. We argue below that for the case where the N products are close substitutes, it is 

likely that the covariances on the right hand side of equations (43) are negative for t > 1. 

 

Suppose that the observed price and quantity data are approximately consistent with 

purchasers having identical Constant Elasticity of Substitution preferences. CES 

preferences are dual to the CES unit cost function mr,(p) which is defined by (2) above 

where  satisfies (1) and r  1. It can be shown
47

 that the sales share for product n in a 

period where purchasers face the strictly positive price vector p  [p1,...,pN] is the 

following share:     

 

(44) sn(p)  npn
r
/i=1

N
 ipi

r
 ;  n = 1,...,N. 

    

Upon differentiating sn(p) with respect to pn, we find that the following relations hold: 

 

(45) lnsn(p)/lnpn = r[1sn(p)] ;  n = 1,...,N. 

                                                 
44

 Vartia and Suoperä (2018) also found a tendency for the Fisher price index to lie slightly below their 

Törnqvist counterparts in their empirical work. 
45

 Vartia and Suoperä (2018; 26) derived this result and noticed that the right hand side of (43) could be 

interpreted as a covariance. They also developed several alternative exact decompositions for the difference 

lnPGP
t
  lnPGL

t
. Their paper also develops a new theory of “excellent” index numbers.  

46
 This equation is the covariance identity which was first used by Bortkiewicz (1923) to show that 

normally the Paasche price index is less than the corresponding Laspeyres index. 
47

 See Diewert and Feenstra (2017) for example. 
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Thus lnsn(p)/lnpn < 0 if r < 0 (or equivalently, if the elasticity of substitution   1  r 

is greater than 1) and lnsn(p)/lnpn > 0 if r satisfies 0 < r < 1 (or equivalently, if the 

elasticity of substitution satisfies 0 <  < 1). If we are aggregating prices at the first stage 

of aggregation where the products are close substitutes and purchasers have common 

CES preferences, then it is likely that the elasticity of substitution is greater than 1 and 

hence as the price of product n decreases, it is likely that the share of that product will 

increase. Hence we expect the terms [stn  s1n][lnptn  lnp1n] to be predominantly 

negative; i.e., if p1n is unusually low, then lnptn  lnp1n is likely to be positive and stn  s1n 

is likely to be negative. On the other hand, if ptn is unusually low, then lnptn  lnp1n is 

likely to be negative and stn  s1n is likely to be positive. Thus for closely related products, 

we expect the covariances on the right hand sides of (43) to be negative and for PGP
t
 to be 

less than PGL
t
. We can combine this inequality with our previously established 

inequalities to conclude that for closely related products, it is likely that PP
t
 < PGP

t
 < PT

t
 < 

PGL
t
 < PL

t
. On the other hand, if we are aggregating at higher levels of aggregation, then it 

is likely that the elasticity of substitution  is in the range 0 <  < 1,
48

 and in this case, the 

covariances on the right hand sides of (43) will tend to be positive and hence in this case, 

it is likely that PGP
t
 > PGL

t
. We also have the inequalities PP

t
 < PGP

t
 and PGL

t
 < PL

t
 in this 

case.
49

      

 

We turn now to some relationships between weighted and unweighted (i.e., equally 

weighted) geometric price indexes. 

 

5. Relationships between the Jevons, Geometric Laspeyres, Geometric Paasche and 

Törnqvist Price Indexes 

 

In this section, we will investigate how close the unweighted Jevons index PJ
t
 is to the 

geometric Laspeyres PGL
t
, geometric Paasche PGP

t
 and Törnqvist PT

t
 price indexes. 

 

We first investigate the difference between the logarithms of PGL
t
 and PJ

t
. Using the 

definitions for these indexes, we have the following log differences for t = 1,...,T: 

 

(46) lnPGL
t
  lnPJ

t
 = n=1

N
 [s1n  (1/N)][lnptn  lnp1n] 

                              = NCov(s
1
  (1/N)1N, lnp

t
  lnp

1
) 

                               t. 

 

In the elementary index context where the N products are close substitutes and product 

shares in period 1 are close to being equal, it is likely that t is positive; i.e., if ln p1n is 

unusually low, then s1n is likely to be unusually high and thus it is likely that s1n  (1/N) > 

                                                 
48

 See Shapiro and Wilcox (1997) who found that  = 0.7 fit the US data well at higher levels of 

aggregation. See also Armknecht and Silver (2014; 9) who noted that estimates for  tend to be greater than 

1 at the lowest level of aggregation and less than 1 at higher levels of aggregation. 
49

 See Vartia (1978; 276-290) for a similar discussion about the relationships between PL
t
, PP

t
, PF

t
, PGL

t
, PGP

t
 

and PT
t
. Vartia extended the discussion to include period 1 and period t share weighted harmonic averages 

of the price ratios, ptn/p1n. See also Armknecht and Silver (2014; 10) for a discussion on how weighted 

averages of the above indexes could approximate a superlative index at higher levels of aggregation. 
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0 and lnptn  lnp1n minus the mean of the log ratios ln(ptn/p1n) is likely to be greater than 0 

and hence t is likely to be greater than 0, implying that PGL
t
 > PJ

t
. However, if N is small 

and the shares have a high variance, then if product n goes on sale in period 1, we cannot 

assert that s1n is likely to be greater than 1/N and hence we cannot be confident that t is 

likely to be greater than 0 and hence we cannot confidently predict that PGL
t
 will be 

greater than PJ
t
.   

 

There are three simple sets of conditions that will imply that PGL
t
 = PJ

t
: (i) the covariance 

on the right hand side of (46) equals 0; i.e.,  Cov(s
1
  (1/N)1N, lnp

t
  lnp

1
) = 0; (ii) period 

t price proportionality; i.e., p
t
 = tp

1
 for some t > 0; (iii) equal sales shares in period 1; 

i.e., s
1
 = (1/N)1N.  

 

Now look at the difference between the logarithms of PGP
t
 and PJ

t
. Using the definitions 

for these indexes, for t = 1,...,T, we have: 

 

(47) lnPGP
t
  lnPJ

t
 = n=1

N
 [stn  (1/N)][lnptn  lnp1n] 

                              = NCov(s
t
  (1/N)1N, lnp

t
  lnp

1
) 

                               t. 

 

In the elementary index context where the N products are close substitutes and the shares 

s
t
 are close to being equal, then it is likely that t is negative; i.e., if ln ptn is unusually 

low, then stn is likely to be unusually high and thus it is likely that stn  (1/N) > 0 and lnptn 

 lnp1n minus the mean of the log ratios ln(ptn/p1n) is likely to be less than 0 and hence t 

is likely to be less than 0 implying that PGP
t
 < PJ

t
. However if N is small and the period t 

shares s
t
 are not close to being equal, then again, we cannot confidently predict the sign 

of the covariance in (47).  

 

There are three simple sets of conditions that will imply that PGP
t
 = PJ

t
: (i) the covariance 

on the right hand side of (47) equals 0; i.e.,  Cov(s
t
  (1/N)1N, lnp

t
  lnp

1
) = 0; (ii) period 

t price proportionality; i.e., p
t
 = tp

1
 for some t > 0; (iii) equal sales shares in period t; 

i.e., s
t
 = (1/N)1N. 

 

Using the definitions for PT
t
 and PJ

t
, the log difference between these indexes is equal to 

the following expression for t = 1,...,T: 

 

(48) lnPT
t
  lnPJ

t
 = n=1

N
 [(½)stn + (½)s1n  (1/N)][lnptn  lnp1n] 

                        = NCov[(½)s
t
 + (½)s

1
  (1/N)1N, lnp

t
  lnp

1
] 

                        = (N/2)Cov(s
t
  (1/N)1N, lnp

t
  lnp

1
) + (N/2)Cov(s

1
  (1/N)1N, lnp

t
  lnp

1
)   

                        = (½)t + (½)t.  

 

As usual, there are three simple sets of conditions that will imply that PT
t
 = PJ

t
: (i) the 

covariance on the right hand side of (48) equals 0; i.e., Cov[(½)s
t
 + (½)s

1
  (1/N)1N,lnp

t
  

lnp
1
] = 0 = (½)t + (½)t or equivalently, Cov(s

t
  (1/N)1N, lnp

t
  lnp

1
) =  Cov(s

t
  

(1/N)1N, lnp
1
  lnp

1
); (ii) period t price proportionality; i.e., p

t
 = tp

1
 for some t > 0; (iii) 
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the arithmetic average of the period 1 and t sales shares are all equal to 1/N; i.e., (½)s
t
 + 

(½)s
1
 = (1/N)1N. 

 

If the trend deflated prices ptn/t are distributed independently across time and 

independently of the sales shares stn, then it can be seen that the expected values of the  t 

and t will be 0 and hence PT
t
  PJ

t
 for t = 1,...,T. Thus it can be the case that the ordinary 

Jevons price index is able to provide an adequate approximation to the superlative 

Törnqvist price index in the elementary price index context. However, if the shares are 

trending and if prices are trending in divergent directions, then PJ
t
 will not be able to 

approximate PT
t
. To illustrate this point, assume that shares and the logarithms of prices 

are trending linearly over time; i.e., make the following assumptions: 

 

(49) s
t
 = s

1
 + (t1) ; lnp

t
 = lnp

1
 + (t1) ; t = 2,3,...,T 

 

where   [1,...,N]   [1,...,N] and   [1,..., N] are constant vectors and  satisfies the 

additional restriction:  

 

(50) 1N = 0. 

 

The restriction (50) is required to ensure that the shares s
t
 sum to unity.

50
 Substitute 

assumptions (49) into equations (46) and we obtain the following equations for t = 

2,3,...,T: 

 

(51) lnPGL
t
  lnPJ

t
 = (s

1
  (1/N)1N)(lnp

t
  lnp

1
)                                

                              = (s
1
  (1/N)1N)(t1).  

   

Thus if the inner product of the vectors (s
1
  (1/N)1N) and  is not equal to 0, lnPGL

t
 and 

lnPJ
t
 will diverge at a linear rate as t increases.

51
 In a similar fashion, substitute equations 

(49) into equations (47) and we obtain the following equations for t = 2,3,...,T:   

  

(52) lnPGP
t
  lnPJ

t
 = [s

t
  (1/N)1N][lnp

t
  lnp

1
] 

                              = [s
1
 + (t1)  (1/N)1N](t1) 

                              = [s
1
  (1/N)1N](t1) + (t1)

2
. 

 

Thus if the inner product of the vectors  and  is not equal to 0, lnPGP
t
 and lnPJ

t
 will 

diverge at a quadratic rate as t increases.
52

 

 

Substituting (49) into equations (48) leads to the following equations for t = 2,3,...,T: 

 

                                                 
50

 We also require that T be small enough so that each s
t
  0N. 

51
 If the period 1 shares are not all equal and if the rates of growth of log prices differ, then note that we 

cannot use elementary economic considerations to predict the sign of the inner product (s
1
  (1/N)1N) and 

thus we cannot predict whether PJ
t
 will be greater or less than PGL

t
. 

52
 Again, we cannot predict the sign of the inner product [s

1
  (1/N)1N] but if the products are highly 

substitutable, it is likely that  < 0. Hence if t is large enough, the quadratic term (t1)
2
 on the right 

hand side of (52) will dominate the linear term in t1 and PGP
t
 will be less than PJ

t
 under assumptions (49).    
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(53) lnPT
t
  lnPJ

t
 = [(½)s

t
 + (½)s

1
  (1/N)1N][lnp

t
  lnp

1
] 

                            = [s
1
  (1/N)1N](t1) + (½)(t1)

2
 

 

Thus if the inner product of the vectors  and  is not equal to 0, lnPT
t
 and lnPJ

t
 will 

diverge at a quadratic rate as t increases. 

 

If all prices are growing at the same geometric rate so that  = 1N where  is a scalar, 

then using (50), we have  = 1N = 0. We also have [s
1
  (1/N)1N] = [s

1
  

(1/N)1N]1N = [1  1] = 0. Thus if all prices grow at the same geometric rate, PJ
t
 = PGL

t
 = 

PGP
t
 = PT

t
. Thus in order to for PJ

t
 to diverge from PT

t
, we require divergent rates of price 

growth.      

 

Assume that shares and log prices are trending linearly approximately so that 

assumptions (49) and (50) hold approximately. If the N products are highly substitutable, 

then it is likely that  and  are negatively correlated so that  < 0. In this case, if n > 0 

(so that the share of product n is growing over time), then it is likely that n  (1/N)1N < 

0 so that the price of product n is falling relative to the average growth rate of product 

prices. In this case, the quadratic term in t on the right hand side of (53), (½)(t1)
2
, 

will eventually dominate the linear term in t, [s
1
  (1/N)1N](t1), and so for large t, PT

t
 

will tend to be less than PJ
t
. If the products are not close substitutes, then it is likely that 

 > 0 and hence for large t, PT
t
 will tend to be greater than PJ

t
. If t is small, then we 

cannot be sure that the quadratic term in t1 will dominate the linear term on the right 

hand side of (53) and thus we cannot assert that PT
t
 will tend to be greater than PJ

t
, since 

the sign of the linear term is uncertain.  

 

The results in this section can be summarized as follows: the unweighted Jevons (and 

Dutot) indexes, PJ
t
 and PD

t
, can provide a reasonable approximation to a fixed base 

superlative index like PT
t
 provided that the expenditure shares do not systematically trend 

with time and prices do not systematically grow at diverging rates. If these assumptions 

are not satisfied, then it is likely that the Jevons index will have some substitution bias; 

PJ
t
 is likely to exceed PT

t
 as t becomes large if the products are close substitutes

53
 and PJ

t
 

is likely to be less than PT
t
 as t becomes large if the products are not close substitutes. 

 

6. Relationships between Superlative Fixed Base Indexes and Geometric Indexes 

that use Average Annual Shares as Weights   
 

We consider the properties of weighted Jevons indexes where the weight vector is an 

annual average of observed monthly shares. Recall that the weighted Jevons (or Cobb 

Douglas) price index PJ
t
 was defined by (15) in section 2 as PJ

t
  n=1

N
 

(ptn/p1n) n where the product weighting vector  satisfied the restrictions  >> 0N and 

                                                 
53

 For our empirical example, PJ
t
 ended up below PT

t
, contrary to our expectations. However, for small t, the 

linear term in (t1) on the right hand side of (53) can dominate the quadratic term in (t1)
2
.  
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1N = 1. The following counterparts to the covariance identities (46)-(48) hold for t = 

1,...,T where the Geometric Young index or weighted Jevons index PJ
t
 has replaced PJ

t
:
54

         

 

(54) lnPGL
t
  lnPJ

t
 = n=1

N
 [s1n  n][lnptn  lnp1n] 

                               = NCov(s
1
  , lnp

t
  lnp

1
); 

(55) lnPGP
t
  lnPJ

t
 = n=1

N
 [stn  n][lnptn  lnp1n] 

                               = NCov(s
t
  , lnp

t
  lnp

1
); 

(56) lnPT
t
  lnPJ

t
 = n=1

N
 [(½)stn + (½)s1n  n][lnptn  lnp1n] 

                              = NCov[(½)s
t
 + (½)s

1
  , lnp

t
  lnp

1
] 

                              = (½)[lnPGL
t
  lnPJ

t
] + (½)[lnPGP

t
  lnPJ

t
].   

 

Define  as the arithmetic average of the first T
*
 observed share vectors s

t
: 

 

(57)   t=1
T*

 (1/T
*
)s

t
. 

 

In the context where the data consists of monthly periods, T
*
 will typically be equal to 

12; i.e., the elementary index under consideration is the weighted Jevons index PJ
t
 where 

the weight vector  is the average of the observed expenditure shares for the first 12 

months in the sample.
55

   

 

The decompositions (54)-(56) will hold for the  defined by (57). For a large T
*
,  will 

be close to a constant vector. If the N products are highly substitutable, it is likely that 

Cov(s
1
  , lnp

t
  lnp

1
) > 0 and Cov(s

t
  , lnp

t
  lnp

1
) < 0 and hence it is likely that PGL

t
 

> PJ
t
 and PGP

t
 < PJ

t
.  If the products are not close substitutes, then it is likely that PGL

t
 < 

PJ
t
 and PGP

t
 > PJ

t
. If there are no divergent trends in prices, then it is possible that the 

average share price index PJ
t
 could provide an adequate approximation to the 

superlative Törnqvist index PT
t
. 

 

Note that t takes on the values t = 1,...,T in equations (54)-(56). However, annual share 

indexes that are implemented by statistical agencies are not constructed in exactly this 

manner. The practical month to month indexes that are constructed by statistical agencies 

using annual shares of the type defined by (57) do not choose the reference month for 

prices to be month 1; rather they chose the reference month for prices to be T
*
 + 1, the 

month that follows the first year.
56

 Thus the reference year for share weights precedes the 

reference month for prices. In this case, the logarithm of the month t  T
*
 + 1 annual 

share weighted Jevons index, lnPJ
t
, is defined as follows where  is the vector of annual 

average share weights defined by (57): 

 

(58) lnPJ
t
  n=1

N
 n[lnptn  lnpT*+1,n] ;                                                  t = T

*
+1,T

*
+2,...,T. 

 

                                                 
54

 The relationship (56) was obtained by Armknecht and Silver (2014; 9); i.e., take logarithms on both sides 

of their equation (12) and we obtain the first equation in equations (56).  
55

 For our empirical example, T
*
 = 13 since we aggregated weekly data for a year into 13 “months” where 

each month consisted of 4 consecutive weeks.  
56

 In actual practice, the reference month for prices can be many months after T
*
. 
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The following counterparts to the identities (54)-(56) hold for t = T
*
+1,T

*
+2,...,T where  

is defined by (57) and PJ
t
 is defined by (58):         

 

(59) lnPGL
t
  lnPJ

t
 = n=1

N
 [sT*+1,n  n][lnptnlnpT*+1,n]  

                               = NCov(s
T*+1

, lnp
t
lnp

T*+1
); 

(60) lnPGP
t
  lnPJ

t
 = n=1

N
 [stnn][lnptnlnpT*+1,n] 

                               = NCov(s
t
  , lnp

t
  lnp

T*+1
); 

(61) lnPT
t
  lnPJ

t
 = n=1

N
 [(½)stn+(½)sT*+1,nn][lnptnlnpT*+1,n] 

                              = NCov[(½)s
t
+(½)s

T*+1
, lnp

t
lnp

T*+1
] 

                              = (½)[lnPGL
t
lnPJ

t
] + (½)[lnPGP

t
lnPJ

t
]. 

 

If the N products are highly substitutable, it is likely that Cov(s
T*+1

, lnp
t
lnp

T*+1
) > 0 

so that PGL
t
 > PJ

t
. It is also likely that Cov(s

t
, lnp

t
lnp

T*+1
) < 0 and hence it is likely 

that PGP
t
 < PJ

t
 in the highly substitutable case. If the products are not close substitutes, 

then it is likely that PGL
t
 < PJ

t
 and PGP

t
 > PJ

t
. If there are no divergent trends in prices, 

then it is possible that the average share price index PJ
t
 could provide an adequate 

approximation to the superlative Törnqvist index PT
t
. However, if there are divergent 

trends in prices and shares and the products are highly substitutable with each other, then 

we expect the covariance in (60) to be more negative than the covariance in (59) is 

positive so that PT
t
 will tend to be less than the annual shares geometric index PJ

t
.
57

 

 

As usual, there are three simple sets of conditions that will imply that PT
t
 = PJ

t
: (i) the 

covariance on the right hand side of (61) equals 0; i.e., Cov[(½)s
t
+(½)s

T*+1
, 

lnp
t
lnp

T*+1
] = 0 or equivalently, Cov(s

T*+1
, lnp

t
lnp

T*+1
) =  Cov(s

t
, lnp

t
lnp

T*+1
); 

(ii) period t price proportionality (to the prices of the price reference period); i.e., p
t
 = 

tp
T*+1

 for some t > 0; (iii) the arithmetic average of the period T
*
+1 and t sales shares 

are all equal to ; i.e., (½)s
t
 + (½)s

T*+1
 = . This last condition will hold if the shares s

t
 

are constant over time and  is defined by (57).  

  

Suppose that there are linear trends in shares and divergent linear trends in log prices; i.e., 

suppose that assumptions (49) and (50) hold. We look at the implications of these 

assumptions for the exact relationships (54)-(56). Substituting (49) into equations (56) 

leads to the following equations for t = 2,3,...,T: 

 

(62) lnPT
t
  lnPJ

t
 = [(½)s

t
+(½)s

1
 ][lnp

t
lnp

1
] 

                             = [s
1
  ](t1) + (½)(t1)

2
 

                             =  (½)(T
*
1)(t1) + (½)(t1)

2
                       using (49) and (57) 

                             = (½)(tT
*
)(t1). 

 

Thus if the inner product of the vectors  and  is not equal to 0, lnPT
t
 and lnPJ

t
 will 

diverge at a quadratic rate as t increases. Under these trend assumptions, the average 

                                                 
57

 Our frozen juice data were consistent with the products being highly substitutable. Thus for the 26 

periods running from “month” 14 to 39, the arithmetic means for the PGP
t
, PT

t
, PJ

t
, PGL

t
 were 0.81005, 

0.83100, 0.83338 and 0.85270 respectively, which is consistent with our a priori expectations.    
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share geometric index PJ
t
 will be subject to some substitution bias (as compared to PT

t
 

which controls for substitution bias
58

), which will grow over time.
59

 

 

Note that in real life, new products appear and existing products disappear. Our analysis 

can take this fact into account in theory: we are assuming that we have somehow 

calculated reservation prices for products that are not available in the current period. 

However, product churn means that shares are not constant over time; i.e., product churn 

will lead to (nonsmooth) trends in product shares. Superlative indexes like PF
t
 and PT

t
 can 

deal with new and disappearing products in a way that is consistent with consumer theory, 

provided that suitable reservation prices have been either estimated or approximated by 

suitable rules of thumb. 

 

7. To Chain or Not to Chain 

                                 

In the above discussions, we have focussed on direct indexes that compare the prices of 

period t with the prices of period 1. But it is also possible to move from period 1 prices to 

period t prices by jumping from one period to the next and cumulating the jumps. If the 

second method is used, the resulting period t price index is called a chained index. In this 

section, we will examine the possible differences between direct and chained Törnqvist 

price indexes. 

 

It is convenient to introduce some new notation. Denote the Törnqvist price index that 

compares the prices of period j to the prices of period i (the base period for the 

comparison) by PT(i,j). The logarithm of PT(i,j) is defined as follows for i,j = 1,...,N: 

 

(63) lnPT(i,j)  (½)n=1
N
 (sin + sjn)(lnpjn  lnpin) 

                      = (½)(s
i
 + s

j
)(lnp

j
  lnp

i
). 

 

The chained Törnqvist price index going from period 1 to T will coincide with the 

corresponding direct index if the indexes PT(i,j) satisfy the following multiperiod identity 

test which is due to Walsh (1901; 389), (1921; 540): 

 

(64) PT(1,2)PT(2,3)... PT(T1,T)PT(T,1) = 1.               
    

The above test can be used to measure the amount that the chained indexes between 

periods 1 and T differ from the corresponding direct index that compares the prices of 

period 1 and T; i.e., if the product of indexes on the left hand side of if (64) is different 

from unity, then we say that the index number formula is subject to chain drift and the 

difference between the left and right hand sides of (64) serves to measure the magnitude 

of the chain drift problem.
60

 In order to determine whether the Törnqvist price index 

                                                 
58

 See Diewert (1976) on this point. 
59

 As was the case in the previous section, if all prices grow at the same geometric rate, then PJ
t
 = PGL

t
 = 

PGP
t
 = PT

t
.  

60
 Walsh (1901; 401) was the first to propose this methodology to measure chain drift. It was independently 

proposed later by Persons (1921; 110) and Szulc (1983; 540). Fisher’s (1922; 284) circular gap test could 

also be interpreted as a test for chain drift. 
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formula satisfies the multiperiod identity test (64), take the logarithm of the left hand side 

of (64) and check whether it is equal to the logarithm of 1 which is 0. Thus substituting 

definitions (63) into the logarithm of the left hand side of (64) leads to the following 

expressions:
61

 

 

(65) lnPT(1,2) + lnPT(2,3) + ...+ lnPT(T1,T) + lnPT(T,1) 

           = ½n=1
N
 (s1n+s2n)(lnp2nlnp1n) + ½n=1

N
 (s2n+s3n)(lnp3nlnp2n) + ... 

              + ½n=1
N
 (sT1,n+sTn)(lnpTnlnpT1,n) + ½n=1

N
 (sTn+s1n)(lnp1nlnpTn) 

           = ½n=1
N
 (s1ns3n)lnp2n + ½n=1

N
 (s2ns4n)lnp3n + ... + ½n=1

N
 (sT2,nsTn)lnpT1,n  

               + ½n=1
N
 (sTns2n)lnp1n + ½n=1

N
 (sT1,ns1n)lnpTn. 

 

In general, it can be seen that the Törnqvist price index formula will be subject to some 

chain drift i.e., the sums of terms on the right hand side of (65) will not equal 0 in general. 

However there are four sets of conditions where these terms will sum to 0.  

 

The first set of conditions makes use of the first equality on the right hand side of (65). If 

the prices vary in strict proportion over time, so  that p
t
 = tp

1
 for t = 2,3,...,T, then it is 

straightforward to show that (64) is satisfied. 

 

The second set of conditions makes use of the second equality in equations (65). If the 

shares s
t
 are constant over time,

62
 then it is obvious that (64) is satisfied.  

 

The third set of conditions also makes use of the second equality in (65). The sum of 

terms n=1
N
 (s1ns3n)lnp2n is equal to (s

1
s

3
)lnp

2
 which in turn is equal to 

(s
1
s

3
)(lnp

2
lnp

2*
) = NCov(s

1
s

3
,lnp

2
) where lnp

2*
  (1/N) n=1

N
 lnp2n, the mean of the 

components of lnp
2
. Thus the N sets of summations on the right hand side of the second 

equation in (65) can be interpreted as constants time the covariances of a difference in 

shares (separated by one or more time periods) with the logarithm of a price vector for a 

time period that is not equal to either of the shares in the difference in shares. Thus if 

Cov(s
1
s

3
,lnp

2
) = Cov(s

2
s

4
,lnp

3
) = ... = Cov(s

T2
s

T
,lnp

T1
) = Cov(s

T
s

2
,lnp

1
) = 

Cov(s
T1

s
1
,lnp

T
) = 0, then (64) will be satisfied. These zero covariance conditions will 

be satisfied if the log prices of one period are uncorrelated with the shares of all other 

periods. If the time period is long enough and there are no trends in log prices and shares, 

so that prices are merely bouncing around in a random fashion,
63

 then these zero 

covariance conditions are likely to be satisfied to a high degree of approximation and thus 

under these conditions, the Törnqvist Theil price index is likely to be largely free of chain 

drift. However, in the elementary index context where retailers have periodic highly 

discounted prices, the zero correlation conditions are unlikely to hold. Suppose that 

product n goes on sale during period 2 so that lnp2n is well below the average price for 

period 2. Suppose product n is not on sale during periods 1 and 3. If purchasers have 

stocked up on product n during period t, it is likely that s3n will be less than s1n and thus it 

                                                 
61

 Persons (1928; 101) developed a similar decomposition using the bilateral Fisher formula instead of the 

Törnqvist formula. 
62

 If purchasers of the products have Cobb-Douglas preferences, then the sales shares will be constant. 
63

 Szulc (1983) introduced the term “price bouncing” to describe the behavior of soft drink prices in Canada 

at the elementary level. 



 27 

is likely that Cov(s
1
s

3
,lnp

2
) < 0. Now suppose that product n is not on sale during period 

2. In this case, it is likely that lnp2n is greater than the average log price during period 2. 

If product n was on sale during period 1 but not period 3, then s1n will tend to be greater 

than s3n and thus Cov(s
1
s

3
,lnp

2
) > 0. However, if product n was on sale during period 3 

but not period 1, then s1n will tend to be less than s3n and thus Cov(s
1
s

3
,lnp

2
) < 0. These 

last two cases should largely offset each other and so we are left with the likelihood that 

Cov(s
1
s

3
,lnp

2
) < 0. Similar arguments apply to the other covariances and so we are left 

with the expectation that the chained Törnqvist index used in the elementary index 

context is likely to drift downwards relative to its fixed base counterpart.
64

  

 

Since the Fisher index normally approximates the Törnqvist fairly closely, we expect 

both the chained Fisher and Törnqvist indexes to exhibit downward chain drift. However, 

in our empirical example, the above expectation that the Fisher index is subject to 

downward chain drift was not realized: there was substantial upward chain drift for both 

indexes. Feenstra and Shapiro (2003) also found upward chain drift in the Törnqvist 

formula using an alternative scanner data set. Persons (1928; 100-105) had an extensive 

discussion of the chain drift problem with the Fisher index and he gave a numerical 

example on page 102 of his article which showed how upward chain drift could occur. 

We have adapted his example in Table 1 below. 

 

Table 1: Prices and Quantities for Two Products and the Fisher Fixed Base and 

Chained Price Indexes 

 
t p1

t 
p2

t 
q1

t 
q2

t 
PF

t 
PFCh

t 

1 2 1 100 1 1.00000 1.00000 

2 10 1 40 40 4.27321 4.27321 

3 10 1 25 80 3.55553 4.27321 

4 5 2 50 20 2.45676 2.96563 

   

Product 1 is on sale in period 1 and goes back to a relatively high price in periods 2 and 3 

and then goes on sale again but the discount is not as steep as the period 1 discount. 

Product 2 is at its “regular” price for periods 1-3 and then rises steeply in period 4. 

Products 1 and 2 are close substitutes so when product 1 is steeply discounted, only 1 unit 

of product 2 is sold in period 1 while 100 units of product 1 are sold. When the price of 

product 1 increases fivefold in period 2, demand for the product falls and purchasers 

switch to product 2 but the adjustment to the new higher price of product 1 is not 

complete in period 2: in period 3 (where prices are unchanged from period 2), purchasers 

continue to substitute away from product 1 and towards product 2. It is this incomplete 

adjustment that causes the chained index to climb above the fixed base index in period 

                                                 
64

  Fisher (1922; 284) found little difference in the fixed base and chained Fisher indexes for his particular 

data set which he used to compare 119 different index number formulae. Fisher (1922;  noted that the Carli, 

Laspeyres and share weighted Carli chained indexes showed upward chain drift. However, Persons (1921; 

110) showed that the Fisher chained index ended up about 4% lower than its fixed base counterpart for his 

agricultural data set covering 10 years. This is an early example of the downward chain drift associated 

with the use of the Fisher index. 
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3.
65

 Thus it is not always the case that the Fisher index is subject to downward chain drift 

but we do expect that “normally”, this would be the case.  

 

The fourth set of conditions that ensure that there is no chain drift are assumptions (49) 

and (50); i.e., the assumption that shares and log prices have linear trends. To prove this 

assertion, substitute equations (49) into either one of the two right hand side equations in 

(65) and we find that the resulting sum of terms is 0.
66

 This result is of some importance 

at higher levels of aggregation where aggregate prices and quantities are more likely to 

have smooth trends. If the trends are actually linear, then this result shows that there will 

be no chain drift if the Törnqvist Theil index number formula is used to aggregate the 

data.
67

 However, when this formula is used at the elementary level when there are 

frequent fluctuations in prices and quantities, chain drift is likely to occur and thus the 

use of a fixed base index or a multilateral index is preferred under these conditions. 

 

The main advantage of the chain system is that under conditions where prices and 

quantities are trending smoothly, chaining will reduce the spread between the Paasche 

and Laspeyres indexes.
68

 These two indexes each provide an asymmetric perspective on 

the amount of price change that has occurred between the two periods under 

consideration and it could be expected that a single point estimate of the aggregate price 

change should lie between these two estimates. Thus at higher levels of aggregation, the 

use of either a chained Paasche or Laspeyres index will usually lead to a smaller 

difference between the two and hence to estimates that are closer to the “truth”.  

 

Hill (1988; 136-137), drawing on the earlier research of Szulc (1983), noted that it is not 

appropriate to use the chain system when prices oscillate (or “bounce” to use Szulc’s 

(1983; 548) term). This phenomenon can occur in the context of regular seasonal 

fluctuations or in the context of periodic heavily discounting of prices. However, in the 

context of roughly monotonically changing prices and quantities, Hill recommended the 

use of chained symmetrically weighted indexes.
69

 The Fisher and Törnqvist price index 

indexes are examples of symmetrically weighted indexes. 

 

An alternative to the use of a fixed base index is the use of a multilateral index. A 

problem with the use of a fixed base index is that it depends asymmetrically on the choice 

of the base period. If the structure of prices and quantities for the base period is unusual 

and fixed base index numbers are used, then the choice of the base period could lead to 

“unusual” results. Multilateral indexes treat each period symmetrically and thus avoid 

                                                 
65

 Persons (1928; 102) explained that it was incomplete adjustment that caused the Fisher chained index to 

climb above the corresponding fixed base index in his example. 
66

 This result was first established by Alterman, Diewert and Feenstra (1999; 61-65). 
67

 This transitivity property carries over to an approximate transitivity property for the Fisher and Walsh 

index number formulae using the fact that these indexes approximate the Törnqvist Theil index to the 

second order around an equal price and quantity point; see Diewert (1978) on these approximations.  
68

 See Diewert (1978; 895) and Hill (1988) for additional discussion on the benefits and costs of chaining. 
69

 Vartia and Suoperä (2018) also recommend the use of symmetrically weighted index numbers. 
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this problem. In the following section, we will introduce some possible multilateral 

indexes that are free of chain drift (within our window of T observations).
70

  

 

8. Relationships between the Törnqvist Index and the GEKS and CCDI Multilateral 

Indexes 

   

It is useful to introduce some additional notation at this point. Denote the Laspeyres, 

Paasche and Fisher price indexes that compare the prices of period j to the prices of 

period i (the base period for the comparison) by PL(i,j), PP(i,j) and PF(i,j) respectively. 

These indexes are defined as follows for r,t = 1,...,N: 

 

(66) PL(r,t)  p
t
q

r
/p

r
q

r
 ; 

(67) PP(r,t)  p
t
q

t
/p

r
q

t
 ; 

(68) PF(r,t)  [PL(r,t)PP(r,t)]
1/2

 . 

 

The Fisher indexes have very good axiomatic properties and hence are preferred indexes 

from the viewpoint of the test or axiomatic approach.
71

 

 

Obviously, one could choose period 1 as the base period and form the following sequence 

of price levels relative to period 1: PF(1,1) = 1, PF(1,2), PF(1,3), ..., PF(1,T). But one could 

also use period 2 as the base period and use the following sequence of price levels: 

PF(2,1), PF(2,2) = 1,  PF(2,3), ..., PF(2,T). Each period could be chosen as the base period 

and thus we end up with T alternative series of Fisher price levels. Since each of these 

sequences of price levels is equally plausible, Gini (1931) suggested that it would be 

appropriate to take the geometric average of these alternative price levels in order to 

determine the final set of price levels. Thus the GEKS price levels 
72

for periods t = 

1,2,...,T are defined as follows: 

 

(69) pGEKS
t
  [r=1

T
 PF(r,t)]

1/T
.        

                      

Note that all time periods are treated in a symmetric manner in the above definitions. The 

GEKS price indexes PGEKS
t
 are obtained by normalizing the above price levels so that the 

period 1 index is equal to 1. Thus we have the following definitions for PGEKS
t
 for t = 

1,...,T: 

 

(70) PGEKS
t
  pGEKS

t
/pGEKS

1
. 

 

It is straightforward to verify that the GEKS price indexes satisfy Walsh’s multiperiod 

identity test which becomes the following test in the present context: 

                                                 
70

 Ivancic, Diewert and Fox (2009) (2011) advocated the use of multilateral indexes adapted to the time 

series context in order to control chain drift. Balk (1980) (1981) also advocated the use of multilateral 

indexes in order to address the problem of seasonal commodities.  
71

 See Diewert (1992) on the axiomatic properties of the Fisher index.  
72

 Eltetö and Köves (1964) and Szulc (1964) independently derived the GEKS price indexes by an 

alternative route. Thus the name GEKS has the initials of all four primary authors of the method. Ivancic, 

Diewert and Fox (2009) (2011) suggested the use of the GEKS index in the time series context.  
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(71) [PGEKS
2
/PGEKS

1
][PGEKS

3
/PGEKS

2
]...[PGEKS

T
/PGEKS

T1
][PGEKS

1
/PGEKS

T
] = 1. 

 

Thus the GEKS indexes are not subject to chain drift within the window of T periods 

under consideration.        

 

Recall definition (63) which defined the logarithm of the Törnqvist price index, lnPT(i,j), 

that compared the prices of period j to the prices of period i. The GEKS methodology can 

be applied using PT(r,t) in place of the Fisher PF(r,t) as the basic bilateral index building 

block. Thus define the period t GEKS Törnqvist price level, pGEKST
t
, for t = 1,...,T as 

follows: 

 

(72) pGEKST
t
  [r=1

T
 PT(r,t)]

1/T
.        

                      

The GEKST price indexes PGEKST
t
 are obtained by normalizing the above price levels so 

that the period 1 index is equal to 1. Thus we have the following definitions for PGEKST
t
 

for t = 1,...,T: 

 

(73) PGEKST
t
  pGEKST

t
/pGEKST

1
. 

 

Since PT(r,t) approximates PF(r,t) to the second order around an equal price and quantity 

point, the PGEKST
t
 will usually be quite close to the corresponding PGEKS

t
 indexes.  

 

It is possible to provide a very simple alternative approach to the derivation of the GEKS 

Törnqvist price indexes.
73

 Define the sample average sales share for product n, sn, and 

the sample average log price for product n, lnpn, as follows for n = 1,...,N: 

 

(74) sn     t=1
T
 (1/T)stn ; 

(75) lnpn  t=1
T
 (1/T)lnptn . 

 

The logarithm of the CCDI price level for period t, lnpCCDI
t
, is defined by comparing the 

prices of period t with the sample average prices using the bilateral Törnqvist formula; 

i.e., for t = 1,...,T, we have the following definitions: 

 

(76) lnpCCDI
t
  n=1

N
 ½(stn + sn)(lnptn  lnpn). 

 

The CCDI price index for period t, PCCDI
t
, is defined as the following normalized CCDI 

price level for t = 1,...,T: 

 

(77) PCCDI
t
  pCCDI

t
/pCCDI

1
 . 

 

Using the above definitions, the logarithm of the CCDI price index for period t is equal to 

the following expressions for t = 1,...,T: 

                                                 
73

 This approach is due to Inklaar and Diewert (2015). It is an adaptation of the distance function approach 

used by Caves, Christensen and Diewert (1982) to the price index context.  
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(78) lnPCCDI
t
 = lnpCCDI

t
  lnpCCDI

1
 

                   = n=1
N
 (½)(stn + sn)(lnptn  lnpn)  n=1

N
 (½)(s1n + sn)(lnp1n  lnpn) 

                   = lnPT
t
 + n=1

N
 (½)(stn  sn)(lnp1n  lnpn)  n=1

N
 (½)(s1n  sn)(lnptn  lnpn) 

                   = lnPGEKST
t
 

 

where the last equality follows by direct computation or by using the computations in 

Inklaar and Diewert (2015).
74

 Thus the CCDI multilateral price indexes are equal to the 

GEKS Törnqvist multilateral indexes defined by (73). Define s

  [s1,..., sN] as the 

vector of sample average shares and lnp

  [lnp1,...,lnpN] as the vector of sample 

average log prices. Then the last two terms on the right hand side of the penultimate 

equality in (80) can be written as (½)NCov(s
t
  s


,lnp

1
  lnp


)  (½)NCov(s

1
  s


,lnp

t
  

lnp

). For our empirical example, the sample average of these two sets of covariance 

terms turned out to be 0 with variances equal to 0.00024 and 0.00036 respectively.  Thus 

it is likely that lnPCCDI
t
  lnPT

t
 for each t. Moreover, under the assumptions of linear 

trends in log prices and linear trends in shares, assumptions (49) and (50), Alterman, 

Diewert and Feenstra (1999) showed that the period t bilateral Törnqvist price index, PT
t
, 

is equal to its chained counterpart for any t.
75

 This result implies that PT
t
 = PCCDI

t
 = 

PGEKST
t
 for t = 1,...,T under the linear trends assumption. Thus we expect the period t 

multilateral index, PGEKST
t
 = PCCDI

t
 to approximate the corresponding fixed base period t 

Törnqvist price index, PT
t
, provided that prices and quantities have smooth trends.  

 

Since PF
t
 approximates PT

t
, we expect that the following approximate equalities will hold 

under the smooth trends assumption for t = 1,...,T: 

 

(79) PF
t
  PT

t
  PGEKS

t
  PGEKST

t
 = PCCDI

t
. 

 

The above indexes will be free from chain drift within the window of T periods;
76

 i.e., if 

prices and quantities for any two periods in the sample are equal, then the price index will 

register the same value for these two periods.  

 

9. Unit Value Price and Quantity Indexes   
     

As was mentioned in section 2, there is a preliminary aggregation over time problem that 

needs to be addressed; i.e., exactly how should the period t prices and quantities for 

commodity n, pn
t
 and qn

t
, that are used in an index number formula be defined?  During 

any time period t, there will typically be many transactions in a specific commodity n at a 

number of different prices.  Hence, there is a need to provide a more precise definition for 

the “average” or “representative” price for commodity n in period t, pn
t
. Starting with 

                                                 
74

 The second from last equality was derived in Diewert and Fox (2017; 17). 
75

 See the discussion below equation (65). Note that the assumption of linear trends in shares is not 

consistent with the existence of new and disappearing products. 
76

 See de Haan (2015) and Diewert and Fox (2017) for discussions of the problems associated with linking 

the results from one rolling window multilateral comparison to a subsequent window of observations. 

Empirically, there does not appear to be much chain drift between the indexes generated by subsequent 

windows.  
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Drobisch (1871), many measurement economists and statisticians advocated the use of 

the unit value (total value transacted divided by total quantity) as the appropriate price pn
t
 

for commodity n and the total quantity transacted during period t as the appropriate 

quantity, qn
t
; e.g., see Walsh (1901; 96) (1921; 88), Fisher (1922; 318) and Davies (1924; 

183) (1932; 59). If it is desirable to have qn
t
 be equal the total quantity of commodity n 

transacted during period t and also desirable to have the product of the price pn
t
 times 

quantity qn
t
 to be equal the value of period t transactions in commodity n, then one is  

forced to define the aggregate period t price for commodity n, pn
t
, to be the total value  

transacted during the period divided by the total quantity transacted, which is the unit 

value for commodity n.
77

 

 

There is general agreement that a unit value price is an appropriate price concept to be 

used in an index number formula if the transactions refer to a narrowly defined 

homogeneous commodity. Our task in this section is to look at the properties of a unit 

value price index when aggregating over commodities that are not completely 

homogeneous. We will also look at the properties of the companion quantity index in this 

section. 

 

The period t unit value price level, pUV
t
, and the corresponding period t unit value price 

index, PUV
t
, are defined as follows for t = 1,...,T: 

 

(80) pUV
t
  p

t
q

t
/1Nq

t
 ; 

(81) PUV
t
  pUV

t
/pUV

1
 

                = [p
t
q

t
/1Nq

t
]/[p

1
q

1
/1Nq

1
] 

                = [p
t
q

t
/p

1
q

1
]/QUV

t
 

 

where the period t unit value quantity index, QUV
t
, is defined as follows for t = 1,...,T: 

 

(82) QUV
t
  1Nq

t
/1Nq

1
. 

 

It can be seen that the unit value price index satisfies Walsh’s multiperiod identity test 

and thus PUV
t
 is free of chain drift.

78
 

 

We will look at the relationship of the unit value quantity indexes, QUV
t
, with the 

corresponding Laspeyres, Paasche and Fisher fixed base quantity indexes, QL
t
, QP

t
 and 

QF
t
, defined below for t = 1,...,T: 

 

(83) QL
t
  p

1
q

t
/p

1
q

1
 = n=1

N
 s1n(qtn/q1n) ; 

(84) QP
t
  p

t
q

t
/p

t
q

1
  = [n=1

N
 stn(qtn/q1n)

1
]
1

 ; 

(85) QF
t
  [QL

t
QP

t
]

1/2
 . 

 

                                                 
77

 For additional discussion on unit value price indexes, see Balk (2008; 72-74) and Diewert and von der 

Lippe (2010). 
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For the second set of equations in (83), we require that q1n > 0 for all n and for the second 

set of equations in (84), we require that all qtn > 0. Recall that the period t sales share 

vector s
t
  [st1,...,stN] was defined at the beginning of section 2. The period t quantity 

share vector S
t
  [St1,...,StN]  was also defined in section 2 as follows for t = 1,...,T: 

 

(86) S
t
  q

t
/1Nq

t
 .    

 

Below, we will make use of the following identities (87), which hold for t = 1,...,T: 

 

(87) n=1
N
 [pUV

t
  ptn]qtn = n=1

N
 [(p

t
q

t
/1Nq

t
)  ptn]qtn                       using definitions (80) 

                                        = (p
t
q

t
/1Nq

t
)1Nq

t
  p

t
q

t
 

                                        = 0. 

 

The following relationships between QUV
t
 and QL

t
 hold for t = 1,...,T: 

 

(88) QUV
t
  QL

t
 = [1Nq

t
/1Nq

1
]  [p

1
q

t
/p

1
q

1
]                                        using (82) and (83) 

                          = n=1
N
 S1n(qtn/q1n)  n=1

N
 s1n(qtn/q1n)                         using (86) and (83) 

                          = n=1
N
 [S1n  s1n](qtn/q1n) 

                          = NCov(S
1
  s

1
,q

t
/q

1
) 

 

where the vector of period t to period 1 relative quantities is defined as q
t
/q

1
  [qt1/q11, 

qt2/q12...,qtn/q1N]. As usual, there are 3 special cases of (88) which will imply that QUV
t
 = 

QL
t
. (i) S

1
 = s

1
 so that the vector of period 1 real quantity shares S

1
 is equal to the period 1 

sales share vector s
1
. This condition is equivalent to p

1
 = 11N so that all period 1 prices 

are equal. (ii) q
t
 = tq

1
 for t = 2,3,...,T so that quantities vary in strict proportion over time. 

(iii) Cov(S
1
  s

1
,q

t
/q

1
) = 0.

79
     

 

There are two problems with the above bias formula: (i) it is difficult to form a judgement 

on the sign of the covariance Cov(S
1
  s

1
,q

t
/q

1
) and (ii) the decomposition given by (88) 

requires that all components of the period 1 quantity vector be positive.
80

 It would be 

useful to have a decomposition that allowed some quantities (and sales shares) to be 

equal to 0. Consider the following alternative decomposition to (89) for t = 1,...,T: 

 

(89) QUV
t
  QL

t
 = [1Nq

t
/1Nq

1
]  [p

1
q

t
/p

1
q

1
]                                        using (82) and (83) 

                          = n=1
N
 [(qtn/1Nq

1
)  (p1nqtn/p

1
q

1
)] 

                          = n=1
N
 [(1/1Nq

1
)  (p1n/p

1
q

1
)]qtn  

                          = n=1
N
 [(p

1
q

1
/1Nq

1
)  p1n][qtn/p

1
q

1
] 

                          = n=1
N
 [pUV

1
  p1n][qtn/p

1
q

1
]                                       using (80) for t = 1 

                          = n=1
N
 [pUV

1
  p1n][qtn  q1nQUV

t
]/p

1
q

1
                       using (87) for t = 1 

                          = QUV
t
 n=1

N
 [pUV

1
  p1n][(qtn/QUV

t
)  q1n]/p

1
q

1
        

                          = QUV
t
 n=1

N
 s1n[(pUV

1
/p1n)  1][(qtn/q1nQUV

t
)  1]        if q1n > 0 for all n 

                                                 
79

 For similar bias formulae, see Balk (2008; 73-74) and Diewert and von der Lippe (2010). 
80

 We are assuming that all prices are positive in all periods (so if there are missing prices they must be 

replaced by positive imputed prices) but we are not assuming that all quantities (and expenditure shares) 

are positive.  
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                          = QUV
t
 L

t
 

 

where the period t error term L
t
 is defined for t = 1,...,T as: 

 

(90) L
t
  n=1

N
 [pUV

1
  p1n][(qtn/QUV

t
)  q1n]/p

1
q

1
.
81

  

 

If q1n > 0 for n = 1,...,N, then L
t
 is equal to n=1

N
 s1n[(pUV

1
/p1n)  1][(qtn/q1nQUV

t
)  1].  

 

Note that the terms on the right hand side of (89) can be interpreted as (N/p
1
q

1
) times the 

covariance Cov(pUV
1
1Np

1
, q

t
QUV

t
q

1
) since 1N(q

t
QUV

t
q

1
) = 0. If the products are 

substitutes, it is likely that this covariance is negative, since if p1n is unusually low, we 

would expect that it would be less than the period 1 unit value price level pUV
1
 so that 

pUV
1
  p1n > 0. Furthermore, if p1n is unusually low, then we would expect that the 

corresponding q1n is unusually high, and thus it is likely that q1n is greater than qtn/QUV
t
 

and so qtn  q1nQUV
t
 < 0. Thus the N terms in the covariance will tend to be negative 

provided that there is some degree of substitutability between the products.
82

 However, 

looking at  formula (90) for L
t
, it can be seen that all terms on the right hand side of (90) 

do not depend on t, except for the N period t deflated product quantity terms, qtn/QUV
t
 for 

n = 1,...,N. Hence if there is a great deal of variation in the period t quantities qtn, then 

qtn/QUV
t
  q1n could be positive or negative and thus the tendency for L

t
 to be negative 

will be a weak one. Thus our expectation is that the error term L
t
 is likely to be negative 

and hence QUV
t
 < QL

t
 for t  2 but this expectation is a weak one.  

 

Our scanner data set listed in the Appendix uses estimated reservation prices for products 

that were absent in any period. Note that the period t unit value price and quantity 

indexes, PUV
t
 and QUV

t
 defined by (81) and (82) above are well defined using reservation 

prices and 0 quantities for the unavailable products. However, PUV
t
 and QUV

t
 do not 

depend on the estimated reservation prices; i.e., the definitions of PUV
t
 and QUV

t
 zero out 

the estimated reservation prices. However, the error term L
t
 defined above by (90) does 

not zero out the estimated reservation prices for products that are absent in period 1 but 

present in period t. This makes sense, since QL
t
  p

1
q

t
/p

1
q

t
 will depend on the products n 

that are absent in period 1 but are present in period t and in defining L
t
, we are 

comparing QUV
t
 (does not depend on p1n) to QL

t
 (does depend on p1n). Thus a unit value 

price index in general cannot be consistent with the (Hicksian) economic approach to 

index number theory if there are new or disappearing products in the sample of products. 

This same point applies to the use of several multilateral indexes in the context of 

changes in the availability of products as we shall see later.
83

  

                                                 
81

 Note that this error term is homogeneous of degree 0 in the components of p
1
, q

1
 and q

t
. Hence it is 

invariant to proportional changes in the components of these vectors. 
82

 The results in previous sections looked at responses of product shares to changes in prices and with data 

that are consistent with CES preferences, the results depended on whether the elasticity of substitution was 

greater or less than unity. In the present section, the results depend on whether the elasticity of substitution 

is equal to 0 or greater than 0; i.e., it is the response of quantities (rather than shares) to lower prices that 

matters.  
83

 An examination of formula (90) shows that if there are many missing products in period 1, this will tend 

to increase the probability that L
t
 is negative.
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As usual, there are 3 special cases of (89) which will imply that QUV
t
 = QL

t
: (i) p

1
 = 11N 

so that all period 1 prices are equal; (ii) q
t
 = tq

1
 for t = 2,3,...,T so that quantities vary in 

strict proportion over time; (iii) Cov(pUV
1
1N  p

1
,q

t
  QUV

t
q

1
) = 0. These conditions are 

equivalent to our earlier conditions listed below (88). 

 

If we divide both sides of equation t in equations (89) by QUV
t
, we obtain the following 

system of identities for t = 1,...,T: 

 

(91) QL
t
/QUV

t
 = 1  L

t
 

 

where we expect L
t
 to be a small negative number in the elementary index context. 

 

The identities in (89) and (91) are valid if we interchange prices and quantities. The 

quantity counterparts to pUV
t
  and PUV

t
 defined by (80) and (81) are the period t Dutot 

quantity level qD
t
 and quantity index QD

t
 
84

 defined as qD
t
  p

t
q

t
/1Np

t
 = 

t
q

t
 (where 

t
  

p
t
/1Np

t
 is a vector of period t price weights for q

t
) and QD

t
  qUV

t
/qUV

1
 =  [p

t
q

t
/p

1
q

1
]/PD

t
 

where we redefine the period t Dutot price level as pD
t
  1Np

t
 and the period t Dutot price 

index as PD
t
  pD

t
/pD

1
 = 1Np

t
/1Np

1
 which coincides with our earlier definition (10) for PD

t
. 

Using these definitions and interchanging prices and quantities, equations (91) become 

the following equations for t = 1,...,T: 

 

(92) PL
t
/PD

t
 = 1 L

t*
   

 

where the period t error term L
t*

 is defined for t = 1,...,T as: 

 

(93) L
t*

   n=1
N
 [qD

1
  q1n][(ptn/PD

t
)  p1n]/p

1
q

1
. 

 

If p1n is unusually low, then it is likely that it will be less than ptn/PD
t
  and it is also likely 

that q1n will be unusually high and hence greater than the average period 1 Dutot quantity 

level, qD
1
. Thus the N terms in the definition of L

t*
 will tend to be negative and thus 1  

L
t*

 will tend to be greater than 1. Thus there will be a tendency for PD
t
 < PL

t
 for t  2 but 

again, this expectation is a weak one. 

 

It can be verified that the following identities hold for the period t Laspeyres, Paasche 

and unit value price and quantity indexes for t = 1,...,T: 

 

(94) p
t
q

t
/p

1
q

1
 = PUV

t
QUV

t
 = PP

t
QL

t
 = PL

t
QP

t
. 

 

Equations (94) imply the following identities for t = 1,...,T: 

 

(95) PUV
t
/PP

t
 = QL

t
/QUV

t
 

                     = 1  L
t
 

 

                                                 
84

 Balk (2008; 7) called QUV
t
 a Dutot-type quantity index. 
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where the last set of equations follow from equations (91). Thus we expect that PUV
t
 > PP

t
 

for t = 2,3,...,T if the products are substitutes and L
t
 is negative.  

 

We now turn our attention to developing an exact relationship between QUV
t
 and the 

Paasche quantity index QP
t
. Using definitions (82) and (84), we have for t = 1,...,T: 

 

(96) [QUV
t
]
1

  [QP
t
]
1

 = [1Nq
1
/1Nq

t
]  [p

t
q

1
/p

t
q

t
]                             using (82) and (84) 

                                    = n=1
N
 [Stn  stn][q1n/qtn] 

                                    = NCov(S
t
 s

t
,q

1
/q

t
)      

 

where the second set of equalities in (96) follows using (88) and (86), assuming that qtn > 

0 for n = 1,...,N. 

 

As usual, there are 3 special cases of (96) which will imply that QUV
t
 = QP

t
: (i) S

t
 = s

t
 so 

that the vector of period t real quantity shares S
t
 is equal to the period t sales share vector 

s
t
. This condition is equivalent to p

t
 = t1N so that all period t prices are equal. (ii) q

t
 = 

tq
1
 for t = 2,3,...,T so that quantities vary in strict proportion over time. (iii) NCov(S

t
 

s
t
,q

1
/q

t
) = 0.     

 

Again, there are two problems with the above bias formula: (i) it is difficult to form a 

judgement on the sign of the covariance NCov(S
t
 s

t
,q

1
/q

t
) and (ii) the decomposition 

given by (96) requires that all components of the period t quantity vector be positive. We 

will proceed to develop a decomposition that does not require the positivity of q
t
. The 

following exact decomposition holds for t = 1,...,T: 

 

(97) [QUV
t
]
1

  [QP
t
]
1

 = [1Nq
1
/1Nq

t
]  [p

t
q

1
/p

t
q

t
] 

                          = n=1
N
 [(q1n/1Nq

t
)  (ptnq1n/p

t
q

t
)] 

                          = n=1
N
 [(1/1Nq

t
)  (ptn/p

t
q

t
)]q1n  

                          = n=1
N
 [(p

t
q

t
/1Nq

t
)  ptn][q1n/p

t
q

t
] 

                          = n=1
N
 [pUV

t
  ptn][q1n/p

t
q

t
]                                          using (80) for t = t 

                          = n=1
N
 [pUV

t
  ptn][q1n  (qtn/QUV

t
)]/p

t
q

t
                       using (87) for t = t 

                          = [QUV
t
]
1

 n=1
N
 [pUV

t
  ptn][(q1nQUV

t
)  qtn]/p

t
q

t
        

                          = [QUV
t
]
1

 n=1
N
 stn[(pUV

t
/ptn)  1][(q1nQUV

t
/qtn)  1]      if qtn > 0 for all n 

                          = [QUV
t
]
1

 P
t
  

  

where the period t error term P
t
 is defined as follows for t = 1,...,T: 

 

(98) P
t
   n=1

N
 [pUV

t
  ptn][(q1nQUV

t
)  qtn]/p

t
q

t
.
85

  

                                                 
85

 Note that this error term is homogeneous of degree 0 in the components of p
t
, q

1
 and q

t
. Thus for  > 0, 

we have P(p
t
,q

1
,q

t
) = P(p

t
,q

1
,q

t
) = P(p

t
,q

1
,q

t
) = P(p

t
,q

1
,q

t
). Note also that P

t
 is well defined if some 

quantities are equal to 0 and P
t
 does depend on the reservation prices ptn for products n that are not present 

in period t. If product n is missing in period t, then it is likely that the reservation price p tn is greater than 

the unit value price level for period t, pUV
t
, and since qtn = 0, it can be seen that the nth term on the right 

hand side of (98) will be negative; i.e., the greater the number of missing products in period t, the greater is 

the likelihood that P
t
 is negative.     
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If qtn > 0 for n = 1,...,N, then P
t
 is equal to n=1

N
 stn[(pUV

t
/ptn)  1][(q1nQUV

t
/qtn)  1].  

 

Note that the terms on the right hand side of (97) can be interpreted as (N/p
t
q

t
) times the 

covariance Cov(pUV
t
1N  p

t
,q

1
  [QUV

t
]
1

q
t
) since 1N(q

1
  [QUV

t
]
1

q
t
) = 0. If the products 

are substitutable, it is likely that this covariance is negative, since if ptn is unusually low, 

we would expect that it would be less than the period t unit value price pUV
t
 so that pUV

t
  

ptn > 0. If ptn is unusually low, then we also expect that the corresponding qtn is unusually 

high, and thus it is likely that qtn is greater than q1nQUV
t
 and so q1nQUV

t
  qtn < 0. Thus the 

N terms in the covariance will tend to be negative. Thus our expectation is that the error 

term P
t
 < 0 and [QUV

t
]
1

 < [QP
t
]
1

 or QUV
t
 > QP

t
  for t  2.

86
  

 

There are 3 special cases of (97) which will imply that QUV
t
 = QP

t
: (i) p

t
 = t1N so that all 

period t prices are equal; (ii) q
t
 = tq

1
 for t = 2,3,...,T so that quantities vary in strict 

proportion over time; (iii) Cov(pUV
t
1N  p

t
,q

1
  [QUV

t
]
1

q
t
) = 0. These conditions are 

equivalent to our earlier conditions listed below (96).     

 

If we divide both sides of equation t in equations (97) by [QUV
t
]
1

, we obtain the 

following system of identities for t = 1,...,T: 

 

(99) QP
t
/QUV

t
 = [1  P

t
]
1

 

 

where we expect P
t
 to be a small negative number if the products are substitutable. Thus 

we expect QP
t
 < QUV

t
 < QL

t
 for t = 2,3,...,T. 

 

Equations (97) and (99) are valid if we interchange prices and quantities. Using the 

definitions for the Dutot price and quantity levels and indexes t and interchanging prices 

and quantities, equations (99) become PP
t 
/PD

t
 = [1  P

t*
]
1

 where P
t*

  n=1
N
 [qD

t
  

qtn][(p1nPD
t
)  ptn]/p

t
q

t
 for t = 1,...,T. If ptn is unusually low, then it is likely that it will be 

less than ptn/PD
t
  and it is also likely that qtn will be unusually high and hence greater than 

the average period t Dutot quantity level qD
t
. Thus the N terms in the definition of P

t*
 

will tend to be negative and hence a tendency for [1  P
t*

]
1

 to be less than 1. Thus there 

will be a tendency for PP
t
 < PD

t
 for t  2.     

 

Equations (94) imply the following identities for t = 1,...,T: 

 

(100) PUV
t
/PL

t
 = QP

t
/QUV

t
 

                       = [1  P
t
]
1 

 

where the last set of equations follow from equations (99). Thus we expect that PP
t
 < PUV

t
 

< PL
t
 for t = 2,3,...,T if the products are substitutes.  
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 Our expectation that P
t
 is negative is more strongly held than our expectation that L

t
 is negative.  
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Equations (95) and (100) develop exact relationships for the unit value price index PUV
t
 

with the corresponding fixed base Laspeyres and Paasche price indexes, PL
t
 and PP

t
. 

Taking the square root of the product of these two sets of equations leads to the following 

exact relationships between the fixed base Fisher price index, PF
t
, and its unit value 

counterpart period t index, PUV
t
, for t = 1,...,T: 

 

(101) PUV
t
 = PF

t
{(1  L

t
)/( 1  P

t
)}

1/2
 

 

where L
t
 and P

t
 are defined by (90) and (98). If there are no strong (divergent) trends in 

prices and quantities, then it is likely that L
t
 is approximately equal to P

t
 and hence 

under these conditions, it is likely that PUV
t
  PF

t
; i.e., the unit value price index will 

provide an adequate approximation to the fixed base Fisher price index under these 

conditions. However, with diverging trends in prices and quantities (in opposite 

directions), we would expect the error term P
t
 defined by (98) to be more negative than 

the error term L
t
 defined by (90) and thus under these conditions, we expect the unit 

value price index PUV
t
 to have a downward bias relative to its Fisher price index 

counterpart PF
t
.
87

 

 

However, for our empirical example, the unit value price indexes did not approximate 

their Fisher counterparts very well: the sample averages of the PUV
t
 and PF

t
 were 1.0126 

and 0.9745 respectively. The sample averages of the L
t
 and P

t
 were 0.1147 and 

0.0316 respectively so on average, these error terms were negative as anticipated but the 

average magnitude of the L
t
 was very much larger than the average magnitude of the P

t
. 

The reason for the large differences in the averages of the L
t
 and P

t
 can be traced to the 

fact that products 2 and 4 had 0 quantities for observations 1-8. An examination of 

formula (90) for L
t
 shows that if some q1n are equal to 0 and the corresponding imputed 

prices p1n are greater than the unit value price for observation 1, pUV
1
, then the nth term in 

the sum of terms on the right hand side of can become negative and large in magnitude, 

which can explain why the average magnitude of the L
t
 was very much larger than the 

average magnitude of the P
t
. Thus we dropped the data for year 1 and started our indexes 

at the beginning of year 2. The resulting computations showed that the unit value price 

indexes approximated their Fisher counterparts much more closely: the new sample 

averages for the PUV
t
 and PF

t
 were 0.7963 and 0.8309 which is in line with our a priori 

expectations (that the unit value price index was likely to have a downward bias relative 

to its fixed base Fisher index counterpart). The new sample averages of the L
t
 and P

t
 

were 0.0046 and  0.0873 respectively.  

 

It is possible that unit value price indexes can approximate their Fisher counterparts to 

some degree in some circumstances but these approximations are not likely to be very 
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 The Dutot price index counterparts to the exact relations (101) are PF
t
 = PD

t
{(1  L

t*
)/( 1  P

t*
)}

1/2
 for t 

=1,...,T. Thus with diverging trends in prices and quantities (in opposite directions), we would expect the 

error term P
t*

 to be more negative than the error term L
t*

 and hence we would expect PD
t
 > PF

t
 for t  2. 

Note that the Dutot price index can be interpreted as a fixed basket price index where the basket is 

proportional to a vector of ones. Thus with divergent trends in prices and quantities in opposite directions, 

we would expect the Dutot index to exhibit substitution bias and hence we would expect PD
t
 > PF

t
 for t  2.    
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accurate. If the products are somewhat heterogeneous and there are some divergent trends 

in price and quantities, then the approximations are likely to be poor.
88

 They are also 

likely to be poor if there is substantial product turnover.  

 

10. Quality Adjusted Unit Value Price and Quantity Indexes        
 

In the previous section, the period t unit value quantity level was defined by qUV
t
  1Nq

t
 

= n=1
N
 qtn for t = 1,...,T. The corresponding period t unit value quantity index was 

defined by (82) for t = 1,...,T: QUV
t
  1Nq

t
/1Nq

1
. In the present section, we will consider 

quality adjusted unit value quantity levels, qUV
t
, and the corresponding quality adjusted 

unit value quantity indexes, QUV
t
, defined as follows for t = 1,...,T: 

 

(102) qUV
t
  q

t
 ; 

(103) QUV
t
  qUV

t
/qUV

1
 = q

t
/q

1
  

 

where   [1,...,N] is a vector of positive quality adjustment factors. Note that if 

consumers value their purchases of the N products according to the linear utility function 

f(q)  q, then the period t quality adjusted aggregate quantity level qUV
t
 = q

t
 can be 

interpreted as the aggregate (sub) utility of consumers of the N products. Note that this 

utility function is linear and thus the products are perfect substitutes, after adjusting for 

the relative quality of the products. The bigger n is, the more consumers will value a 

unit of product n over other products. The period t quality adjusted unit value price level 

and price index, pUV
t
 and PUV

t
, are defined as follows for t = 1,...,T:  

 

(104) pUV
t
  p

t
q

t
/qUV

t
 = p

t
q

t
/q

t
 ; 

(105) PUV
t
  pUV

t
/pUV

1
 = [p

t
q

t
/p

1
q

1
]/QUV

t
 . 

 

It is easy to check that the quality adjusted unit value price index satisfies Walsh’s 

multiperiod identity test and thus is free from chain drift.
89

 Note that the PUV
t
 and QUV

t
 

do not depend on the estimated reservation prices; i.e., the definitions of PUV
t
 and QUV

t
 

zero out any reservation prices that are applied to missing products. Thus a quality 

adjusted unit value price index in general cannot be consistent with the (Hicksian) 

economic approach to index number theory if there are new or disappearing products in 

the sample of products under consideration. 

 

We will start out by comparing QUV
t
 to the corresponding Laspeyres, Paasche and Fisher 

period t quantity indexes, QL
t
, QP

t
 and QF

t
. The algebra in this section follows the algebra 

                                                 
88

 The problem with unit value price indexes is that they correspond to an additive quantity level. If one 

takes the economic approach to index number theory, then an additive quantity level corresponds to a linear 

utility function which implies an infinite elasticity of substitution between products, which is too high in 

general.  
89

 The term “quality adjusted unit value price index” was introduced by Dalén (2001). Its properties were 

further studied by de Haan (2004) and de Haan and Krsinich (2018). Von Auer (2014) considered a wide 

variety of choices for the weight vector  (including  = p
1
 and  = p

t
) and he looked at the axiomatic 

properties of the resulting indexes.   
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in the preceding section. Thus the counterparts to the identities (87) in the previous 

section are the following identities for t = 1,...,T:  

 

(106) n=1
N
 [npUV

t
  ptn]qtn = n=1

N
 [n(p

t
q

t
/q

t
)  ptn]qtn            using definitions (104) 

                                                = (p
t
q

t
/q

t
)q

t
  p

t
q

t
 

                                                = 0. 

 

The difference between the quality adjusted unit value quantity index for period t, QUV
t
, 

and the Laspeyres quantity index for period t, QL
t
, can be written as follows for t = 1,...,T: 

 

(107) QUV
t
  QL

t
 = [q

t
/q

1
]  [p

1
q

t
/p

1
q

1
]                                       using (83) and (103) 

                             = n=1
N
 [(nqtn/q

1
)  (p1nqtn/p

1
q

1
)] 

                             = n=1
N
 [(n/q

1
)  (p1n/p

1
q

1
)]qtn  

                             = n=1
N
 [(np

1
q

1
/q

1
)  p1n][qtn/p

1
q

1
] 

                             = n=1
N
 [npUV

1
  p1n][qtn/p

1
q

1
]                              using (104) for t = 1 

                             = n=1
N
 [npUV

1
  p1n][qtn  q1nQUV

t
]/p

1
q

1
            using (106) for t = 1 

                             = QUV
t
 n=1

N
 n[pUV

1
  (p1n/n)][(qtn/QUV

t
)  q1n]/p

1
q

1
        

                             = QUV
t
 L

t
 

 

where the period t error term L
t
 is defined for t = 1,...,T as: 

 

(108) L
t
  n=1

N
 n[pUV

1
  (p1n/n)][(qtn/QUV

t
)  q1n]/p

1
q

1
.
90

  

 

Assuming that n > 0 for n = 1,...,N, the vector of period t quality adjusted prices p
t
 is 

defined as follows for t = 1,...,T: 

 

(109) p
t
  [pt1,..., ptN]  [pt1/1,pt2/2,...,ptN/N]. 

 

It can be seen that pUV
1
  (p1n/n) is the difference between the period 1 unit value price 

level, pUV
1
, and the period 1 quality adjusted price for product n, p1n/n. Define the 

period t quality adjusted quantity share for product n (using the vector  of quality 

adjustment factors) as follows for t = 1,...,T and n = 1,...,N: 

 

(110) Stn  nqtn/q
t
. 

 

The vector of period t quality adjusted real product shares (using the vector  of quality 

adjustment factors) is defined as S
t
  [St1,St2,...,StN] for t = 1,...,T. It can be seen that 

these vectors are share vectors in that their components sum to 1; i.e., we have for t = 

1,...,T: 

                                                 
90

 This error term is homogeneous of degree 0 in the components of p
1
, q

1
 and q

t
. Hence it is invariant to 

proportional changes in the components of these vectors. Definition (108) is only valid if all n > 0. If this 

is not the case, redefine L
t
 as n=1

N
 [npUV

1
  p1n][qtn  q1nQUV

t
]/p

1
q

1
 and with this change, the 

decomposition defined by the last line of (107) will continue to hold. It should be noted that L
t
 does not 

have an interpretation as a covariance between a vector of price differences and a vector of quantity 

differences.   
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(111) 1NS
t
 = 1. 

 

Using the above definitions, we can show that the period t quality adjusted unit value 

price level, pUV
t
 defined by (104) is equal to a share weighted average of the period t 

quality adjusted prices ptn = ptn/n defined by (109); i.e., for t = 1,...,T, we have the 

following equations: 

 

(112) pUV
t
 = p

t
q

t
/q

t
                                                                       using (104) 

                   = n=1
N
 (ptn/n)(nqtn)/q

t
 

                   = n=1
N
 Stnptn                                                                using (109) and (110) 

                   = S
t
p

t
. 

 

Now we are in a position to determine the likely sign of L
t
 defined by (108). If the 

products are substitutable, it is likely that L
t
 is negative, since if p1n is unusually low, 

then it is likely that the quality adjusted price for product n, p1n/n, is below the weighted 

average of the quality adjusted prices for period 1 which is pUV
1
 = S

1
p

1
 using (112) 

for t = 1. Thus we expect that pUV
1
  (p1n/n) > 0. If p1n is unusually low, then we would 

expect that the corresponding q1n is unusually high, and thus it is likely that q1n is greater 

than qtn/QUV
t
 and so qtn/QUV

t
  q1n < 0. Thus the sum of the N terms on the right hand 

side of (108) is likely to be negative. Thus our expectation
91

 is that the error term L
t
 < 0 

and hence QUV
t
 < QL

t
 for t  2.  

 

As usual, there are 3 special cases of (108) which will imply that QUV
t
 = QL

t
: (i) p

1
 = 

11N so that all period 1 quality adjusted prices are equal; (ii) q
t
 = tq

1
 for t = 2,3,...,T so 

that quantities vary in strict proportion over time; (iii) the following sum of price 

differences times quantity differences equals 0; i.e., n=1
N
 [npUV

1
  p1n][(qtn/QUV

t
)  

q1n] = 0.     

 

If we divide both sides of equation t in equations (108) by QUV
t
, we obtain the following 

system of identities for t = 1,...,T: 

 

(113) QL
t
/QUV

t
 = 1  L

t
 

 

where we expect L
t
 to be a small negative number if the products are substitutes. 

 

The difference between reciprocal of the quality adjusted unit value quantity index for 

period t, [QUV
t
]
1

 and the reciprocal of the Paasche quantity index for period t, [QP
t
]
1

, 

can be written as follows for t = 1,...,T: 

 

(114) [QUV
t
]
1

  [QP
t
]
1

 = [q
1
/q

t
]  [p

t
q

1
/p

t
q

t
]                             using (84) and (103) 

                          = n=1
N
 [(nq1n/q

t
)  (ptnq1n/p

t
q

t
)] 

                                                 
91

 As in the previous section, this expectation is not held with great conviction if the period t quantities have 

a large variance. 



 42 

                          = n=1
N
 [(n/q

t
)  (ptn/p

t
q

t
)]q1n  

                          = n=1
N
 [(np

t
q

t
/q

t
)  ptn][q1n/p

t
q

t
] 

                          = n=1
N
 [npUV

t
  ptn][q1n/p

t
q

t
]                                                using (104)  

                          = n=1
N
 [npUV

t
  ptn][q1n  (qtn/QUV

t
)]/p

t
q

t
                           using (106) 

                          = [QUV
t
]
1 
n=1

N
 n[pUV

t
  (ptn/n)][(q1nQUV

t
)  qtn]/p

t
q

t
        

                          = [QUV
t
]
1

 P
t
 

 

where the period t error term P
t
 is defined for t = 1,...,T as: 

 

(115) P
t
  n=1

N
 n[pUV

t
  (ptn/n)][(q1nQUV

t
)  qtn]/p

t
q

t
.
92

  

 

If the products are substitutable, it is likely that P
t
 is negative, since if ptn is unusually 

low, then it is likely that the period t quality adjusted price for product n, ptn/n, is below 

the weighted average of the quality adjusted prices for period t which is pUV
t
 = S

t
p

t
 

using (112). Thus we expect that pUV
1
  (p1n/n) > 0. If ptn is unusually low, then we 

would expect that the corresponding qtn is unusually high, and thus it is likely that qtn is 

greater than q1nQUV
t
 and so q1nQUV

t
  qtn < 0. Thus the sum of the N terms on the right 

hand side of (115) is likely to be negative. Thus our expectation is that the error term P
t
 

< 0 and hence [QUV
t
]
1

 < [QL
t
]
1

 for  t  2. Assuming that L
t
 is also negative, we have 

QP
t
 < QUV

t
 < QL

t
 for t = 2,...,T as inequalities that are likely to hold.  

 

As usual, there are 3 special cases of (114) which will imply that QUV
t
 = QP

t
: (i) p

t
 = 

t1N so that all period t quality adjusted prices are equal; (ii) q
t
 = tq

1
 for t = 2,3,...,T so 

that quantities vary in strict proportion over time; (iii) the following sum of price 

differences times quantity differences equals zero: i.e., n=1
N
 [npUV

t
  ptn][(q1nQUV

t
)  

qtn] = 0.     

 

If we divide both sides of equation t in equations (114) by [QUV
t
]
1

, we obtain the 

following system of identities for t = 1,...,T: 

 

(116) QP
t
/QUV

t
 = [1  P

t
]
1 

 

where we expect P
t
 to be a small negative number if the products are substitutes.  

 

Equations (113) and (116) develop exact relationships for the quality adjusted unit value 

quantity index QUV
t
 with the corresponding fixed base Laspeyres and Paasche quantity 

indexes, QL
t
 and QP

t
. Taking the square root of the product of these two sets of equations 

leads to the following exact relationships between the fixed base Fisher quantity index, 

QF
t
, and its quality adjusted unit value counterpart period t quantity index, QUV

t
, for t = 

1,...,T: 
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 This error term is homogeneous of degree 0 in the components of p
t
, q

1
 and q

t
. Hence it is invariant to 

proportional changes in the components of these vectors. Definition (115) is only valid if all n > 0. If this 

is not the case, redefine P
t
 as n=1

N
 [pUV

t
  ptn][(q1nQUV

t
)  qtn]/p

t
q

t
 and with this change, the 

decomposition defined by the last line of (114) will continue to hold.. 
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(117) QF
t
 = QUV

t
{(1  L

t
)/( 1  P

t
)}

1/2
 

 

where L
t
 and P

t
 are defined by (108) and (115). If there are no strong (divergent) 

trends in prices and quantities, then it is likely that L
t
 is approximately equal to P

t
 and 

hence under these conditions, it is likely that QUV
t
  QF

t
; i.e., the quality adjusted unit 

value quantity index will provide an adequate approximation to the fixed base Fisher 

price index under these conditions. However, if there are divergent trends in prices in 

quantities (in opposite directions), then it is likely that P
t
 will be more negative than L

t
 

and hence it is likely that QF
t
 < QUV

t
 for t = 2,...,T; i.e., with divergent trends in prices 

and quantities, the quality adjusted unit value quantity index is likely to have an upward 

bias relative to its Fisher quantity index counterparts.
93

 

 

Using equations (105), we have the following counterparts to equations (94) for t = 

1,...,T: 

 

(118) p
t
q

t
/p

1
q

1
 = PUV

t
QUV

t
 = PP

t
QL

t
 = PL

t
QP

t
. 

 

Equations (113), (116) and (118) imply the following identities for t = 1,...,T: 

 

(119) PUV
t
/PP

t
 = QL

t
/QUV

t
 = 1  L

t
 ; 

(120) PUV
t
/PL

t
 =  QP

t
/QUV

t
 = [1  P

t
]
1

. 

 

We expect that L
t
 and P

t
 will be predominantly negative if the products are substitutes 

and thus in this case, the quality adjusted unit value indexes PUV
t
 should satisfy the 

inequalities PP
t
 < PUV

t
 < PL

t
 for t = 2,3,...,T. 

 

Taking the square root of the product of equations (119) and (120) leads to the following 

exact relationships between the fixed base Fisher price index, PF
t
, and its quality adjusted 

unit value counterpart period t index, PUV
t
, for t = 1,...,T: 

 

(121) PUV
t
 = PF

t
{(1  L

t
)/( 1  P

t
)}

1/2
 

 

where L
t
 and P

t
 are defined by (108) and (115). If there are no strong (divergent) 

trends in prices and quantities, then it is likely that L
t
 is approximately equal to P

t
 and 

hence under these conditions, it is likely that PUV
t
  PF

t
; i.e., the quality adjusted unit 

value price index will provide an adequate approximation to the fixed base Fisher price 

index under these conditions. However, if there are divergent trends in prices and 

quantities, then we expect P
t
 to be more negative than L

t
 and hence there is an 

expectation that PUV
t
 < PF

t
 for t = 2,...,T; i.e., we expect that normally PUV

t
 will have a 

                                                 
93

 As was the case in the previous section, if there are missing products in period 1, the expected inequality 

PUV
t
 < PF

t
 may be reversed, because L

t
 defined by (108) may become significantly negative if some q1n = 

0 while their corresponding reservation prices p1n > 0. 
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downward bias relative to PF
t
.
94

 However, if there are missing products in period 1, then 

the bias of PUV
t
 relative to PF

t
 is uncertain. 

 

11. Relationships between Lowe and Fisher Indexes 

 

We now consider how a Lowe (1823) price index is related to a fixed base Fisher price 

index. The framework that we consider is similar to the framework developed in section 

6 above for the annual share weighted Jevons index, PJ
t
. In the present section, instead 

of using the average sales shares for the first year in the sample as weights for a weighted 

Jevons index, we use annual average quantities sold in the first year as a vector of 

quantity weights for subsequent periods. Define the annual average quantity vector q
*
  

[q1
*
,...,qN

*
] for the first T

*
 periods in the sample that make up a year, q

*
, as follows:

95
 

 

(122) q
*
  (1/T

*
)t=1

T*
 q

t
.  

 

As was the case in section 6, the reference year for the weights precedes the reference 

month for the product prices. Define the period t Lowe (1823) price level and price index, 

pLo
t
 and PLo

t
 by (123) and (124) respectively for t = T

*
+1,T

*
+2,...,T: 

 

(123) pLo
t
  p

t
 ; 

(124) PLo
t
  pLo

t
/pLo

T*+1
 = p

t
/p

T*+1
 

 

where the constant price weights vector  is defined as the annual average weights vector 

q
*
 defined by (122); i.e., we have:  

 

(125)   q
*
.  

 

The period t Lowe quantity level, qLo
t
, and the corresponding period t Lowe quantity 

index, QLo
t
, are defined as follows for t = T

*
+1,T

*
+2,...,T: 

 

(126) qLo
t
  p

t
q

t
/pLo

t
 = p

t
q

t
/p

t
 = n=1

N
 (ptnn)(qtn/n)/p

t
 

96
 

(127) QLo
t
  qLo

t
/qLo

T*+1
 = [p

t
q

t
/p

T*+1
q

T*+1
]/PLo

t
. 

 

                                                 
94

 Recall that the weighted unit value quantity level, qUV
t
 is defined as the linear function of the period t 

quantity data, q
t
. If T  3 and the price and quantity data are consistent with purchasers maximizing a 

utility function that generates data that is exact for the Fisher price index QF
t
, then QUV

t
 will tend to be 

greater than QF
t
 (and hence PUV

t
 will tend to be less than PF

t
) for t  2. See Marris (1984; 52), Diewert 

(1999; 49) and Diewert and Fox (2017; 26) on this point.   
95

 If product n was not available in the first year of the sample, then the nth component of q
*
, qn

*
, will equal 

0 and hence the nth component of the weight vector  defined by (125) will also equal 0. If product n was 

also not available in periods t  T
*
 + 1, then looking at definitions (123) and (124), it can be seen that PLO

t
 

will not depend on the reservation prices pnt for these subsequent periods where product n is not available. 

Thus under these circumstances, the Lowe index cannot be consistent with the (Hicksian) economic 

approach to index number theory since Konüs (1924) true cost of living price indexes will depend on the 

reservation prices. 
96

 This last inequality is only valid if all n > 0. 
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It can be seen that the Lowe price index defined by (124) is equal to a weighted Dutot 

price index; see definition (14) above. It is also structurally identical to the quality 

adjusted unit value quantity index QUV
t
 defined in the previous section, except the role 

of prices and quantities has been reversed. Thus the identity (107) in the previous section 

will be valid if we replace QUV
t
 by PLo

t
, replace QL

t
 by PL

t
 and interchange prices and 

quantities on the right hand side of (107).
97

 The resulting identities are the following ones 

for t = T
*
+1,T

*
+2,...,T: 

 

(128) PLo
t
  PL

t
 = n=1

N
 [(n ptn/p

T*+1
)  (ptnqT*+1,n/p

T*+1
q

T*+1
)] 

            = n=1
N
 [(n/p

T*+1
)  (qT*+1,n/p

T*+1
q

T*+1
)]ptn  

            = n=1
N
 [(np

T*+1
q

T*+1
/p

T*+1
)  qT*+1,n][ptn/p

T*+1
q

T*+1
]
 

            = n=1
N
 [nqLo

T*+1
  qT*+1,n][ptn/p

T*+1
q

T*+1
]                         using (126) for t = T

*
+1 

            = n=1
N
 [nqLo

T*+1
  qT*+1,n][ptn  pT*+1,nPLo

t
]/p

T*+1
q

T*+1
 
98

          

            = PLo
t
 n=1

N
 [nqLo

T*+1
  qT*+1,n][(ptn/PLo

t
)  pT*+1,n]/p

T*+1
q

T*+1
 

            = PLo
t
 n=1

N
 n[qLo

T*+1
  (qT*+1,n/n)][(ptn/PLo

t
)  pT*+1,n]/p

T*+1
q

T*+1
         

            = PLo
t
 L

t
 

 

where the period t error term L
t
 is now defined for t = T

*
+1,...,T as follows: 

 

(129) L
t
  n=1

N
 n[qLo

T*+1
  (qT*+1,n/n)][(ptn/PLo

t
)  pT*+1,n]/p

T*+1
q

T*+1
.
99

  

 

If the products are substitutable, it is likely that L
t
 is negative, since if pT*+1,n is 

unusually low, then it is likely that (ptn/PLo
t
)  pT*+1,n > 0 and that qT*+1,n/n is unusually 

large and hence is greater than qLo
t
, which is a weighted average of the period T

*
+1 

quantity ratios, qT*+1,1/1, qT*+1,2/2,..., qT*+1,N/N using definition (126) for t = T
*
+1. 

Thus the sum of the N terms on the right hand side of (129) is likely to be negative. Thus 

our expectation
100

 is that the error term L
t
 < 0 and hence PLo

t
 < PL

t
 for t > T

*
 + 1.  

 

The n can be interpreted as inverse quality indicators of the utility provided by one unit 

of the nth product. Suppose purchasers of the N commodities have Leontief preferences 

with the utility function f(q1,q2,...,qN)  min n {qn/n : n = 1,2,...,N}. Then the dual unit 

cost function that corresponds to this functional form is c(p1,p2,...,pN)  n=1
N
 pnn = p. 

If we evaluate the unit cost function at the prices of period t, p
t
, we obtain the Lowe price 

level for period t defined by (123); i.e., pLo
t
  p

t
. Thus the bigger n is, the more units 

of qn it will take for purchasers of the N commodities to attain one unit of utility. Thus 

the n can be interpreted as inverse indicators of the relative utility of each product.  

 

                                                 
97

 We also replace period 1 by period T
*
+1. 

98
 This step follows using the following counterpart to (106): n=1

N
 [nqLo

T*+1
  qT*+1,n]pT*+1,n = 0. 

99
 Note that this error term is homogeneous of degree 0 in the components of p

T*+1
, q

T*+1
 and p

t
. Hence it is 

invariant to proportional changes in the components of these vectors. Definition (129) is only valid if all n 

> 0. If this is not the case, redefine L
t
 as n=1

N
 [nqLo

T*+1
  qT*+1,n][(ptn/PLo

t
)  pT*+1,n]/p

T*+1
q

T*+1
 and with 

this change, the decomposition defined by the last line of (128) will continue to hold. 
100

 This expectation is not held with great conviction if the period t prices have a large variance. 
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As usual, there are 3 special cases of (128) which will imply that PLo
t
 = PL

t
: (i) q

T*+1
 = q

*
 

for some  > 0 so that the period T
*
+1 quantity vector q

T*+1
 is proportional to the annual 

average quantity vector q
*
 for the base year; (ii) p

t
 = tp

T*+1
 for some t > 0 for t = 

T
*
+1,...,T so that prices vary in strict proportion over time; (iii) the sum of terms  n=1

N
 

[nqLo
T*+1

  qT*+1,n][(ptn/PLo
t
)  pT*+1,n] = 0.     

 

If we divide both sides of equation t in equations (128) by PLo
t
, we obtain the following 

system of identities for t = T
*
+1,...,T: 

 

(130) PL
t
/PLo

t
 = 1  L

t
 

 

where we expect L
t
 to be a small negative number. 

 

We turn now to developing a relationship between the Lowe and Paasche price indexes. 

The difference between reciprocal of the Lowe price index for period t, [PLo
t
]
1

 and the 

reciprocal of the Paasche price index for period t, [PP
t
]
1

, can be written as follows for t = 

T
*
+1,...,T: 

 

(131) [PLo
t
]
1

  [PP
t
]
1

 = [p
T*+1

/p
t
]  [q

t
p

T*+1
/q

t
p

t
]                           

                                 = n=1
N
 [(npT*+1,n/p

t
)  (qtnpT*+1,n/p

t
q

t
)] 

                                 = n=1
N
 [(n/p

t
)  (qtn/p

t
q

t
)]pT*+1,n  

                                 = n=1
N
 [(np

t
q

t
/q

t
)  qtn][pT*+1,n/p

t
q

t
] 

                                 = n=1
N
 [nqLo

t
  qtn][pT*+1,n/p

t
q

t
]                                      using (126)  

                                 = n=1
N
 [nqLo

t
  qtn][pT*+1,n  (ptn/PLo

t
)]/p

t
q

t
 
101

         

                                 = [PLo
t
]
1 
n=1

N
 [nqLo

t
  qtn][pT*+1,nPLo

t
  ptn]/p

t
q

t
 

                                 = [PLo
t
]
1

 n=1
N
 n[qLo

t
  (qtn/n)][pT*+1,nPLo

t
  ptn]/p

t
q

t     
 if all n > 0 

                                 = [PLo
t
]
1

 P
t
 

 

where the period t error term P
t
 is defined for t = T

*
+1,...,T as: 

 

(132) P
t
  n=1

N
 n[qLo

t
  (qtn/n)][pT*+1,nPLo

t
  ptn]/p

t
q

t
.
102

  

 

If the products are substitutable, it is likely that P
t
 is negative, since if ptn is unusually 

low, then it is likely that it will be less than the inflation adjusted nth component of the 

period T
*
+1 price, pT*+1,nPLO

t
. If ptn is unusually low, then it is also likely that the period t 

quality adjusted quantity for product n, qtn/n, is above the weighted average of the 

quality adjusted quantities for period t which is qLo
t
. Thus the sum of the N terms on the 

right hand side of (132) is likely to be negative. Thus our expectation is that the error 

term P
t
 < 0 and hence [PLo

t
]
1

 < [PP
t
]
1

 for  t  2. Assuming that L
t
 is also negative, we 

have PP
t
 < PLo

t
 < PL

t
 for t = T

*
+2,T

*
+3,...,T as inequalities that are likely to hold.  

                                                 
101

 This step follows using the following counterpart to (106): n=1
N
 [nqLo

t
  qtn]ptn = 0. 

102
 This error term is homogeneous of degree 0 in the components of q

t
, p

T*+1
 and p

t
. Hence it is invariant to 

proportional changes in the components of these vectors. Definition (132) is only valid if all n > 0. If this 

is not the case, redefine P
t
 as n=1

N
 [nqLo

t
  qtn][pT*+1,nPLo

t
  ptn]/p

t
q

t
 and with this change, the 

decomposition defined by the last line of (131) will continue to hold.   
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As usual, there are 3 special cases of (131) which will imply that PLo
t
 = PP

t
: (i) q

t
 = q

*
 

for some  > 0 so that the period t quantity vector q
t
 is proportional to the annual average 

quantity vector q
*
 for the reference year prior to the reference month; (ii) p

t
 = tp

T*+1
 for t 

= T
*
+2,T

*
+3,...,T so that prices vary in strict proportion over time; (iii) the sum of terms 

n=1
N
 [nqLo

t
  qtn][pT*+1,nPLo

t
  ptn] = 0.     

 

If we divide both sides of equation t in equations (131) by [PLo
t
]
1

, we obtain the 

following system of identities for t = 1,...,T: 

 

(133) PP
t
/PLo

t
 = [1  P

t
]
1 

 

where we expect P
t
 to be a negative number.  

 

Equations (130) and (133) develop exact relationships for the Lowe price index PLo
t
 with 

the corresponding fixed base Laspeyres and Paasche price indexes, PL
t
 and PP

t
. Taking 

the square root of the product of these two sets of equations leads to the following exact 

relationships between the fixed base Fisher price index, PF
t
, and the corresponding Lowe 

period t price index, PLo
t
, for t = T

*
+1,...,T: 

 

(134) PF
t
 = PLo

t
{(1  L

t
)/( 1  P

t
)}

1/2
 

 

where L
t
 and P

t
 are defined by (129) and (132). If there are no strong (divergent) 

trends in prices and quantities, then it is likely that L
t
 is approximately equal to P

t
 and 

hence under these conditions, it is likely that PLo
t
  PF

t
; i.e., the Lowe price index will 

provide an adequate approximation to the fixed base Fisher price index under these 

conditions. However, if there are divergent trends in prices in quantities (in diverging 

directions), then it is likely that P
t
 will be more negative than L

t
 and hence it is likely 

that PF
t
 < PLo

t
 for t = T

*
+2,...,T; i.e., with divergent trends in prices and quantities, the 

Lowe price index is likely to have an upward bias relative to its Fisher Price index 

counterpart. 

 

In section 6 above, we defined a weighted Jevons index (or Geometric Young index), PJ
t
, 

that set the vector of weights  equal to the average expenditure shares in the first year of 

our sample. For our frozen juice data listed in the Appendix, PJ
t
 was compared to the 

geometric Paasche, Laspeyres and Törnqvist price indexes, PGP
t
, PGL

t
 and PT

t
 respectively, 

for the 26 periods running from “month” 14 to 39. The resulting means for the PGP
t
, PT

t
, 

PJ
t
, PGL

t
 were 0.81005, 0.83100, 0.83338 and 0.85270 respectively. In the present 

section, we compare the Lowe price indexes, PLo
t
, to the unit value index PUV

t
 and to the 

fixed base Törnqvist, Fisher, Laspeyres and Paasche price indexes, PT
t
, PF

t
, PL

t
 and PP

t
 

respectively for the same 26 periods which follow the first year in our sample. The 

resulting means for the PLo
t
, PUV

t
, PT

t
, PF

t
, PL

t
 and PP

t
  were 0.83772, 0.79634, 0.83100, 
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0.83094, 0.86329 and 0.80014 respectively.
103

 Thus on average, the Lowe indexes PLo
t
 

were 0.68 percentage points above the corresponding Fisher indexes PF
t
. This is a 

substantial upward bias.   

 

In the following section, we show that the Geary Khamis multilateral indexes can be 

regarded as quality adjusted unit value price indexes and hence the analysis in section 10 

on quality adjusted unit value price indexes can be applied to these multilateral indexes. 

 

12. Geary Khamis Multilateral Indexes 

 

The GK multilateral method was introduced by Geary (1958) in the context of making 

international comparisons of prices. Khamis (1970) showed that the equations that define 

the method have a positive solution under certain conditions. A modification of this 

method has been adapted to the time series context and is being used to construct some 

components of the Dutch CPI; see Chessa (2016).  

 

The GK system of equations for T time periods involves T price levels pGK
1
,...,pGK

T
 and 

N quality adjustment factors 1,...,N.
104

 Let p
t
 and q

t
 denote the N dimensional price and 

quantity vectors for period t (with components ptn and qtn as usual). Define the total 

consumption vector q over the entire window as the following simple sum of the period 

by period consumption vectors:  

 

(135) q  t=1
T
 q

t
  

 

where q  [q1,q2,...,qN]. The equations which determine the GK price levels pGK
1
,...,pGK

T
 

and quality adjustment factors 1,...,N (up to a scalar multiple) are the following ones: 

 

(136)  n    = t=1
T
 [qtn/qn][ptn/pGK

t
] ;                                                                    n = 1,...,N; 

(137) pGK
t
  = p

t
q

t
/q

t
 = n=1

N
 [nqtn/q

t
][ptn/n] ;                                               t = 1,...,T 

 

where   [1,...,N] is the vector of GK quality adjustment factors. The sample share of 

period t’s purchases of commodity n in total sales of commodity n over all T periods can 

be defined as Stn  qtn/qn for n = 1,...,N and t = 1,...,T. Thus n  t=1
T
 Stn[ptn/pGK

t
] is a 

(real) share weighted average of the period t inflation adjusted prices ptn/ pGK
t
 for product 

n over all T periods. The period t quality adjusted sum of quantities sold is defined as the 

period t GK quantity level, qGK
t
  q

t
 = n=1

N
 nqtn.

105
 This period t quantity level is 

divided into the value of period t sales, p
t
q

t
 = n=1

N
 ptnqtn, in order to obtain the period t 

GK price level, pGK
t
. Thus the GK price level for period t can be interpreted as a quality 

adjusted unit value index where the n act as the quality adjustment factors. 

 

                                                 
103

 The mean of the error terms L
t
 was 0.0309 and the mean of the error terms P

t
 was 0.0488. Thus on 

average, both error terms were negative and the P
t
 tended to be more negative than the L

t
, which is 

consistent with our expectations. 
104

 In the international context, the n are interpreted as international commodity reference prices. 
105

 Khamis (1972; 101) also derived this equation in the time series context. 
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Note that the GK price level, pGK
t
 defined by (137) does not depend on the estimated 

reservation prices; i.e., the definition of pGK
t
 zeros out any reservation prices that are 

applied to missing products and thus PGK
t
 also does not depend on reservation prices. 

Thus the GK price indexes in general cannot be consistent with the (Hicksian) economic 

approach to index number theory if there are new or disappearing products in the sample 

of products under consideration.  

 

It can be seen that if a solution to equations (136) and (137) exists, then if all of the 

period price levels pGK
t
 are multiplied by a positive scalar  say and all of the quality 

adjustment factors n are divided by the same , then another solution to (136) and (137) 

is obtained. Hence, the n and pGK
t
 are only determined up to a scalar multiple and an 

additional normalization is required such as pGK
1
 = 1 or 1 = 1 is required to determine a 

unique solution to the system of equations defined by (136) and (137).
106

 It can also be 

shown that only N + T  1 of the N + T equations in (136) and (137) are independent. 

 

A traditional method for obtaining a solution to (136) and (137) is to iterate between 

these equations. Thus set  = 1N, a vector of ones and use equations (137) to obtain an 

initial sequence for the PGK
t
. Substitute these PGK

t
 estimates into equations (136) and 

obtain n estimates. Substitute these n estimates into equations (137) and obtain a new 

sequence of PGK
t 
estimates. Continue iterating between the two systems until convergence 

is achieved.   

 

An alternative method is more efficient. Following Diewert (1999; 26),
107

 substitute 

equations (71) into equations (70) and after some simplification, obtain the following 

system of equations which will determine the components of the  vector: 

 

(138) [IN  C] = 0N   

 

where IN is the N by N identity matrix, 0N is a vector of zeros of dimension N and the C 

matrix is defined as follows: 

 

(139) C  1ˆ q t=1
T
 s

t
q

tT
 = t=1

T
 s

t
 1ˆ q q

tT
 = t=1

T
 s

t
 S

tT 

 

where q̂  is an N by N diagonal matrix with the elements of the total window purchase 

vector q running down the main diagonal and 1ˆ q  denotes the inverse of this matrix, s
t
 is 

the period t expenditure share column vector, q
t
 is the column vector of quantities 

purchased during period t, S
tT

 is the period t real sample product share row vector 

[St1,St2,...StN] where Stn  qtn/qn for n = 1,...,N and t = 1,...,T and qn is the nth element of 

the sample q defined by (135).  

 

The matrix IN  C is singular which implies that the N equations in (138) are not all 

independent. In particular, if the first N1 equations in (138) are satisfied, then the last 

                                                 
106

 See Diewert and Fox (2017) for various solution methods. 
107

 See also Diewert and Fox (2017; 33) for additional discussion on this solution method. 
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equation in (138) will also be satisfied. It can also be seen that the N equations in (138) 

are homogeneous of degree one in the components of the vector . Thus to obtain a 

unique b solution to (138), set N equal to 1, drop the last equation in (138) and solve the 

remaining N1 equations for 1,2,...,N1. This is the solution method we used in this 

study.  

 

Using equations (137), it can be seen that the GK price index for period t is equal to PGK
t
 

 pGK
t
/pGK

1
  = [p

t
q

t
/q

t
]/[p

1
q

1
/q

1
] for t = 1,...,T and thus these indexes are quality 

adjusted unit value price indexes with a particular choice for the vector of quality 

adjustment factors . Thus these indexes lead to corresponding additive quantity levels 

qGK
t
 that correspond to the linear utility function, f(q)  q.

108
 As we saw in section 10, 

this type of index can approximate the corresponding fixed base Fisher price index 

provided that there are no systematic divergent trends in prices and quantities. However, 

if there are diverging trends in prices and quantities (in opposite directions), then we 

expect the GK price indexes to be subject to some substitution bias with the expectation 

that the GK price index for period t  2 to be somewhat below the corresponding Fisher 

fixed base price index.  

 

When we calculated the GK price indexes for our empirical example over our 3 years of 

data, we found that the average value of the GK price indexes was 0.99764 while the 

corresponding average values for the fixed base Fisher and Törnqvist indexes were 

0.97434 and 0.97607 so that on average, PGK
t
 was about 2 percentage points above the 

corresponding PF
t
 and PT

t
. This is a substantial upward bias instead of the expected 

downward bias. However, our data for the first year are not representative for the 

remaining two years; i.e., products 2 and 4 were missing for the first 2/3 of the first year 

and this affects the GK indexes. When we dropped the first year of data from our sample 

and calculated GK, fixed base Fisher, Törnqvist, Laspeyres, Paasche and unit value price 

indexes for the remaining two years of our sample, the sample average values for PGK
t
, 

PF
t
, PT

t
, PL

t
, PP

t
 and PUV

t
 were 0.81966, 0.83094, 0.83100, 0.86329, 0.80014 and 0.79634 

respectively. Thus for the smaller sample, PGK
t
 was about 1 percentage point below the 

corresponding PF
t
 and PT

t
, which is in line with our a priori expectations. Note that the 

average sample value for the unit value price index for the smaller sample was 0.79634, 

well below the corresponding PF
t
 and PT

t
 averages, which is also in line with our a priori 

expectations. Thus we expect GK and quality adjusted unit value price indexes to 

normally have a downward bias relative to their Fisher and Törnqvist counterparts, 

provided that there are no missing products, the products are highly substitutable and 

there are divergent trends in prices and quantities.     

 

13. Weighted Time Product Dummy Multilateral Indexes   
 

The time product dummy multilateral indexes are motivated by the following model of 

price behavior: 

                                                 
108

 Thus the GK price indexes will be exactly the correct price indexes to use if purchasers maximize utility 

using a common linear utility function. Diewert (1999; 27) and Diewert and Fox (2017; 33-34) show that 

the GK price indexes will also be exactly correct if purchasers maximize a Leontief, no substitution utility 

function. These extreme cases are empirically unlikely.    
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(140) ptn = tnetn ;                                                                          t = 1,...,T; n = 1,...,N. 

 

The parameter t can be interpreted as the time product dummy price level for period t, n 

can be interpreted as a commodity n quality adjustment factor and etn is a stochastic error 

term with mean that is assumed to be 1. Define the logarithms of ptn and etn as ytn  lnptn 

and tn  lnetn for t = 1,...,T; n = 1,...,N, define the logarithm of t as t  lnt for t = 

1,...,T and define the logarithm of n as n  lnn for n = 1,...,N. Then taking logarithms 

of both sides of (140) leads to the following linear regression model: 

 

(141) ytn = t + n + tn ;                                                                       t = 1,...,T; n = 1,...,N.   

 

The t and n can be estimated by solving a least squares minimization problem.
109

 This 

is Summer’s (1973) country product dummy multilateral method adapted to the time 

series context.  

 

Rao (1995)
110

 suggested the following weighted by economic importance version of 

Summer’s method: find the t and n which solve the following weighted least squares 

minimization problem: 

 

(142) 
NT  ,...,,,..., 11

min t=1
T 
n=1

N
 stn(ytn  t  n)

2
. 

 

The first order necessary (and sufficient) conditions for solving (142) are the following T 

equations (143) and the N equations (144): 

 

(143)          t   +  n=1
N
 stnn   = n=1

N
 stnytn ;                                                         t = 1,...,T;    

(144) t=1
T
 stnt + (t=1

T
 stn)n = t=1

T
 stnytn ;                                                         n = 1,...,N. 

 

Looking at equations (143) and (144), it can be seen that solutions t and n to these 

equations do not depend on any reservation prices; i.e., if ytn is the logarithm of a 

reservation price, it is always multiplied by the 0 share stn in the above equations. Thus as 

was the case with unit value and GK price indexes, any reservation prices are multiplied 

by 0 shares or quantities, which nullifies their effect on the resulting indexes. Thus if 

there are missing products in the sample, the weighted time product dummy price indexes 

cannot be consistent with the Hicksian economic approach to index number theory. 

    

For our empirical example in the Appendix, we used equations (143) and (144) to solve 

for the T log price levels t and the N log quality adjustment factors n.
111

 The resulting 

                                                 
109

 A normalization on the parameters such as N = 0 (which corresponds to N = 1) is required to identify 

the parameters. 
110

 See also Diewert (2004) (2005) (2012) and Rao (1995) (2005) on the WTPD method. Balk (1980; 70) 

suggested the use of the weighted time product dummy method to the time series context but used different 

weights. Ivancic, Diewert and Fox (2009) applied the method using the weights in (142) in the time series 

context.  
111

 Equations (143) and (144) are linearly dependent; see Diewert and Fox (2017). Thus we dropped one of 

these equations and set N = 0, which means we set N = 1.  
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solution for t is equal to the logarithm of the period t weighted time product dummy 

price level, pWTPD
t
, and the solution for n is the logarithm of the quality adjustment 

factor for product n, n. Thus we have: 

 

(145) pWTPD
t
  exp[t] ; t = 1,...,T ; n  exp[n] ; n = 1,...,N.        

 

 

Using definitions (145) and the definitions ytn  lnptn, equations (143) can be rewritten as 

follows: 

 

(146) lnpWTPD
t
 = n=1

N
 stn(lnptn  n) = n=1

N
 stnln(ptn/n) ;                                    t = 1,...,T. 

   

Thus the period t weighted time product dummy price level, pWTPD
t
, is equal to the 

following quality adjusted weighted Jevons price level:  

 

(147) pWTPD
t
 = tns

ntn

N

n p )/(1  ;                                                                             t = 1,...,T. 

 

Equations (144) and definitions (145) can be used to derive the following expressions for 

the logarithms of the product quality adjustment parameters:
112

 

 

(148) lnn  n = t=1
T
 stnln(ptn/pWTPD

t
)/t=1

T
 stn ;                                                  n =1,...,N. 

 

Thus n is equal to a share weighted average of the logarithms of the sample prices for 

product n, deflated by the weighted time product dummy price levels for each period; i.e., 

n is equal to a weighted average (over t) of the logarithms of the inflation adjusted 

prices for product n, ptn/pWTPD
t
.    

 

Once the WTPD price levels have been defined, the weighted time product dummy price 

index for period t is defined as PWTPD
t
  pWTPD

t
/pWTPD

1
 and the logarithm of PWTPD

t
 is 

equal to the following expression: 

 

(149) lnPWTPD
t
 = n=1

N
 stn(lnptn  n)  n=1

N
 s1n(lnp1n  n) ;                                t = 1,...,T. 

 

With the above expression for lnPWTPD
t
 in hand, we can compare lnPWTPD

t
 to lnPT

t
. Using 

(149) and definition (40), we can derive the following expressions for t = 1,2,...,T: 

 

(150) lnPWTPD
t
  lnPT

t
 = ½n=1

N
 (stn  s1n)(lnptn  n) + ½n=1

N
 (stn  s1n)(lnp1n  n). 

 

Since n=1
N
 (stn  st1) = 0 for each t, the two sets of terms on the right hand side of 

equation t in (150) can be interpreted as normalizations of the covariances between s
t
  s

1
 

and lnp
t
   for the first set of terms and between s

t
  s

1
 and lnp

1
   for the second set of 

terms. If the products are highly substitutable with each other, then a low ptn will usually 

                                                 
112

 If ptn is a reservation price, then the nth term on the right hand side of equation t in (147) becomes 

(ptn/n)
0
 = 1 and the t

th
 term on the right hand side of equation n in (148) becomes 0. Thus any effect of 

differing reservation prices on the WTPD price levels and quality adjustment factors is nullified.  



 53 

imply that lnptn is less than the average log price n and it is also likely that stn is greater 

than s1n so that (stn  s1n)(lnptn  n) is likely to be negative. Hence the covariance 

between s
t
  s

1
 and lnp

t
   will tend to be negative. On the other hand, if p1n is unusually 

low, then lnptn will be less than the average log price n and it is likely that s1n is greater 

than stn so that (stn  s1n)(lnp1n  n) is likely to be positive. Hence the covariance 

between s
t
  s

1
 and lnp

1
   will tend to be positive. Thus the first set of terms on the 

right hand side of (150) will tend to be negative while the second set will tend to be 

positive. If there are no divergent trends in log prices and sales shares, then it is likely 

that these two terms will largely offset each other and under these conditions, PWTPD
t
 is 

likely to approximate PT
t
 reasonably well. However, with divergent trends and highly 

substitutable products, it is likely that the first set of negative terms will be larger in 

magnitude than the second set of terms and thus PWTPD
t
 is likely to be below PT

t
 under 

these conditions.          

 

For our empirical example in the Appendix, PWTPD
t
 ended up being above PT

t
 on average 

rather than below: the average value for PWTPD
t
 for our sample was 0.99504 while the 

average value for PT
t
 was 0.97607. The sample averages for the two sets of covariance 

terms on the right hand sides of equations (150) were 0.0172 and 0.0362. Thus these 

covariances had the expected signs but the second set of covariances were unusually 

large and outweighed the negative first set of covariances, which led to PWTPD
t
 being 

above PT
t
 on average. A problem with the data for the first year is the fact that products 2 

and 4 were not available for the first 8 “months” of the first year and this fact can lead to 

some counterintuitive results.
113

 Thus when the indexes were recalculated after dropping 

the first year of data, PWTPD
t
 ended up being below PT

t
 on average as was expected: the 

average value for PWTPD
t
 for our truncated sample was 0.82075 while the average value 

for PT
t
 was 0.83100. The sample averages for the two sets of covariance terms on the 

right hand sides of equations (150) were 0.0195 and 0.0067.    

 

To sum up, the weighted time product indexes can be problematic in the elementary 

index context with price and quantity data available when compared to a fixed base 

superlative index (that uses reservation prices): 

 

 If there are no missing products and the products are strong substitutes, the 

indexes will tend to have a downward bias. 

 If there are missing products in period 1, the indexes may have a significant 

upward bias. 

 If there are missing products, the weighted time product dummy indexes do not 

depend on reservation prices. 

 

14. Relative Price Similarity Linked Indexes 

 

                                                 
113

 The missing products in period 1 mean that s1n will be equal to zero for n = 2 and 4 and thus the terms stn 

 s1n for these n will be unusually large, which in turn will usually cause the second covariance term on the 

right hand side of (150) to become unusually large. Remember that we are using reservation prices for the 

missing products; i.e., p1n > 0 for n = 2 and 4 and these p1n will tend to be greater than n for these n.  
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The GEKS multilateral method treats each set of price indexes using the prices of one 

period as the base period as being equally valid and hence an averaging of the parities 

seems to be appropriate under this hypothesis. Thus the method is “democratic” in that 

each bilateral index number comparison between any two periods gets the same weight in 

the overall method. However, it is not the case that all bilateral comparisons of price 

between two periods are equally accurate: if the relative prices in periods r and t are very 

similar, then the Laspeyres and Paasche price indexes will be very close to each other and 

hence it is likely that the “true” price comparison between these two periods (using the 

economic approach to index number theory) will be very close to the bilateral Fisher 

index between these two periods. In particular, if the two price vectors are exactly 

proportional, then we want the price index between these two periods to be equal to the 

factor of proportionality and the direct Fisher index between these two periods satisfies 

this proportionality test. On the other hand, the GEKS index comparison between the two 

periods would not in general satisfy the proportionality test. The above considerations 

suggest that a more accurate set of price indexes could be constructed if initially a 

bilateral comparison was made between the two countries which had the most similar 

relative price structures. At the next stage of the comparison, look for a third period 

which had the most similar relative price structure to the first two periods and link in this 

third country to the comparisons of volume between the first two countries and so on. At 

the end of this procedure, a pathway through the periods in the window would be 

constructed, that minimized the sum of the relative price dissimilarity measures. In the 

context of making comparisons of prices across countries, this method of linking 

countries with the most similar structure of relative prices has been pursued by Hill 

(1997) (1999a) (1999b) (2009), Diewert (2009) (2013) and Hill, Rao, Shankar and 

Hajargasht (2017). Hill (2001) (2004) also pursued this similarity of relative prices 

approach in the time series context. The conclusion is that similarity linking using Fisher 

ideal quantity indexes as the bilateral links is an alternative to GEKS which has some 

advantages over it. Both methods are consistent with the economic approach to index 

number  theory.    

 

A key aspect of this methodology is the choice of the measure of similarity (or 

dissimilarity) of the relative price structures of two countries. Various measures of the 

similarity or dissimilarity of relative price structures have been proposed by Allen and 

Diewert (1981), Kravis, Heston and Summers (1982; 104-106), Hill (1997) (2009), 

Sergeev (2001) (2009), Aten and Heston (2009) and Diewert (2009).  

 

In this study, we will use the following weighted asymptotic linear index of relative price 

dissimilarity, AL, suggested by Diewert (2009):  

 

(151) AL(p
r
,p

t
,q

r
,q

t
)  

                 n=1
N
 (1/2)(srn+stn){(ptn/PF(p

r
,p

t
,q

r
,q

t
)prn) + (PF(p

r
,p

t
,q

r
,q

t
)prn/ptn)  2} 

 

where PF(p
r
,p

t
,q

r
,q

t
)  [p

t
q

r
p

t
q

t
/p

r
q

r
 p

r
q

t
]
1/2

 is the bilateral Fisher price index linking 

period t to period r and p
r
, q

r
, s

r
 and p

t
, q

t
, s

t
 are the price, quantity and share vectors for 

periods r and s respectively. This measure turn out to be nonnegative and the bigger 

AL(p
r
,p

t
,q

r
,q

t
) is, the more dissimilar are the relative prices for periods r and t. Note that 
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if p
t
 = p

r
 for some positive scalar so that prices are proportional for the two periods, then 

AL(p
r
,p

t
,q

r
,q

t
) = 0. Note also that all prices need to be positive in order for AL(p

r
,p

t
,q

r
,q

t
) 

to be well defined. This is not a problem for our empirical example since we used 

estimated reservation prices for the missing prices in our sample. In the following section, 

we will replace our econometrically estimated reservation prices with inflation adjusted 

carry forward or carry backward prices for the missing prices.  

 

The straightforward method for constructing Similarity Linked Fisher price indexes 

proceeds as follows. Set the similarity linked price index for period 1, PS
1
  1. The period 

2 index is set equal to PF(p
1
,p

2
,q

1
,q

2
), the Fisher index linking the period 2 prices to the 

period 1 prices. Thus PS
2
  PF(p

1
,p

2
,q

1
,q

2
)PS

1
. For period 3, evaluate the dissimilarity 

indexes AL(p
1
,p

3
,q

1
,q

3
) and AL(p

2
,p

3
,q

2
,q

3
) defined by (151). If AL(p

1
,p

3
,q

1
,q

3
) is the 

minimum of these two numbers, define PS
3
  PF(p

1
,p

2
,q

1
,q

2
)PS

1
. If AL(p

2
,p

3
,q

2
,q

3
) is the 

minimum of these two numbers, define PS
3
  PF(p

2
,p

3
,q

2
,q

3
)PS

2
. For period 4, evaluate the 

dissimilarity indexes AL(p
r
,p

4
,q

r
,q

4
) for r = 1,2,3. Let r

*
 be such that AL(p

r*
,p

4
,q

r*
,q

4
) = 

min r {AL(p
r
,p

4
,q

r
,q

4
; r = 1,2,3}.
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 Then define PS

4
  PF(p

r*
,p

4
,q

r*
,q

4
)PS

r*
. Continue this 

process in the same manner; i.e., for period t, let r
*
 be such that AL(p

r*
,p

t
,q

r*
,q

t
) = min r 

{AL(p
r
,p

t
,q

r
,q

t
; r = 1,2,...,t1} and define PS

t
  PF(p

r*
,p

t
,q

r*
,q

t
)PS

r*
. This procedure allows 

for the construction of similarity linked indexes in real time.        

   

We implemented the above procedure with our scanner data set and compared the 

resulting similarity linked index, PS
t
, to our other indexes that are based on the use of 

superlative indexes and the economic approach to index number theory. The comparison 

indexes are the fixed base Fisher and Törnqvist indexes, PF
t
 and PT

t
, and the multilateral 

indexes, PGEKS
t
 and PCCDI

t
. The sample means for these five indexes, PS

t
, PF

t
, PT

t
, PGEKS

t
 

and PCCDI
t
 were 0.97069, 0.97434, 0.97607, 0.97414 and 0.97602. Thus on average, PS

t
 

was about 0.5 percentage points below PT
t
 and PCCDI

t
 and about 0.35 percentage points 

below PF
t
 and PGEKS

t
. These are fairly significant differences.

115
   

 

As we have seen in previous sections, anomalous results can sometimes be due to the fact 

that products 2 and 4 were missing for the first 8 months in our sample. Thus we 

recalculated the above 5 indexes using just the data for the last two years in our sample. 

The resulting sample means for the five indexes, PS
t
, PF

t
, PT

t
, PGEKS

t
 and PCCDI

t
 were 

0.83049, 0.83094, 0.83100, 0.83100 and 0.83100. Thus on average, PS
t
 was only about 

0.05 percentage point below the comparison indexes, which were tightly clustered.
116

 

 

There is a problem with the above “real time” implementation of the similarity linking 

methodology: for the first year of observations, the allowable set of bilateral links is 

highly restricted. Thus the method, which relies on linking price vectors which are as 

close to being proportional as possible, could be generalized to allow for a preliminary 

phase where the first year or so of data is linked simultaneously as is done when making 

international comparisons. Thus for our Modified Similarity Linked Fisher price indexes, 
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 If the minimum occurs at more than one r, choose r
*
 to be the lowest of this minimizing periods.  

115
 The final values for the 5 indexes were as follows: 0.92575, 0.95071, 0.95482, 0.94591 and 0.94834.  

116
 The final values for the 5 indexes were as follows: 0.83048, 0.84277, 0.84144, 0.84470 and 0.85513.  
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PSM
t
, we first constructed a Phase 1 minimum spanning tree that linked all of the months 

in year 1 of our sample plus one additional month.
117

 Once these indexes were defined for 

our first year plus one month of data, for Phase 2, the remaining links for PSM
t
 were 

constructed in a real time fashion as in the original method.
118

 Of course, the Phase 1 

indexes cannot be implemented in real time (and this is a minor disadvantage of the 

Modified Method) but the Phase 2 indexes can of course be implemented in real time. 

 

We implemented the above procedure with our scanner data set and compared the 

resulting modified real time similarity linked index, PSM
t
, to its real time counterpart, PS

t
 

The sample means for these two indexes were 0.96464 and 0.97069 respectively. Thus on 

average, PSM
t
 was about 0.6 percentage points below PS

t
. However, the two indexes 

ended up at the same level at the end of the sample period, 0.92575. This can happen 

because the links used by the two indexes are the same starting from month 2 in year 2 

and it turns out that about ½ of the links for the first year remained unchanged and thus 

later indexes linked to these initial identical links will generate identical indexes for 

subsequent periods.
119

 

 

As a further modification of the Modified Similarity Linking method, we looked at the 

effects of changing the measure of relative price dissimilarity to the following modified 

weighted asymptotic linear index of relative price dissimilarity that compares the prices 

of period t relative to the prices of the base period r, ALM(p
r
,p

t
,q

r
,q

t
), defined as follows:   

 

(152) ALM(p
r
,p

t
,q

r
,q

t
)  

                 n=1
N
 stn{(ptn/PF(p

r
,p

t
,q

r
,q

t
)prn) + (PF(p

r
,p

t
,q

r
,q

t
)prn/ptn)  2}. 

 

The difference between the measures of relative price dissimilarity defined by (151) and 

(152) is that the original measure (151) uses the average share weights of the base and 

current period, (1/2)(srn+stn), whereas the modified measure uses only the share weights 

of the current period, stn. It seems appropriate to use the symmetric dissimilarity measure 

defined by (151) in Phase 1 of the modified similarity linking procedure (thus leading to 

indexes that are invariant to the choice of the base period for the Phase 1 observations) 

but the use of the measure defined by (152) may be appropriate in Phase 2, since the 

focus is on linking the prices of the current period t to past prices of period r < t (which 

introduces an asymmetric perspective) and thus the current period share weights should 

be given a more prominent role than past weights which may not be representative for the 
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 If there are seasonal products in our sample, this allows the prices in month 1 of the first year to be 

linked directly to the prices of month 1 in the second year of our sample. Our “months” consisted of 4 

consecutive weeks of data which means there were 13 “months” in each of our 3 years of data. The 

minimum spanning tree for the first 14 “months” of our sample consisted of the following bilateral Fisher 

price index links: 1-12; 1-8; 8-9; 9-11; 9-13; 9-3; 3-4; 3-2; 2-14; 14-7; 14-10; 10-6; 6-5.   
118

 Thus for periods t > 14, let r
*
 be such that AL(p

r*
,p

t
,q

r*
,q

t
) = min r {AL(p

r
,p

4
,q

r
,q

4
); r = 1,2,...,t1} and 

define PSM
t
  PF(p

r*
,p

t
,q

r*
,q

t
)PSM

r*
. 

119
 We calculated the Similarity Linked and Modified Similarity Linked Fisher price indexes after dropping 

the data for year 1 in our sample. The resulting means for PSM
t
 and PS

t
 were 0.83014 and 0.83049. Thus the 

modified indexes were below their real time counterpart indexes by 0.035 percentage points on average. PS
t
 

and PSM ended up at 0.83048 and 0.82116 respectively. Thus using the Modified Method can make a small 

but significant difference.   
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current period. We implemented this modification of the modified method but the use of 

the new measure of relative price dissimilarity defined by (152) did not lead to a change 

in the pattern of bilateral links in Phase 2 of the new modified procedure and thus the 

new modified indexes coincided with the old modified indexes.     

 

It appears that the similarity linked indexes, PS
t
 and PSM

t
, generate lower rates of inflation 

than their superlative index counterparts, PF
t
, PT

t
, PGEKS

t
 and PCCDI

t
 and that there is a 

tendency for PSM
t
 to be below PS

t
.
120

  

 

What are some of the advantages and disadvantages of using either PS
t
, PSM

t
, PF

t
, PT

t
, 

PGEKS
t
 or PCCDI

t
 as target indexes for an elementary index in a CPI? All of these indexes 

are equally consistent with the economic approach to index number theory. The problem 

with the fixed base Fisher and Törnqvist indexes is that they depend too heavily on the 

base period. Moreover, sample attrition means that the base must be changed fairly 

frequently leading to a potential chain drift problem. The GEKS and CCDI indexes also 

suffer from problems associated with the existence of seasonal products: it makes little 

sense to include bilateral indexes between all possible periods in a window of periods in 

the context of seasonal commodities. The similarity linked indexes address both the 

problem of sample attrition and the problem of seasonal commodities. Moreover, 

Walsh’s multiperiod identity test is always satisfied using this methodology.  

 

However, similarity linked price indexes suffer from at least two problems: 

 

 A measure of price dissimilarity must be chosen and there may be many 

“reasonable” choices of a measure which can lead to uncertainty about the choice 

of the measure and hence uncertainty about the resulting indexes.  

 The measures of weighted price dissimilarity suggested in Diewert (2009) require 

that all prices in the comparison of prices between two periods be positive.   

 

Hopefully, over time, price statisticians will come to a consensus on what “standard” 

relative price dissimilarity measure should be used and the first problem will be 

addressed. In order to address the second problem, one could use econometric methods to 

estimate reservation prices for products that are not present in some periods as we have 

done for our empirical example. But it is a difficult econometric exercise to estimate 

reservation prices and so a simpler method is required in order to construct imputed 

prices for missing products in a scanner data set. In the following section, we suggest 

such a method. 

 

                                                 
120

 Recall the identity (65) in section 7 above. In that section, we argued that it is likely that the direct 

Törnqvist index is likely to have an upward bias relative to its chained counterpart if the products are 

highly substitutable. The same property is likely to hold if we use Fisher indexes in place of the Törnqvist 

index. Thus it is likely that the similarity linked indexes using a superlative index number formula will 

yield a lower measure of inflation than any fixed base superlative index and hence, the similarity linked 

indexes using a superlative index number formula are likely to generate lower rates of price inflation than 

the multilateral GEKS and CCDI indexes. The same logic explains why the modified similarity linked 

indexes will generate index levels that are equal to or less than the corresponding unmodified real time 

similarity linked indexes.  
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15. Inflation Adjusted Carry Forward and Backward Imputed Prices 

 

When constructing elementary indexes, statistical agencies often encounter situations 

where a product in an elementary index disappears. At the time of disappearance, it is 

unknown whether the product is temporarily unavailable so typically, the missing price is 

set equal to the last available price; i.e., the missing price is replaced by a carry forward 

price. Thus carry forward prices are used in place of reservation prices, which are much 

more difficult to construct. An alternative to the use of a carry forward price is an 

inflation adjusted carry forward price; i.e.,  the last available price is escalated at using 

the maximum overlap index between the period when the product was last available and 

the current period where an appropriate index number formula is used.
121

 In this section, 

we use inflation adjusted carry forward and carry backward prices in place of the 

reservation prices for our scanner data set and compare the resulting indexes with our 

earlier indexes that used the econometrically estimated reservation prices that were 

constructed by Diewert and Feenstra (2017) for our data set. 

 

Products 2 and 4 were missing from our scanner data set for observations 1-8. Let PFO(r,t) 

be the maximum overlap
122

 bilateral Fisher price index for month t relative to the base 

month r. Define the inflation adjusted carry backward prices for products 2 and 4 for the 

missing months, prn, as follows for r = 1,2,...,8 and n = 2,4 as follows: 

 

(153) prn  p9n/PFO(r,9).   

 

Product 12 was missing from our sample for months 10 and 20-22. Define the inflation 

adjusted carry forward price for product 12 for the missing month 10 as follows:  

 

(154) p10,12  p9,12PFO(9,10). 

 

Define the inflation adjusted carry forward prices for product 12 for the missing months 

20-22 as follows for t = 20, 21, 22:  

 

(155) pt,12  p19,12PFO(19,t). 

 

For our scanner data set, the means for the 8 reservation prices for product 2 and 4 were 

0.13500 and 0.14642 respectively while the corresponding means for the carry backward 

prices were 0.16339 and 0.15670. Thus on average, the carry backward prices were 

higher than the reservation prices for these products, contrary to our expectations. All 

prices are in dollars per ounce. 

 

The mean of the 4 reservation prices for product 12 was 0.0862 while the corresponding 

mean for the carry forward prices was 0.0838. Thus for product 12, on average the carry 

                                                 
121

 Triplett (2004; 21-29) calls these two methods for replacing missing prices the link to show no change 

method and the deletion method. See Diewert, Fox and Schreyer (2017) for a more extensive discussion on 

the problems associated with finding replacements for missing prices. 
122

 A maximum overlap index is a bilateral index that is defined using only the products that are present in 

both periods being compared. 
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forward imputed prices were lower than the corresponding econometrically determined 

reservation prices, which is more in line with our expectations.
123

   

 

Here are the sample averages for the unweighted Jevons, Dutot, fixed base Carli and 

chained Carli for our data set using inflation adjusted carry forward and backward prices 

(with the corresponding averages using reservation prices in parentheses): PJ

 = 0.9420 

(0.9496); PD

 = 0.9361 (0.9458); PC


 = 0.9565 (0.9628); PCCh


 = 1.1544 (1.1732).

124
 Thus 

there are some significant differences between the unweighted carry forward and 

reservation price indexes.  

 

We turn now to the differences in weighted indexes. A priori, we expect smaller 

differences in the carry forward and reservation price weighted indexes because the share 

of sales of frozen juice products for the missing products is quite small on average.
125

 The  

sample averages for the fixed base Fisher, Törnqvist, Laspeyres, Paasche, Geometric 

Laspeyres, Geometric Paasche, and Unit Value indexes for our data set using inflation 

adjusted carry forward and backward prices (with the corresponding averages using 

reservation prices in parentheses) are as follows: PF

 = 0.9716 (0.9743); PT


 = 0.9738 

(0.9761); PL

 = 1.0430 (1.0431); PP


 = 0.9067 (0.9117); PGL


 = 1.0296 (1.0297); PGP


 = 

0.9221 (0.9263); PUV

 = 1.0126 (1.0126).

126
 Thus there are some differences between the 

carry forward indexes and the corresponding reservation price indexes but they are not as 

large as was the case for the unweighted index comparisons. 

 

We turn our attention to the 6 multilateral indexes that we considered above. The  sample 

averages for the GEKS, CCDI, GK, Weighted Time Product Dummy, Similarity Linked 

and Modified Similarity Linked indexes using inflation adjusted carry forward and 

backward prices (with the corresponding averages using reservation prices in 

parentheses) are as follows: PGEKS

 = 0.9714 (0.9742); PCCDI


 = 0.9737 (0.9760); PGK


 = 

0.9976 (0.9976); PWTPD

 = 0.9950 (0.9950); PS


 = 0.9689 (0.9707); PSM


 = 0.9689 

(0.9646).
127

 Thus on average, use of inflation adjusted carry forward and carry backward 

prices compared to the use of reservation prices led to no change in PGK
t
 and PWTPD

t
, 

lower average prices for PGEKS
t
, PCCDI

t
 and PS

t
 and higher average prices for PSM

t
. Our 

tentative conclusion here is that for products that are highly substitutable, the use of 

                                                 
123

 Reservation prices should be higher than the average of the prices of products that are actually available 

in order to induce purchasers to buy 0 units of the unavailable product. 
124

 The carry forward index values for the 4 indexes for the final month in our sample were as follows: 

0.91712 (0.92689); 0.91057 (0.92334); 0.94292 (0.95090); 1.40769 (1.44006) with the corresponding 

reservation price indexes in parentheses.  
125

 The sample sales shares of products 2, 4 and 12 are 0.0213, 0.0275 and 0.0248 respectively. 
126

 Recall that the unit value price index does not depend on the reservation prices. The carry forward index 

values for the 7 indexes for the final month in our sample were as follows: 0.9480 (0.9507); 0.9528 

(0.9548); 1.0403 (1.0403); 0.8638 (0.8689); 1.0168 (1.0168); 0.8923 (0.8966); 1.0000 (1.0000) with the 

corresponding reservation price indexes in parentheses.  
127

 Recall that PGK
t
 and PWTPD

t
 do not depend on the reservation prices. The carry forward index values for 

the 6 multilateral indexes PGEKS
t
, PCCDI

t
, PGK

t
, PWTPD

t
, PS

t
 and PSM

t
, for the final month in our sample were as 

follows: 0.9425 (0.9459); 0.9455 (0.9483); 0.9616 (0.9616); 0.9645 (0.9645); 0.9294 (0.9258); 0.9294 

(0.9258) with the corresponding reservation price indexes in parentheses. Thus at the end of the sample 

period, PGK
t
 and PWTPD

t
 were about 2 percentage points above PGEKS

t
 and PCCDI

t
 and these indexes ended up 

about 2 percentage points above PS
t
 and PSM

t
. Thus the choice of index number formula matters! 
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carry inflation adjusted forward and backward prices for missing products will probably 

generate weighted indexes that are comparable to their counterparts that use 

econometrically estimated reservation prices.
128

 This conclusion is only tentative and 

further research on the use of reservation prices is required. It is not easy to estimate 

reservation prices and the estimated reservation prices are subject to a considerable 

amount of sampling error and so the ability to substitute inflation adjusted carry forward 

and backward prices for reservation prices without substantially impacting the indexes is 

an important result.  

 

When only price information is available, it is not clear that the above methodology can 

be adapted to this situation where quantity and value data are not available. Until more 

research is done, the use of the Time Product Dummy model is recommended for this 

situation. 

 

16. Conclusion 
 

Some of the more important results in each section of the paper will be summarized here. 

 

 If there are diverging trends in product prices, the Dutot index is likely to have an 

upward bias relative to the Jevons index; see section 2. 

 The Carli index is likely to have an upward bias relative to the Jevons index. The 

same result holds for the weighted Carli (or Young) index relative to the 

corresponding weighted Jevons index; see section 3. 

 The useful relationship (41) implies that the Fisher index PF
t
 will be slightly less 

than the corresponding fixed base Törnqvist index PT
t
, provided that the products 

in scope for the index are highly substitutable and there are diverging trends in 

prices; see section 4. Under these circumstances, the following inequalities 

between the Paasche, Geometric Paasche, Törnqvist, Geometric Laspeyres and 

Laspeyres indexes are likely to hold: PP
t
 < PGP

t
 < PT

t
 < PGL

t
 < PL

t
.   

 The covariance identity (48) provides an exact relationship between the Jevons 

and Törnqvist indexes. Some conditions for equality and for divergence between 

these two indexes are provided at the end of section 5. 

 In section 6, a geometric index that uses annual expenditure sales of a previous 

year as weights, PJ
t
, is defined and compared to the Törnqvist index, PT

t
. 

Equation (61) provides an exact covariance decomposition of the difference 

between these two indexes. If the products are highly substitutable and there are 

diverging trends in prices, then it is likely that PT
t
 < PJ

t
. 

 Section 7 derives an exact relationship (65) between the fixed base Törnqvist 

index, PT
t
, and its chained counterpart, PTCh

t
. This identity is used to show that it 

is likely that the chained index will “drift” below its fixed base counterpart if the 

products in scope are highly substitutable and prices are frequently heavily 

discounted. However, a numerical example shows that if quantities are slow to 

adjust to the lower prices, then upward chain drift can occur. 

                                                 
128

 As we have seen, this conclusion did not hold for unweighted indexes. 
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 Section 8 introduces two multilateral indexes, PGEKS
t
 and PCCDI

t
. The exact 

identity (78) for the difference between PCCDI
t
 and PT

t
 is derived. This identity 

and the fact that PF
t
 usually closely approximates PT

t
 lead to the conclusion (79) 

that typically, PF
t
, PT

t
, PGEKS

t
 and PCCDI

t
 will approximate each other fairly closely. 

 Section 9 introduces the Unit Value price index, PUV
t
, and shows that if there are 

diverging trends in prices, it is likely that PUV
t
 < PF

t
. However, this conclusion 

does not necessarily hold if there are missing products in period 1. Section 10 

derives similar results for the Quality Adjusted Unit Value index, PUV
t
. 

 Section 11 looks at the relationship of the Lowe index, PLo
t
, with other indexes. 

The Lowe index uses the quantities in a base year as weights in a fixed basket 

type index for months that follow the base year. In using annual weights of a 

previous year, this index is similar in spirit to the geometric index PJ
t
 that was 

analyzed in section 6. The covariance type identities (128) and (131) are used to 

suggest that it is likely that the Lowe index lies between the fixed base Paasche 

and Laspeyres indexes; i.e., it is likely that PP
t
 < PLo

t
 < PL

t
. The identity (134) is 

used to suggest that the Lowe index is likely to have an upward bias relative to 

the fixed base Fisher index; i.e., it is likely that PF
t
 < PLo

t
. However, if there are 

missing products in the base year, then these inequalities do not necessarily hold. 

 Section 12 looks at an additional multilateral index, the Geary Khamis index, 

PGK
t
 and shows that PGK

t
 can be interpreted as a quality adjusted unit value index 

and hence using the analysis in section 10, it is likely that the Geary Khamis 

index has a downward bias relative to the Fisher index; i.e., it is likely that PGK
t
 < 

PF
t
. However, if there are missing products in the first month of the sample, the 

above inequality will not necessarily hold.   

 Another multilateral index is introduced in section 13: the Weighted Time 

Product Dummy index, PWTPD
t
. The exact identity (150) is used to show that it is 

likely that PWTPD
t
 is less than the corresponding fixed base Fisher index, PF

t
, 

provided that the products are highly substitutable and there are no missing 

products in period 1.  

 It turns out that the following price indexes are not affected by reservation prices: 

PUV
t
, PUV

t
, PGK

t
 and PWTPD

t
. Thus these indexes are not consistent with economic 

approach to dealing with the problems associated with new and disappearing 

products and services.  

 The final multilateral index is introduced in section 14: Similarity Linked price 

indexes. A real time version of the method is introduced, PS
t
, along with a 

modified version, PSM
t
, that requires a year of “training” data before the 

introduction of the real time indexes. 

 For our empirical example, PS
t
 and PSM

t
 ended up about 2 percentage points 

below PGEKS
t
 and PCCDI

t
 which in turn finished about 1 percentage point below PF

t
 

and PT
t
 and finally PGK

t
 and PWTPD

t
 finished about 1 percentage point above PF

t
 

and PT
t
; see Chart 8 in the Appendix. All 8 multilateral indexes captured the trend 

in product prices quite well. More research is required in order to determine 

whether these differences are significant.  

 It is difficult to calculate reservation prices using econometric techniques. Thus 

section 15 looked at methods for replacing reservation prices by inflation 

adjusted carry forward and backward prices which are much easier to calculate. 



 62 

 For our empirical example, the replacement of the reservation prices by carried 

prices did not make much difference to the multilateral indexes. If the products in 

scope are highly substitutable for each other, then we expect that this invariance 

result will hold (approximately). However, if products with new characteristics 

are introduced, then we expect that the replacement of econometrically estimated 

reservation prices by carried prices would probably lead to an index that has an 

upward bias.          

 

Conceptually, the Modified Similarity linked indexes seem to be the most attractive 

solution for solving the chain drift problem since they can deal with seasonal 

commodities and as well, Walsh’s multiperiod identity test will always be satisfied. 

 

The data used for the empirically constructed indexes are listed in the Appendix so that 

the listed indexes can be replicated and so that alternative solutions to the chain drift 

problem can be tested out by other statisticians and economists.  

 

 

Appendix: Data Listing and Index Number Tables and Charts 

 

A.1 Data Listing 
 

Here is a listing of the “monthly” quantities sold of 19 varieties of frozen juice (mostly 

orange juice) from Dominick’s Store 5 in the Greater Chicago area, where a “month” 

consists of sales for 4 consecutive weeks. The weekly unit value price and quantity sold 

data were converted into “monthly” unit value prices and quantities.
129

 Finally, the 

original data came in units where the package size was not standardized. We rescaled the 

price and quantity data into prices per ounce. Thus the quantity data are equal to the 

“monthly” ounces sold for each product. 

 

Table A1: “Monthly” Unit Value Prices for 19 Frozen Juice Products 
 
  t p1

t p2
t p3

t p4
t p5

t p6
t p7

t p8
t p9

t 

1 0.122500 0.145108 0.147652 0.148593 0.146818 0.146875 0.147623 0.080199 0.062944 

2 0.118682 0.127820 0.116391 0.128153 0.117901 0.146875 0.128833 0.090833 0.069167 

3 0.120521 0.128608 0.129345 0.148180 0.131117 0.143750 0.136775 0.090833 0.048803 

4 0.126667 0.128968 0.114604 0.115604 0.116703 0.143750 0.114942 0.088523 0.055842 

5 0.126667 0.130737 0.140833 0.141108 0.140833 0.143304 0.140833 0.090833 0.051730 

6 0.120473 0.113822 0.157119 0.151296 0.156845 0.161844 0.156342 0.090833 0.049167 

7 0.164607 0.144385 0.154551 0.158485 0.156607 0.171875 0.152769 0.084503 0.069167 

8 0.142004 0.160519 0.174167 0.179951 0.174167 0.171341 0.163333 0.089813 0.069167 

9 0.135828 0.165833 0.154795 0.159043 0.151628 0.171483 0.160960 0.089970 0.067406 

10 0.129208 0.130126 0.153415 0.158167 0.152108 0.171875 0.158225 0.078906 0.067897 

11 0.165833 0.165833 0.139690 0.136830 0.134743 0.171875 0.136685 0.079573 0.058841 

12 0.165833 0.165833 0.174167 0.174167 0.174167 0.171875 0.174167 0.081902 0.079241 

13 0.113739 0.116474 0.155685 0.149942 0.145633 0.171875 0.146875 0.074167 0.048880 

                                                 
129

 In practice, statistical agencies will not be able to produce indexes for 13 months in a year. There are 

two possible solutions to the problem of aggregating weekly data into monthly data: (i) aggregate the data 

for the first 3 weeks in a month or (ii) split the weekly data that spans two consecutive months into imputed 

data for each month.  
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14 0.120882 0.125608 0.141602 0.147428 0.142664 0.163750 0.144911 0.090833 0.080000 

15 0.165833 0.165833 0.147067 0.143214 0.144306 0.155625 0.147546 0.088410 0.080000 

16 0.122603 0.118536 0.135878 0.137359 0.137480 0.155625 0.138146 0.084489 0.080000 

17 0.104991 0.104659 0.112497 0.113487 0.110532 0.141250 0.113552 0.082500 0.067104 

18 0.088056 0.091133 0.118440 0.120331 0.117468 0.141250 0.124687 0.085000 0.065664 

19 0.096637 0.097358 0.141667 0.141667 0.141667 0.141250 0.141667 0.082500 0.080000 

20 0.085845 0.090193 0.120354 0.122168 0.113110 0.136250 0.124418 0.085874 0.051003 

21 0.094009 0.100208 0.121135 0.122500 0.121497 0.125652 0.121955 0.090833 0.085282 

22 0.084371 0.087263 0.120310 0.123833 0.118067 0.125492 0.124167 0.085898 0.063411 

23 0.123333 0.123333 0.116412 0.118860 0.113085 0.126250 0.118237 0.085891 0.049167 

24 0.078747 0.081153 0.125833 0.125833 0.125833 0.126250 0.125833 0.090833 0.049167 

25 0.088284 0.092363 0.098703 0.098279 0.088839 0.126250 0.100640 0.090833 0.049167 

26 0.123333 0.123333 0.092725 0.096323 0.095115 0.126250 0.095030 0.090833 0.049167 

27 0.101331 0.102442 0.125833 0.125833 0.125833 0.126250 0.125833 0.090833 0.049167 

28 0.101450 0.108416 0.092500 0.097740 0.091025 0.126250 0.096140 0.054115 0.049167 

29 0.123333 0.123333 0.118986 0.119509 0.115603 0.126250 0.118343 0.096922 0.049167 

30 0.094038 0.095444 0.109096 0.113827 0.106760 0.126250 0.113163 0.089697 0.049167 

31 0.130179 0.130000 0.110257 0.115028 0.112113 0.134106 0.110579 0.093702 0.049167 

32 0.103027 0.103299 0.149167 0.149167 0.149167 0.149375 0.149167 0.098333 0.049167 

33 0.148333 0.148333 0.089746 0.097110 0.091357 0.149375 0.094347 0.098333 0.049167 

34 0.115247 0.114789 0.123151 0.123892 0.127177 0.149375 0.125362 0.094394 0.049167 

35 0.118090 0.120981 0.121191 0.129477 0.128180 0.149375 0.132934 0.096927 0.049167 

36 0.132585 0.131547 0.129430 0.128314 0.121833 0.134375 0.128874 0.070481 0.049167 

37 0.114056 0.115491 0.138214 0.140090 0.139116 0.146822 0.142770 0.077785 0.053864 

38 0.142500 0.142500 0.134677 0.133351 0.133216 0.148125 0.132873 0.108333 0.054167 

39 0.121692 0.123274 0.095236 0.102652 0.093365 0.148125 0.101343 0.090180 0.054167 

 
t p10

t p11
t p12

t p13
t p14

t p15
t p16

t p17
t p18

t p19
t 

1 0.062944 0.075795 0.080625 0.087684 0.109375 0.113333 0.149167 0.122097 0.149167 0.124492 

2 0.069167 0.082500 0.080625 0.112500 0.109375 0.113333 0.119996 0.109861 0.130311 0.117645 

3 0.043997 0.082500 0.078546 0.106468 0.100703 0.110264 0.134380 0.109551 0.131890 0.114933 

4 0.055705 0.082500 0.080625 0.099167 0.099375 0.111667 0.109005 0.106843 0.108611 0.118333 

5 0.051687 0.071670 0.080625 0.094517 0.099375 0.111667 0.105168 0.106839 0.105055 0.076942 

6 0.049167 0.078215 0.080625 0.115352 0.114909 0.130149 0.099128 0.134309 0.118647 0.088949 

7 0.069167 0.069945 0.080625 0.124167 0.118125 0.131667 0.102524 0.128471 0.102073 0.160833 

8 0.069167 0.082500 0.080625 0.107381 0.121513 0.138184 0.164245 0.141978 0.164162 0.136105 

9 0.067401 0.082500 0.074375 0.112463 0.128125 0.141667 0.163333 0.153258 0.163333 0.118979 

10 0.067688 0.082500 0.100545 0.132500 0.128125 0.141667 0.133711 0.152461 0.133806 0.118439 

11 0.060008 0.082500 0.080625 0.120362 0.134151 0.144890 0.163333 0.151033 0.163333 0.120424 

12 0.079325 0.071867 0.080625 0.093144 0.136875 0.148333 0.144032 0.148107 0.146491 0.160833 

13 0.064028 0.069934 0.067280 0.118009 0.136875 0.148333 0.163333 0.143125 0.163333 0.131144 

14 0.080000 0.078491 0.075211 0.131851 0.130342 0.143013 0.123414 0.152937 0.130223 0.122899 

15 0.080000 0.082500 0.080625 0.093389 0.128125 0.141667 0.117955 0.147024 0.119786 0.128929 

16 0.080000 0.086689 0.080625 0.100592 0.128125 0.141667 0.114940 0.143125 0.126599 0.124620 

17 0.065670 0.088333 0.072941 0.115559 0.110426 0.139379 0.107709 0.143125 0.109987 0.145556 

18 0.064111 0.091286 0.069866 0.088224 0.105625 0.105529 0.089141 0.130110 0.095463 0.140000 

19 0.080000 0.094167 0.088125 0.080392 0.105625 0.131667 0.086086 0.118125 0.091020 0.109424 

20 0.048613 0.094167 0.096177 0.080643 0.105625 0.131667 0.125000 0.114706 0.125000 0.110921 

21 0.085114 0.080262 0.064774 0.080245 0.099375 0.125000 0.104513 0.114795 0.104228 0.134014 

22 0.062852 0.086115 0.083132 0.087551 0.101493 0.127366 0.086484 0.118125 0.088325 0.126667 

23 0.049167 0.095833 0.090625 0.089110 0.099375 0.125000 0.086263 0.118125 0.095750 0.100780 

24 0.049167 0.095833 0.090625 0.090167 0.099375 0.125000 0.111859 0.114330 0.112296 0.118333 

25 0.049167 0.095833 0.090625 0.072861 0.099375 0.125000 0.125000 0.113823 0.125000 0.084817 

26 0.049167 0.095833 0.090625 0.086226 0.099375 0.125000 0.086088 0.114190 0.091864 0.118333 

27 0.049167 0.077500 0.076875 0.081764 0.099375 0.125000 0.113412 0.114231 0.113241 0.110346 

28 0.049167 0.077500 0.076875 0.104167 0.099375 0.125000 0.085803 0.118125 0.086154 0.084604 

29 0.049167 0.077500 0.076875 0.086713 0.099375 0.125000 0.087410 0.118125 0.086196 0.085034 

30 0.049167 0.077500 0.076875 0.104167 0.099375 0.125000 0.084953 0.114826 0.085156 0.083921 

31 0.049167 0.077500 0.076875 0.095613 0.099375 0.125000 0.087372 0.125809 0.087775 0.088304 

32 0.049167 0.077500 0.076875 0.112500 0.099375 0.067046 0.091827 0.143125 0.088937 0.103519 

33 0.049167 0.077500 0.076875 0.104721 0.099375 0.125000 0.131399 0.143125 0.130253 0.127588 

34 0.049167 0.077500 0.076875 0.088935 0.099375 0.125000 0.123037 0.143125 0.123573 0.132500 

35 0.049167 0.077500 0.076875 0.112500 0.099375 0.125000 0.125832 0.137837 0.125681 0.112286 
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36 0.049167 0.077500 0.076875 0.089456 0.099375 0.125000 0.139240 0.141242 0.144390 0.127323 

37 0.053865 0.084549 0.083343 0.107198 0.119368 0.151719 0.146126 0.154886 0.146332 0.120616 

38 0.054167 0.085000 0.084375 0.127500 0.123125 0.156667 0.129577 0.138823 0.130850 0.114177 

39 0.054167 0.085000 0.084375 0.102403 0.123125 0.156667 0.115965 0.149219 0.114947 0.136667 

 

The actual prices p2
t
 and p4

t
 are not available for t =1,2,...,8 since products 2 and 4 were 

not sold during these months. However, in the above Table, we filled in these missing 

prices with the imputed reservation prices that were estimated by Diewert and Feenstra 

(2017). Similarly, p12
t
 was missing for months t = 12, 20, 21 and 22 and again, we 

replaced these missing prices with the corresponding estimated imputed reservation 

prices in Table A1. The imputed prices appear in italics in the above Table.    

 

Table A2: “Monthly” Quantities Sold for 19 Frozen Juice Products 
 

t q1
t q2

t q3
t q4

t q5
t q6

t q7
t q8

t q9
t 

1 1704 0.000 792 0.000 4428 1360 1296 1956 1080 

2 3960 0.000 3588 0.000 19344 3568 3600 2532 2052 

3 5436 0.000 1680 0.000 8100 3296 2760 3000 1896 

4 1584 0.000 5532 0.000 21744 3360 5160 3420 2328 

5 1044 0.000 1284 0.000 5880 3360 1896 3072 1908 

6 8148 0.000 1260 0.000 7860 2608 2184 3000 2040 

7 636 0.000 3120 0.000 9516 2848 2784 3444 1620 

8 1692 0.000 1200 0.000 4116 1872 1380 2088 1848 

9 5304 1476.000 2292 1295.999 7596 2448 1740 2016 3180 

10 6288 2867.993 2448 1500.000 6528 2064 2208 3840 4680 

11 408 228.000 2448 2147.994 9852 2096 2700 5124 12168 

12 624 384.000 948 1020.000 2916 1872 1068 2508 4032 

13 6732 2964.005 1488 2064.003 8376 2224 2400 4080 8928 

14 6180 3192.007 2472 2244.006 7920 1920 2256 1728 1836 

15 1044 672.000 1572 1932.002 2880 1744 1728 1692 1116 

16 3900 1332.002 1560 2339.997 4464 2416 2028 2112 1260 

17 5328 1847.999 3528 3972.008 13524 2336 3252 2628 1524 

18 7056 2100.000 2436 2748.007 6828 2544 1980 3000 1596 

19 5712 3167.988 1464 1872.000 2100 2080 1572 3384 1020 

20 9960 3311.996 2376 2172.003 8028 2112 1788 2460 3708 

21 7368 2496.000 1992 1872.000 3708 1840 1980 1692 2232 

22 9168 4835.983 2064 1980.000 10476 1504 2880 2472 7020 

23 7068 660.000 1728 1955.999 6972 1888 2172 2448 12120 

24 11856 5604.017 972 1464.000 2136 1296 1536 3780 7584 

25 7116 2831.994 2760 2207.996 12468 1776 2580 2880 11220 

26 660 504.000 3552 3755.995 17808 1296 5580 4956 7428 

27 4824 3276.011 1356 1452.000 2388 1824 1524 1548 10188 

28 3684 971.998 4680 2832.003 11712 1712 4308 4284 1140 

29 684 1152.000 1884 2015.996 9252 1680 3144 1020 1392 

30 5112 3467.996 2256 2291.994 9060 1936 2172 1452 2532 

31 672 840.000 4788 2951.990 9396 1856 4644 1764 1260 

32 7344 5843.997 1320 1128.000 2664 1744 1560 1548 1416 

33 480 504.000 6624 5639.996 13368 1824 6888 1800 1440 

34 4104 3036.001 2124 3180.009 5088 1568 2820 1668 1884 

35 2688 1583.997 2220 2760.008 5244 1344 2532 1920 4956 

36 936 612.001 1824 2567.994 6684 1552 2772 4740 7644 

37 4140 2268.001 1932 1559.997 4740 1520 2076 1752 6336 

38 912 264.000 1860 2844.002 4260 1808 2064 1452 2952 

39 1068 960.001 4356 2903.996 11052 1776 4356 2220 2772 
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t q10

t q11
t q12

t q13
t q14

t q15
t q16

t q17
t q18

t q19
t 

1 540 2088 1744.000 30972 3728 792 1512 1712 600 2460 

2 1308 4212 3824.000 11796 6480 2712 12720 3312 2376 1788 

3 1416 3900 4848.010 18708 10064 2652 4116 3184 1476 3756 

4 1716 3156 5152.000 19656 10352 2472 15420 3120 3888 900 

5 1452 6168 3360.000 42624 7360 1590 9228 2800 5652 13560 

6 1068 5088 3296.000 10380 7712 1884 12012 1808 3348 7824 

7 1116 6372 3712.000 11772 7920 1680 29592 3296 11712 708 

8 1296 3684 3216.000 21024 5856 1206 11184 1744 4344 6036 

9 2220 4512 3024.000 24420 5856 1398 2040 1648 1176 7896 

10 4152 4572 0.000 8328 6384 1740 9168 1296 2832 9120 

11 9732 3432 3360.000 18372 5808 1638 2412 1568 972 7176 

12 3024 6132 1792.000 48648 4672 1770 7512 2208 2052 3564 

13 2160 6828 6271.998 15960 4736 1662 1740 2896 1176 3216 

14 1356 5088 2991.997 9432 5872 1902 4968 1488 2064 6420 

15 1188 4656 2976.000 33936 3872 1452 9060 1744 2712 3876 

16 816 3108 4784.000 23772 6272 1578 8496 2832 1488 4128 

17 696 3252 4879.997 10656 7648 1836 9000 2704 2292 648 

18 720 2940 4848.021 26604 6448 4086 14592 1552 3108 732 

19 624 4320 2480.000 27192 4944 1140 19056 1808 5088 5676 

20 3288 2784 0.000 23796 5120 1284 2196 2896 1260 3876 

21 1848 12324 0.000 25824 5248 1140 8640 1952 2940 588 

22 4824 6468 0.000 18168 3872 930 15360 1520 4728 276 

23 10092 3708 1744.000 14592 4336 870 14232 1504 2040 1128 

24 6372 3264 2016.000 16548 4608 858 6696 1792 2496 792 

25 7284 3480 2032.000 38880 4064 750 1836 1232 636 7608 

26 6588 3768 2208.000 14724 3760 768 9096 1296 4248 480 

27 2832 4692 2592.000 31512 5344 930 5796 2080 5244 1416 

28 900 3180 2624.000 8172 5776 810 13896 1328 7536 6744 

29 1128 3948 2608.000 19440 5792 954 12360 1552 5796 7296 

30 1284 5232 2960.000 6552 6320 924 13932 2304 8064 14520 

31 864 5928 3280.000 16896 5888 852 14340 2064 8412 3768 

32 948 5784 2496.000 5880 5088 15132 14496 1600 10440 4044 

33 708 5232 2704.000 15180 4800 618 4812 976 3204 1812 

34 1152 4692 2736.000 25344 5648 600 6552 1360 3876 1344 

35 4248 4668 2800.000 8580 5488 498 28104 1872 11292 4152 

36 6492 4872 2256.000 30276 5504 510 4080 1328 3768 1860 

37 5976 3396 1743.995 8208 2832 384 1092 528 1284 2028 

38 1812 3660 2416.000 4392 4144 534 4752 1504 2436 4980 

39 2844 3852 1888.000 16704 3488 708 6180 1600 4236 804 

 

 

It can be seen that there were no sales of Products 2 and 4 for months 1-8 and there were 

no sales of Product 12 in month 10 and in months 20-22. 

 

Charts of the above prices and quantities follow. 
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It can be seen that there is a considerable amount of variability in these per ounce 

monthly unit value prices for frozen juice products. There are also differences in the 

average level of the prices of these 19 products. These differences can be interpreted as 

quality differences. 

Chart 2: Monthly Prices for Products 10-19 
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Chart 3: Quantities Sold for Products 1-9 
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It can be seen that the sales volatility of the products is even bigger than the volatility in 

prices.   

 

A.2 Unweighted Price Indexes 
 

In this section, we list the unweighted indexes
130

 that were defined in sections 2 and 3 in 

the main text. We used the data that is listed in section A.1 above in order to construct the 

indexes. We list the Jevons, Dutot, Carli, Chained Carli, CES with r = 1 and r = 9 

which we denote by PJ
t
, PD

t
, PC

t
, PCCh

t
, PCES,1

t
 and PCES,9

t
 respectively for month t. 

 

Table A.3 Jevons, Dutot, Fixed Base and Chained Carli and CES Price Indexes 

 
t PJ

t
    PD

t
 PC

t
 PCCh

t
  PCES,1 PCES,9 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 0.96040 0.94016 0.96846 0.96846 0.98439 1.09067 

3 0.93661 0.94070 0.94340 0.95336 0.92229 0.74456 

4 0.90240 0.88954 0.91068 0.92488 0.91540 0.90219 

5 0.90207 0.90438 0.91172 0.93347 0.89823 0.83603 

6 0.96315 0.97490 0.97869 1.00142 0.94497 0.79833 

7 1.05097 1.05468 1.06692 1.11301 1.04802 1.06093 

8 1.13202 1.13825 1.13337 1.21622 1.12388 1.09382 

9 1.10373 1.10769 1.10739 1.18820 1.09706 1.06198 

10 1.08176 1.07574 1.09119 1.17299 1.08685 1.07704 

11 1.07545 1.08438 1.08516 1.17758 1.06038 0.95660 

12 1.14864 1.15654 1.15517 1.27479 1.13881 1.13589 

13 1.02772 1.04754 1.03943 1.15786 0.99848 0.84113 

14 1.06109 1.04636 1.07433 1.21248 1.07853 1.16587 

15 1.07130 1.06066 1.08164 1.23459 1.08565 1.19072 

16 1.02572 1.00635 1.03655 1.18788 1.04979 1.19448 

17 0.93668 0.92185 0.95548 1.09129 0.95529 1.04194 

18 0.88243 0.86882 0.89940 1.03405 0.90087 1.01058 

19 0.93855 0.92175 0.96016 1.10908 0.96244 1.15748 

20 0.88855 0.88248 0.90225 1.07164 0.89126 0.80633 

21 0.91044 0.88862 0.92930 1.12593 0.93740 1.07775 

22 0.87080 0.85512 0.88891 1.08595 0.89107 1.00076 

23 0.87476 0.86577 0.89065 1.10508 0.88042 0.79864 

24 0.87714 0.87111 0.89384 1.12219 0.87980 0.79810 

25 0.82562 0.81640 0.84467 1.06793 0.83434 0.79708 

26 0.84210 0.83168 0.86532 1.10572 0.85123 0.79827 

27 0.87538 0.87012 0.88197 1.16687 0.87714 0.79760 

28 0.78149 0.77534 0.80014 1.05919 0.78770 0.78068 

29 0.85227 0.84699 0.86721 1.17131 0.85568 0.79718 

30 0.81870 0.80899 0.83656 1.13006 0.82799 0.79688 

31 0.85842 0.85377 0.87514 1.19113 0.86118 0.79741 

32 0.89203 0.90407 0.91440 1.26420 0.87884 0.79524 

33 0.90818 0.91368 0.93127 1.35047 0.89955 0.79775 

34 0.92659 0.92742 0.93489 1.39685 0.91949 0.79804 

35 0.93981 0.93944 0.94941 1.42023 0.93256 0.79825 

36 0.93542 0.94295 0.94087 1.42210 0.92057 0.79654 

37 1.00182 1.00595 1.01060 1.52914 0.99139 0.87270 

38 1.02591 1.02295 1.04068 1.57788 1.02072 0.87939 

                                                 
130

 It would be more accurate to call these indexes equally weighted indexes. 



 69 

39 0.92689 0.92334 0.95090 1.44006 0.93017 0.87789 

 

The above prices are plotted on Chart 5. 

 

 
 

The Chained Carli index, PCCh
t
, is well above the other indexes as is expected. The fixed 

base Carli index PC
t
 is above the corresponding Jevons index PJ

t
 which in turn is slightly 

above the corresponding Dutot index PD
t
. The CES index with r = 1 (this corresponds to 

 = 2) is on average between the Jevons and fixed base Carli indexes while the CES 

index with r = 9 (this corresponds to  = 10) is well below all of the other indexes on 

average (and is extremely volatile).
131

  

 

We turn now to a listing of standard bilateral indexes using the 3 years of data and the 

econometrically estimated reservation prices.  

 

A.3 Weighted Price Indexes 

 

We list the fixed base and chained Laspeyres, Paasche, Fisher and Törnqvist indexes in 

Table A.4 below. The Geometric Laspeyres and Geometric Paasche and Unit Value 

indexes are also listed in this table.  

 

Table A.4 Fixed Base and Chained Laspeyres, Paasche, Fisher and Törnqvist, 

Geometric Laspeyres, Geometric Paasche and Unit Value Indexes 

 

                                                 
131

 The sample means of the PJ
t
, PD

t
, PC

t
, PCCh

t
, PCES,1

t
 and PCES,9

t
 are: 0.9496, 0.9458, 0.9628, 1.1732, 

0.9520 and 0.9237 respectively.  

Chart 5: Unweighted Price Indexes 
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t PL
t PP

t PF
t PT

t PLCh
t
 PPCh

t PFCh
t PTCh

t PGL
t PGP

t PUV
t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 1.08991 0.92151 1.00218 1.00036 1.08991 0.92151 1.00218 1.00036 0.98194 1.07214 1.10724 

3 1.06187 0.98637 1.02342 1.02220 1.12136 0.91193 1.01124 1.00905 0.97979 1.05116 1.07205 

4 1.00174 0.87061 0.93388 0.93445 1.06798 0.83203 0.94265 0.94077 0.91520 0.99062 1.03463 

5 0.98198 0.89913 0.93964 0.94387 1.11998 0.78417 0.93715 0.93753 0.91048 0.97176 0.95620 

6 1.13639 0.95159 1.03989 1.04311 1.27664 0.84845 1.04075 1.04165 0.99679 1.11657 1.10159 

7 1.22555 0.91097 1.05662 1.06555 1.42086 0.85482 1.10208 1.09531 1.07355 1.20485 1.12167 

8 1.17447 1.14057 1.15740 1.15743 1.75897 0.91677 1.26987 1.26340 1.14865 1.17300 1.25911 

9 1.17750 1.12636 1.15164 1.15169 1.73986 0.89414 1.24727 1.24135 1.12700 1.17162 1.19939 

10 1.27247 1.05895 1.16081 1.15735 1.80210 0.86050 1.24528 1.23902 1.12514 1.25074 1.20900 

11 1.20770 1.07376 1.13876 1.13875 1.86610 0.81117 1.23034 1.22114 1.12189 1.19276 1.06812 

12 1.12229 1.09688 1.10951 1.10976 2.01810 0.73863 1.22091 1.20993 1.12209 1.11767 1.07795 

13 1.18583 1.04861 1.11511 1.11677 2.17862 0.66995 1.20813 1.19943 1.09272 1.17231 1.08595 

14 1.25239 1.05236 1.14803 1.14485 2.30844 0.66552 1.23948 1.22942 1.09463 1.22682 1.21698 

15 1.06527 1.01701 1.04086 1.04292 2.32124 0.58025 1.16056 1.15215 1.03397 1.06020 1.07438 

16 1.07893 1.01866 1.04836 1.05073 2.34342 0.56876 1.15449 1.14720 1.01310 1.07256 1.11895 

17 1.10767 0.89217 0.99410 0.99352 2.28924 0.51559 1.08642 1.07832 0.95895 1.08127 1.06696 

18 0.95021 0.83559 0.89105 0.89584 2.14196 0.45252 0.98452 0.97741 0.86911 0.94010 0.94589 

19 0.93250 0.81744 0.87308 0.88137 2.21416 0.44435 0.99189 0.98454 0.88768 0.92447 0.93364 

20 0.91010 0.85188 0.88051 0.88230 2.37598 0.41411 0.99193 0.98133 0.88109 0.90423 0.92812 

21 0.90831 0.87050 0.88920 0.89209 2.48204 0.40411 1.00150 0.99069 0.87548 0.90221 0.92800 

22 0.93448 0.79545 0.86217 0.86876 2.44050 0.37816 0.96068 0.95081 0.85191 0.92460 0.90448 

23 0.93852 0.82477 0.87981 0.88494 2.54428 0.37672 0.97902 0.96923 0.85916 0.92722 0.86752 

24 0.95955 0.83212 0.89357 0.90008 2.61768 0.35461 0.96347 0.95725 0.88900 0.95127 0.87176 

25 0.82659 0.77523 0.80050 0.80120 2.54432 0.30555 0.88172 0.87662 0.80638 0.81529 0.78713 

26 0.90933 0.75806 0.83026 0.83456 2.84192 0.29847 0.92100 0.91714 0.82419 0.89313 0.85607 

27 0.90913 0.86638 0.88749 0.88866 3.22816 0.29960 0.98344 0.97818 0.87350 0.90653 0.87957 

28 0.95748 0.71369 0.82665 0.82378 3.27769 0.25120 0.90739 0.90090 0.80609 0.92446 0.88558 

29 0.91434 0.79178 0.85086 0.85489 3.58621 0.25612 0.95839 0.95091 0.83824 0.90372 0.92881 

30 0.98306 0.74159 0.85383 0.85285 3.63285 0.24640 0.94612 0.93848 0.83636 0.95691 0.90674 

31 0.96148 0.79467 0.87411 0.87827 3.82999 0.24849 0.97557 0.96637 0.85604 0.94519 0.95259 

32 1.09219 0.77559 0.92038 0.92577 4.36079 0.23020 1.00192 1.00563 0.93404 1.06859 0.93739 

33 1.03387 0.82587 0.92403 0.92835 5.45066 0.19325 1.02632 1.03039 0.92860 1.00783 0.98847 

34 0.97819 0.92286 0.95012 0.95072 5.95659 0.18655 1.05412 1.05647 0.93004 0.97390 1.01750 

35 1.09532 0.90246 0.99422 0.99086 6.44252 0.19130 1.11015 1.11105 0.97904 1.07872 1.09820 

36 0.97574 0.93603 0.95568 0.95607 6.69005 0.17668 1.08720 1.08989 0.94745 0.97198 0.93645 

37 1.10952 0.99004 1.04808 1.04846 7.50373 0.18937 1.19204 1.19665 1.03628 1.10176 1.02142 

38 1.21684 0.99944 1.10280 1.09863 7.90093 0.18768 1.21774 1.22145 1.06914 1.19166 1.14490 

39 1.04027 0.86886 0.95071 0.95482 7.16398 0.15715 1.06105 1.06219 0.93030 1.01682 0.99999 

 

Note that the chained Laspeyres index ends up at 7.164 while the chained Paasche index 

ends up at 0.157. The corresponding fixed base indexes end up at 1.040 and 0.869 so it is 

clear that these chained indexes are subject to tremendous chain drift. The chain drift 

carries over to the Fisher and Törnqvist indexes; i.e., the fixed base Fisher index ends up 

at 0.9548 while its chained counterpart ends up at 1.061. Chart 6 plots the above indexes 

with the exceptions of the chained Laspeyres and Paasche indexes (these indexes exhibit 

too much chain drift to be considered further). 
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It can be seen that all 9 of the weighted indexes which appear on Chart 6 capture an 

underlying general trend in prices. However, there is a considerable dispersion between 

the indexes. Our preferred indexes for this group of indexes are the fixed base Fisher and 

Törnqvist indexes, PF
t
 and PT

t
. These two indexes approximate each other very closely 

and can barely be distinguished in the Chart. The Paasche and Geometric Paasche 

indexes, PP
t
 and PGP

t
, lie below our preferred indexes while the remaining indexes 

generally lie above our preferred indexes. The chained Fisher and Törnqvist indexes, 

PFCh
t
 and PTCh

t
, approximate each other very closely but both indexes lie well above their 

fixed base counterparts; i.e., they exhibit a considerable amount of chain drift. Thus 

chained superlative indexes are not recommended for use with scanner data where the 

products are subject to large fluctuations in prices and quantities. The fixed base 

Laspeyres and Geometric Laspeyres indexes, PL
t
 and PGL

t
, are fairly close to each other 

and are well above PF
t
 and PT

t
. The unit value price index, PUV

t
, is subject to large 

fluctuations and generally lies above our preferred indexes.     

 

We turn now to weighted indexes that use annual weights from a base year. 

 

A.4 Indexes which Use Annual Weights 

 

The Weighted Jevons or Geometric Young index, PJ
t
 or PGY

t
, was defined by (58) in 

section 6. This index uses the arithmetic average of the monthly shares in year 1 as 

weights in a weighted geometric index for subsequent months in the sample. The Lowe 

index, PLo
t
, was defined by (124) in section 11. This index is a fixed basket index that 

uses the average quantities in the base year as the vector of quantity weights. We 

calculated both of these indexes for the months in years 2 and 3 for our sample using the 

Chart 6: Weighted Price Indexes 
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weights from year 1 of our sample. For comparison purposes, we also list the fixed base 

Laspeyres, Paasche, Fisher and Törnqvist indexes, PL
t
, PP

t
, PF

t
 and PT

t
 for the “months” in 

years 2 and 3 of our sample. It is also of interest to list the Jevons, Dutot and Unit Value 

indexes, PJ
t
, PD

t
 and PUV

t
 for years 2 and 3 in order to see how unweighted indexes 

compare to the weighted indexes. The sample averages for these indexes are listed in the 

last row of the table. 

 

Table A.5 Geometric Young, Lowe, Laspeyres, Paasche, Fisher, Törnqvist, Jevons, 

Dutot and Unit Value Indexes for Years 2 and 3     
 

t PGY
t PLo

t PL
t PP

t PF
t
 PT

t PJ
t PD

t PUV
t 

14 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

15 0.93263 0.93494 1.00555 0.87189 0.93634 0.93715 1.00962 1.01366 0.88282 

16 0.92082 0.92031 0.95041 0.90755 0.92873 0.92986 0.96667 0.96175 0.91945 

17 0.87997 0.88507 0.89085 0.85384 0.87215 0.87032 0.88275 0.88100 0.87673 

18 0.79503 0.80022 0.82733 0.76386 0.79496 0.79283 0.83163 0.83032 0.77724 

19 0.80573 0.81468 0.85664 0.76193 0.80790 0.80865 0.88451 0.88091 0.76718 

20 0.79981 0.80700 0.82757 0.74904 0.78733 0.78635 0.83739 0.84337 0.76264 

21 0.79437 0.80164 0.83126 0.77659 0.80346 0.80489 0.85802 0.84924 0.76254 

22 0.77921 0.78355 0.80911 0.75762 0.78294 0.78149 0.82067 0.81723 0.74322 

23 0.77876 0.78087 0.82688 0.76468 0.79517 0.79606 0.82440 0.82741 0.71285 

24 0.81228 0.81680 0.83070 0.75908 0.79408 0.79472 0.82664 0.83251 0.71633 

25 0.72801 0.74112 0.75452 0.66120 0.70632 0.70498 0.77809 0.78023 0.64679 

26 0.75011 0.75684 0.80141 0.71350 0.75618 0.75377 0.79362 0.79483 0.70344 

27 0.79254 0.79375 0.82527 0.74559 0.78442 0.78661 0.82498 0.83156 0.72275 

28 0.73664 0.74226 0.74893 0.71223 0.73035 0.72970 0.73650 0.74098 0.72769 

29 0.75964 0.76031 0.80135 0.74576 0.77306 0.77165 0.80321 0.80946 0.76321 

30 0.76531 0.76828 0.77149 0.74410 0.75767 0.75781 0.77157 0.77315 0.74507 

31 0.77786 0.77867 0.81448 0.76635 0.79005 0.78811 0.80900 0.81594 0.78275 

32 0.85506 0.86201 0.87512 0.76018 0.81563 0.82138 0.84067 0.86401 0.77026 

33 0.84365 0.85499 0.88099 0.77811 0.82795 0.82554 0.85589 0.87320 0.81223 

34 0.84601 0.84804 0.88159 0.82588 0.85328 0.85422 0.87325 0.88632 0.83608 

35 0.89199 0.89177 0.90170 0.92254 0.91206 0.91320 0.88570 0.89782 0.90240 

36 0.85506 0.85983 0.90132 0.79811 0.84815 0.84966 0.88156 0.90117 0.76948 

37 0.94264 0.94402 0.95898 0.90084 0.92946 0.93135 0.94414 0.96137 0.83931 

38 0.97419 0.97462 0.99009 0.95811 0.97397 0.97413 0.96684 0.97762 0.94077 

39 0.85043 0.85908 0.88213 0.80516 0.84277 0.84144 0.87353 0.88242 0.82170 

Mean 0.83338 0.83772 0.86329 0.80014 0.83094 0.83100 0.86080 0.86644 0.79634 

 

As usual, PF
t
 and PT

t
 approximate each other very closely. Indexes with substantial 

upward biases relative to these two indexes are the Laspeyres, Jevons and Dutot indexes, 

PL
t
, PJ

t
 and PD

t
. The Geometric Young index and the Lowe index, PGY

t
 and PLo

t
, were 

about 0.25 and .67 percentage points above the superlative indexes on average. The 

Paasche and Unit Value indexes, PP
t
 and PUV

t
, had substantial downward biases relative 

to the superlative indexes. These inequalities agree with our a priori expectations about 

biases. The nine indexes are plotted in Chart 7. 

 



 73 

 
 

It can be seen that all 9 indexes capture the trend in the product prices with PF
t
 and PT

t
 in 

the middle of the indexes (and barely distinguishable from each other in the chart). The 

unit value index PUV
t
 is the lowest index followed by the Paasche index PP

t
. The 

Geometric Young and Lowe indexes, PGY
t
 and PLo

t
, are quite close to each other and 

close to the superlative indexes in the first part of the sample but then they drift above the 

superlative indexes in the latter half of the sample. We expect the Lowe index to have 

some upward substitution bias and with highly substitutable products, we expect the 

Geometric Young index to also have an upward substitution bias. Finally, the Laspeyres, 

Jevons and Dutot indexes are all substantially above the superlative indexes with PJ
t
 and 

PD
t
 approximating each other quite closely. 

 

We turn our attention to multilateral indexes. 

 

A.5 Multilateral Indexes   
 

We considered 6 multilateral indexes in the main text: PGEKS
t
 (see definition (70) in 

section 8); PCCDI
t
 (see (77) in section 8); PGK

t
 (see (137) in section 12); PWTPD

t
 (see (149) 

in section 13); the real time Similarity linked price indexes PS
t
 defined in the beginning of 

section 14 and the Modified Similarity linked price indexes PSM
t
 defined in the middle of 

section 14. These indexes are listed in Table A6 along with the fixed base Fisher and 

Törnqvist indexes PF
t
 and PT

t
. The sample mean for each index is listed in the last row of 

Table A.6.    

 

Chart 7: Geometric Young, Lowe and Other Indexes  

for Years 2 and 3 
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Table A.6 Six Multilateral Indexes and the Fixed Base Fisher and Törnqvist Indexes  
 

t PGEKS
t PCCDI

t PGK
t PWTPD

t PS
t
 PSM

t PF
t PT

t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 1.00233 1.00395 1.03138 1.02468 1.00218 0.99064 1.00218 1.00036 

3 1.00575 1.00681 1.03801 1.03322 1.01124 0.99960 1.02342 1.02220 

4 0.93922 0.94020 0.97021 0.96241 0.94262 0.93180 0.93388 0.93445 

5 0.92448 0.92712 0.94754 0.94505 0.92812 0.90417 0.93964 0.94387 

6 1.02249 1.02595 1.06097 1.05893 1.03073 1.00413 1.03989 1.04311 

7 1.06833 1.06995 1.06459 1.06390 1.07314 1.08267 1.05662 1.06555 

8 1.19023 1.19269 1.24385 1.24192 1.15740 1.15740 1.15740 1.15743 

9 1.15115 1.15206 1.18818 1.18231 1.13680 1.13680 1.15164 1.15169 

10 1.14730 1.15007 1.19184 1.18333 1.15156 1.13578 1.16081 1.15735 

11 1.13270 1.13301 1.14662 1.14308 1.12574 1.12574 1.13876 1.13875 

12 1.11903 1.12079 1.11332 1.12082 1.10951 1.10951 1.10951 1.10976 

13 1.10247 1.10487 1.11561 1.11838 1.09229 1.09229 1.11511 1.11677 

14 1.12136 1.12345 1.16579 1.15912 1.12489 1.10947 1.14803 1.14485 

15 1.04827 1.04883 1.06958 1.06608 1.04237 1.04237 1.04086 1.04292 

16 1.04385 1.04539 1.08842 1.08044 1.03692 1.03692 1.04836 1.05073 

17 0.97470 0.97550 0.99512 0.99145 0.97013 0.95897 0.99410 0.99352 

18 0.88586 0.88695 0.91319 0.90765 0.88455 0.88455 0.89105 0.89584 

19 0.89497 0.89597 0.90990 0.90923 0.89118 0.89118 0.87308 0.88137 

20 0.88973 0.89126 0.90822 0.90578 0.88051 0.88051 0.88051 0.88230 

21 0.89904 0.89990 0.92641 0.92503 0.88482 0.88482 0.88920 0.89209 

22 0.87061 0.87363 0.90145 0.89880 0.87151 0.87151 0.86217 0.86876 

23 0.88592 0.88868 0.92421 0.92158 0.88280 0.87265 0.87981 0.88494 

24 0.89282 0.89799 0.91127 0.91198 0.88502 0.88502 0.89357 0.90008 

25 0.81132 0.81115 0.81875 0.81913 0.79966 0.79966 0.80050 0.80120 

26 0.83799 0.83914 0.85168 0.85089 0.83378 0.82421 0.83026 0.83456 

27 0.89063 0.89246 0.91906 0.91398 0.88481 0.88481 0.88749 0.88866 

28 0.81304 0.81411 0.82600 0.82419 0.81336 0.80399 0.82665 0.82378 

29 0.85763 0.85934 0.88821 0.88248 0.86271 0.85280 0.85086 0.85489 

30 0.84103 0.84305 0.86121 0.85556 0.85166 0.84188 0.85383 0.85285 

31 0.87495 0.87639 0.90123 0.89600 0.87568 0.86562 0.87411 0.87827 

32 0.89936 0.90831 0.88553 0.89332 0.91368 0.89010 0.92038 0.92577 

33 0.92670 0.92878 0.91672 0.92625 0.91517 0.91517 0.92403 0.92835 

34 0.95721 0.95846 0.99507 0.98974 0.94435 0.94435 0.95012 0.95072 

35 1.01848 1.02026 1.07728 1.06779 1.00422 0.99266 0.99422 0.99086 

36 0.96507 0.96601 0.98339 0.98282 0.96122 0.96122 0.95568 0.95607 

37 1.05250 1.05448 1.08019 1.07514 1.07953 1.06710 1.04808 1.04846 

38 1.08819 1.08961 1.11648 1.10963 1.07546 1.06308 1.10280 1.09863 

39 0.94591 0.94834 0.96156 0.96453 0.92575 0.92575 0.95071 0.95482 

Mean 0.97417 0.97602 0.99764 0.99504 0.97069 0.96464 0.97434 0.97607 

 

If the 8 indexes are evaluated according to their sample means, the Modified Similarity 

Linked index PSM
t
 generates the lowest indexes followed by the real time Similarity index 

PS
t
. The PGEKS

t
, PGEKS

t
, PF

t
 and PT

t
 indexes are tightly clustered in the middle and the PGK

t
 

and PWTPD
t
 are about 2 percentage points above the middle indexes on average. Chart 8 

plots the 8 indexes. 
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All 8 indexes capture the trend in product prices quite well. It is clear that the Geary-

Khamis and Weighted Time Product Dummy indexes have a substantial upward bias 

relative to the remaining 6 indexes. Although PS
t
 and PSM

t
 both end up at the same index 

level, the Modified Similarity linked indexes are on average 0.6 percentage points below 

the corresponding Similarity linked indexes. PS
t
 and PSM

t
 end up about 2 percentage 

points below PGEKS
39

 and PCCDI
39

 and almost 4 percentage points below PGK
39

 and PWTPD
39

.     

Thus there are significant differences between the various multilateral indexes.  

 

Conceptually, the Modified Similarity linked indexes seem to be the most attractive 

solution for solving the chain drift problem.
132

  
   

A.6 Multilateral Indexes Using Inflation Adjusted Carry Forward and Backward 

Prices  
 

In section 15, we used inflation adjusted carry forward and carry backward prices to 

replace the reservation prices for the missing products. In this section, we recalculate the 

8 indexes listed on Table A.6 above where the econometrically estimated reservation 

prices are replaced by these carry forward and backward prices.
133

 Our hope is that the 

                                                 
132

 They can deal with seasonal products more adequately than the other indexes that are considered in this 

paper. 
133

 The 8 inflation adjusted carry backward prices for products 2 and 4 are: 0.14717  0.15011 0.14755 

0.14154 0.13754 0.15373 0.17102 0.16925 and 0.14115 0.14397 0.14151 0.13575 0.13191 0.14744 

0.16401 0.16232 respectively. The inflation adjusted carry forward prices for product 12 are: 0.07399 

0.08811 0.08854 0.08460.    

Chart 8: Multilateral and Superlative Indexes 
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new indexes will be close to the previously calculated indexes in which case it will not be 

necessary for statistical agencies to expend resources in order to calculate reservation 

prices. The new indexes are differentiated from the old indexes by adding asterisks; e.g., 

the new Fisher index for period t is denoted as PF
t*

, etc. The sample means for the new 

indexes are listed in the last row of Table A.7. 

    

Table A.7 Multilateral Indexes and the Fisher and Törnqvist Indexes Using 

Inflation Adjusted Carry Forward and Backward Prices  
 

t PGEKS
t* PCCDI

t* PGK
t* PWTPD

t* PS
t*

 PSM
t* PF

t* PT
t* 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

2 1.00596 1.00730 1.03138 1.02468 1.00218 0.99792 1.00218 1.00036 

3 1.00666 1.00759 1.03801 1.03322 1.01124 1.00691 1.02342 1.02220 

4 0.94647 0.94621 0.97021 0.96241 0.94262 0.93862 0.93388 0.93445 

5 0.92870 0.93022 0.94754 0.94505 0.92812 0.92415 0.93964 0.94387 

6 1.02388 1.02738 1.06097 1.05893 1.03073 1.02632 1.03989 1.04311 

7 1.06561 1.06763 1.06459 1.06390 1.07314 1.06858 1.05662 1.06555 

8 1.18091 1.18406 1.24385 1.24192 1.15740 1.15740 1.15740 1.15743 

9 1.14713 1.14861 1.18818 1.18231 1.14132 1.14132 1.14877 1.14899 

10 1.13877 1.14192 1.19184 1.18333 1.13504 1.11475 1.15261 1.14931 

11 1.12911 1.13001 1.14662 1.14308 1.13022 1.13022 1.13709 1.13731 

12 1.11560 1.11787 1.11332 1.12082 1.10844 1.10844 1.10844 1.10868 

13 1.09803 1.10122 1.11561 1.11838 1.09664 1.09664 1.11002 1.11282 

14 1.11652 1.11948 1.16579 1.15912 1.11362 1.09370 1.14194 1.13993 

15 1.04479 1.04585 1.06958 1.06608 1.04137 1.04137 1.03879 1.04091 

16 1.04010 1.04230 1.08842 1.08044 1.03592 1.03592 1.04526 1.04821 

17 0.97090 0.97242 0.99512 0.99145 0.97124 0.95387 0.99011 0.99035 

18 0.88258 0.88427 0.91319 0.90765 0.88370 0.88370 0.88815 0.89350 

19 0.89145 0.89306 0.90990 0.90923 0.89032 0.89032 0.86971 0.87847 

20 0.88485 0.88728 0.90822 0.90578 0.87840 0.87500 0.87500 0.87811 

21 0.89905 0.90051 0.92641 0.92503 0.89051 0.89051 0.88918 0.89266 

22 0.86702 0.87076 0.90145 0.89880 0.87100 0.87100 0.85782 0.86544 

23 0.88301 0.88622 0.92421 0.92158 0.87581 0.87209 0.87827 0.88348 

24 0.88841 0.89459 0.91127 0.91198 0.88388 0.88046 0.88688 0.89553 

25 0.80827 0.80863 0.81875 0.81913 0.79839 0.79530 0.79772 0.79902 

26 0.83511 0.83675 0.85168 0.85089 0.82719 0.82367 0.82832 0.83286 

27 0.88704 0.88948 0.91906 0.91398 0.88380 0.88038 0.88358 0.88553 

28 0.81023 0.81176 0.82600 0.82419 0.81428 0.79972 0.82477 0.82203 

29 0.85467 0.85682 0.88821 0.88248 0.85588 0.85224 0.84893 0.85297 

30 0.83762 0.84022 0.86121 0.85556 0.84492 0.84133 0.85028 0.84975 

31 0.87196 0.87386 0.90123 0.89600 0.86875 0.86505 0.87220 0.87638 

32 0.89520 0.90478 0.88553 0.89332 0.90195 0.89810 0.91492 0.92083 

33 0.92324 0.92594 0.91672 0.92625 0.91881 0.91881 0.92070 0.92557 

34 0.95312 0.95505 0.99507 0.98974 0.94327 0.93963 0.94499 0.94645 

35 1.01483 1.01725 1.07728 1.06779 1.00095 0.99667 0.99168 0.98858 

36 0.96184 0.96328 0.98339 0.98282 0.96013 0.95642 0.95363 0.95423 

37 1.04792 1.05071 1.08019 1.07514 1.07601 1.07141 1.04224 1.04379 

38 1.08429 1.08637 1.11648 1.10963 1.07195 1.06737 1.09941 1.09567 

39 0.94251 0.94552 0.96156 0.96453 0.92943 0.92943 0.94795 0.95253 

Mean 0.97137 0.97367 0.99764 0.99504 0.96894 0.96499 0.97160 0.97377 
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The new indexes using carried prices are plotted on Chart 9. A comparison of Charts 8 

and 9 shows that there is little change in the 8 indexes when inflation adjusted carry 

forward or backward prices replace the econometrically estimated reservation prices for 

the missing products. 

 

 

 
It can be seen that there is very little difference between Charts 8 and 9: The PGK

t*
 and 

PWTPD
t*

 price indexes using carried prices are still well above the rest of the indexes and 

the Modified Similarity linked indexes, PSM
t*

, are still below the other indexes for most 

observations.  

 

If the means listed in Tables A.6 and A.7 are compared, then it can be seen that since the 

PGK
t
 and PWTPD

t
 do not depend on reservation prices, the means for these indexes remain 

unchanged. The means for PGEKS
t
, PCCDI

t
, PF

t
 and PT

t
 all decrease by about 0.3 percentage 

points when carried prices are substituted for reservation prices. The mean for PS
t
 

decreased by 0.18 percentage points when the reservation prices were replaced by carried 

prices. However, the mean for the Modified Similarity linked prices increased by only 

0.035 percentage points when the reservation prices were replaced by carried prices. Thus 

the substitution of inflation adjusted carry forward and backward prices hardly affected 

the Modified Similarity linked indexes. This is very encouraging result. If this result were 

to hold more widely, then the calculation of similarity linked price indexes is an attractive 

practical alternative that can deal adequately with both seasonal commodities and the 

chain drift problem .  

  

Chart 9: Indexes Using Inflation Adjusted Carry  

Forward and Backward Prices 
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Chart 10 plots PGEKS
t
, PS

t
 and PSM

t
 with the counterpart indexes that used inflation 

adjusted carry forward and backward prices for the missing products, PGEKS
t*

, PS
t*

 and 

PSM
t*

.  

 

 
 

It can be seen that PGEKS
t
 closely approximates PGEKS

t*
 and both of these indexes 

generally lie above the similarity linked indexes. The similarity linked indexes are tightly 

bunched with PSM
t*

 dipping below the other indexes occasionally.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chart 10: Selected Multilateral Indexes Using  

Alternative Reservation Prices 
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