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I. INTRODUCTION

Firms engage in research and development (R&D) because they anticipate future benefits in the

form of lower costs, new methods of production, and new uses for their products. To the extent

that they can capture the fruits of their efforts, private and social returns to R&D should be

equal.1 However, when they cannot appropriate the returns, R&D becomes a public good and

underinvestment is expected. A knowledge of the magnitude and direction of the problem (i.e.,

who benefits from the efforts of whom) is therefore a prerequisite for an appropriate design of

public policy.

We address the much studied question of the relationship between R&D spillovers and

productivity, where a spillover occurs when firm i benefits from the R&D activities of a different

firm j. There is substantial evidence that spillovers exist. Furthermore, it is commonly agreed that

spillovers are larger when firms are closer. However, it is not clear what closeness means or how it

can be measured. These questions are the focus of our research. Specifically, although we are most

interested in geographic proximity, we look at variants of three measures of closeness: proximity

in horizontal (product market), technological (patent technology class), and geographic space.2

With our focus on geographic proximity, we ask an additional question — Is distance dead?

Much has been written on this issue. For example, in her influential book The Death of Distance,
Cairncross (2001) states that, in a world where information flows electronically and instantaneously,

“new ideas will spread faster, leaping borders, and poor countries will have immediate access to

information that was once restricted to the industrial world.” On the other hand, the governments

of most industrialized nations subsidize the R&D activities of their domestic firms with the hope

that subsidies will help those firms become more productive vis–à–vis their foreign rivals.

Our research incorporates a number of novelties that we highlight. First, we assess all three

spillover measures simultaneously, which removes the possibility that one measure (say geographic

proximity) appears to be important simply because researchers fail to control adequately for the

common influence of a second measure (say technological proximity). In other words, firms that

are technologically similar might locate in the same region and benefit from each other’s R&D

activities. There has been little work that uses the same data and model to evaluate multiple

measures of closeness, both individually and jointly.3

Second, we refine the measures of closeness, particularly geographic proximity. To illustrate,

many previous researchers have used the (single) location of a firm’s headquarters to calculate

geographic distance. It is not clear, however, that technological advances are likely to be com-

municated by CEOs and managers. We hypothesize that inventors are more apt to exchange

ideas and we therefore use the distribution of a firm’s (multiple) inventor locations to calculate

1For optimality, technology markets must also be competitive. In other words, strategic behavior can also distort
decisions (see, e.g., Spence, 1984).

2We do not assess vertical proximity because we do not have adequate data.
3As we discuss below, although a few researchers evaluate two measures, most assess only one.
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proximity. Moreover, we look at the match between firms’ R&D activities across regions (counties)

and discount that match with a measure of the distance between regions. To our knowledge, no

one in the firm–level R&D productivity literature has exploited firms’ within country research

locations to create a multidimensional multiregional measure of geographic closeness.

As a third contribution, when we find that distance is not dead, we attempt to determine

why. In particular, we assess whether geographic spillovers are more important when firms’

technological and/or product market R&D activities are closer or whether the effect that we

uncover is purely geographic. Finally, by examining whether the estimated half-life distance of

the geographical spillover terms have increased over time, we ask: if distance is not dead, is it

perhaps dying?4

Our research attempts to answer a number of questions that are relevant for economic policy.

First and foremost, what is the nature of spillovers? In particular, which firms will benefit from

the R&D activities of a given firm and by how much? In the absence of an answer to this

question, it is impossible to formulate appropriate public policy towards R&D. Furthermore, it

cannot be answered by considering one source of spillovers in isolation. Second, to what extent is

knowledge private or public? In other words, can firms capture the lion’s share of the rents that

are associated with their R&D activities or are they freely available to rivals? This question must

be answered if we are interested in assessing under and over investment and the need to correct

the associated externalities. Finally, are knowledge flows confined to narrowly defined product

markets, technology classes and/or geographic regions? Put differently, are spillovers local or

global? This question must be answered if we are concerned with asymmetric patterns of regional

or industrial growth and decline and whether growth paths will converge or diverge.

We use U.S. manufacturing firm level accounting data (sales, employment, capital, R&D, etc.)

from U.S. Compustat 1980–2000 matched into the U.S. Patent and Trademark Office (USPTO)

data from the NBER data archive. To analyze that data, we employ simple versions of the spatial

econometric techniques that were developed in Pinkse et al. (2002); Pinkse and Slade (2004).

With those techniques, which allow us to handle multiple measures of closeness in a flexible

but parsimonious manner, space is broadly defined to include a number of geographic and

nongeographic dimensions.

The paper is organized as follows. Section II discusses the previous literature, Section III the

model, and Section IV measuring spillovers. The data is discussed in Section V, econometric

methods in Section VI, and results in Section VII. Some concluding comments are offered in

Section VIII.

II. PREVIOUS LITERATURE

Griliches (1979) was perhaps the first to recognize the multi–dimensional nature of the spillover

4Evidence from patent citations data suggests that distance is becoming less important in the international dimension
Griffith et al. (2011).
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problem. He cast the problem in a production–function framework and discussed alternative

hypotheses about the nature of closeness which, in his view, could be horizontal, technological, or

vertical. More recently, researchers have recognized that there is another type of closeness that

Griliches (1979) did not emphasize — geographic proximity. We discuss each of these possibilities.

Geographic or learning from neighbors. Researchers who are located in the same or proximate

regions have opportunities to communicate. For example, employees of different firms that are

located in close geographic proximity might meet on the golf course or belong to common civic

organizations where they discuss and learn from each other’s research activities. In other words,

social networks can facilitate learning. In addition, geographic proximity can enable capitalization

of complementarities among firms’ research activities that create synergies. Furthermore, R&D

agglomeration effects can lead to a better regional infrastructure and attract more highly skilled

workers into the region. Finally, when inventors change jobs, taking their ideas with them,

they often find a new job in the same geographic region. Geographic spillovers are particularly

important since they affect the potential for regional and national convergence. Indeed, if spillovers

are highly localized, the prospects for convergence are poor. Such spillovers have been studied by

Adams and Jaffe (1996); Eaton and Kortum (1996); Keller (2002); Orlando (2004).

Horizontal or learning from product–market rivals. Firms that produce similar products often benefit

from each other’s R&D activities. For example, when a pharmaceutical firm introduces a new drug,

in the absence of patent protection, rival companies can easily determine its makeup and offer

close substitutes. Horizontal spillovers, which are perhaps the most studied, have been evaluated

by inter alia Bernstein (1988), Adams and Jaffe (1996); Orlando (2004); Ornaghi (2006).5

Technological or learning from technology–market rivals. Firms that perform similar types of research

can also learn from each other. For example, the discovery of froth flotation, which facilitated the

refining of sulfide ores, was an important advance in the mining industry that benefited firms

from many different product markets (e.g., copper, lead, and zinc metals, which are used in wiring,

batteries, and galvanizing, respectively). Technology–market spillovers were the focus of the work

in Jaffe (1986); Bloom et al. (2013).

Finally, firms that are related through a vertical chain might experience technological synergies.

We do not evaluate vertical spillovers due to a lack of firm data on buying and selling. Extending

our framework to buyer–seller linkages is an important avenue for future research.

Most early spillover studies used data on industrial sectors to examine intersectoral in-

put/output flows or vertical spillovers based on sectoral input/output tables.6 More recently,

however, researchers have used firm level data that allow them to examine such issues as intra

5There is also a related literature that examines the relationship between technological diffusion, decentralization,
and closeness to the technological frontier (e.g. Acemoglu et al., 2007).

6See, e.g., Scherer (1982); Griliches and Lichtenberg (1984); Goto and Suzuki (1989).
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versus inter product market or geographic spillovers. Many of the more recent studies have found

significant spillover effects. However, most concentrate on one proximity measure in isolation.7

Our research, which is based on firm data in a multi–proximity measure or multi–dimensional

spatial setting, takes a production–function approach to the problem. There are of course other

approaches. For example, Bernstein and Nadiri (1989) used a dynamic dual framework based

on a cost function and a system of factor demands.8 Still others have used a consumer–surplus

framework (see, e.g., the survey by Griliches, 1992). One advantage of the static production function

framework over more structural models is that it requires fewer behavioral assumptions and is

therefore subject to less misspecification bias, at least from that source.

There are a number of issues that we have chosen not to cover. For example, we consider

private R&D but neglect public and academic activity (for work on the latter, see e.g., Adams, 1990;

Jaffe, 1989; Acs et al., 1992; Adams and Clemmons, 2008). Furthermore, although we exploit patent

data to create our measure of geographic proximity, we do not consider patent citations as direct

measures of spillovers (as in e.g., Jaffe et al., 1993; Thompson, 2006; Belenzon and Schankerman,

2013). Third and most importantly, we do not consider vertical or input/output spillovers because

we do not have detailed data on interfirm purchases and sales.

III. THE MODEL

We use a standard production–function framework similar to that employed by Griliches (1979). In

particular, output Q is produced by conventional inputs capital K, labor L, and raw materials, M.

In addition to the conventional inputs, output depends on a stock of knowledge or productivity,

which we model as Hicks neutral. Firms’ R&D activities augment that stock, which depreciates

over time.

Specifically, there are n firms, i = 1, . . . , n, observed in T time periods, t = 1, . . . , T. The

production function is

(1) Qit = AitΩtUitHi(xit),

where Q is output, A ×Ω ×U is the state of knowledge or productivity, and x is a vector of

conventional inputs. Taking logs we have

(2) qit = ait + hi(xit) + ωt + uit,

where lower case letters denote logarithms. Productivity consists of two parts: a systematic

component ait, and a random component. Furthermore, the random component is subdivided
7Exceptions include Orlando (2004); Adams and Jaffe (1996), who assesses product–market and geographical

proximity in a discrete framework (e.g., same product market/different geographic region), and Bloom et al. (2013),
who assess product and technology–market proximity.

8Their dynamic dual approach allows one to endogenize R&D and capital investment decisions through the use of
Euler equations. This is a plus if the specified model is correct but a minus if not.
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into an aggregate shock, ωt, and an idiosyncratic mean zero shock uit.

We model knowledge acquisition using a standard capital–accumulation type equation. Specif-

ically, firm i’s systematic stock of knowledge is

(3) Sit = (1− δ)Sit−1 + Rit−1,

where δ is the depreciation rate and Rit is firm i’s investment in knowledge in period t.

We assume that the systematic component of productivity is a weighted average of the R&D

activities of all firms

(4) ait = θSit + ∑
j 6=i

wijSjt,

where wij is a weight that corresponds to some notion of the distance between i and j. Our

objective is to uncover the weighting matrix W = [wij].

We do this as follows. Assume that we have K distance (really proximity) measures, where

each measure produces an n× n matrix, Dk = [dk
ij], and define the spillover pool associated with

Dk to be

(5) S−ikt = ∑
j 6=i

dk
ijSjt.

In other words, rival knowledge stocks can potentially contribute to a firm’s productivity but they

are attenuated by distance in some metric.

Based on this definition, the simplest parametric weights correspond to

(6) ait = θSit + ζkS−ikt,

or

(7) ait = θSit + ∑
k

ζkS−ikt.

With (6), wij = ζkdk
ij whereas with (7), wij = ∑k ζkdk

ij. More generally one can incorporate flexibility

into the weighting matrix and estimate the associated distance function.

IV. MEASURING SPILLOVERS

In this section, we define our measures of spillovers in technology, product market, and geographic

space. Several alternative distance or proximity measures have been used in the literature, and we

build on and refine some of these.
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IV(i). Technology Spillovers

We, like most researchers who examine technological proximity, use a measure that is due to Jaffe

(1986).9 Suppose that there are L technology classes, ` = 1, . . . , L. Let FT
i` be the fraction of firm i’s

R&D activities (e.g., expenditures or patents) that are in class `. Firm i’s technology locational

distribution is then FT
i = (FT

i1, FT
i2, . . . , FT

iL). The measure of technology match between firms i and

j is the uncentered correlation coefficient

(8) wT
ij =

∑L
`=1 FT

i`FT
j`√

[∑L
`=1(FT

i`)
2][∑L

`=1(FT
j`)

2]
.

Notice that with (8) all classes are treated symmetrically — no class is ‘closer’ to any other.

Furthermore, spillovers occur within but not across classes, or at least all ‘other’ technology

markets are the same. In other words, there are no FT
i`FT

jk terms with ` 6= k.10

Our technological spillover pool, SpillTech, is defined as

(9) SpillTechit = ∑
j 6=i

wT
ijSjt.

IV(ii). Horizontal Spillovers

Most researchers use a discrete measure, same or different Standard Industrial Classification (SIC),

that distinguishes between intra and interindustry spillovers (e.g. Levin and Reiss, 1988; Bernstein,

1988; Bernstein and Nadiri, 1989; Ornaghi, 2006). We use a continuous and more disaggregate

measure that is employed by Bloom et al. (2013). In particular, suppose that there are M product

markets, m = 1, . . . , M, where markets are proxied by SICs, and let FP be defined similarly to

FT, i.e., FP
im is the fraction of i’s output that belongs to product market m. Then FP

i is firm i’s
product–market locational distribution, and wP

ij is the uncentered correlation coefficient between

the output distributions FP
i and FP

j . Notice that here, as with the technology measure, product

markets are treated symmetrically — no market is ‘closer’ to any other — and spillovers occur

within but not across markets.

Our horizontal spillover pool, SpillSIC is defined as

(10) SpillSICit = ∑
j 6=i

wP
ijSjt.

9The Jaffe measure suffers from limitations that are discussed by Jaffe as well as Cincera (2005).
10Bloom et al. (2013) consider extending this to measures that take into account the idea that some industries (and

technological classes) may be closer to each other by using the Mahalanobis distance metric instead of the Jaffe style
measure. They found similar qualitative results from the alternative measures.
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IV(iii). Geographic Spillovers

Previous studies have tended to focus on the location of firms’ headquarters as the basis for mea-

suring geographic spillovers. Several measures have been used: i) a 0/1 variable that distinguishes

if the firms’ headquarters are located in a different or the same region (Adams and Jaffe, 1996;

Eaton and Kortum, 1996; Orlando, 2004) and ii) a declining function of the Euclidean distance

between the headquarters or the capital cities of the countries where the headquarters of firms i
and j are located (Keller, 2002; Aldieri and Cincera, 2009).

It is not clear, however, that headquarters is the relevant locational variable. It is more likely

that inventors communicate, and many inventors are employed in research labs. Moreover, unlike

headquarters, a given firm might locate laboratories in many regions. Although the locations of

headquarters and labs are correlated, this correlation is far from perfect, a fact that we document

below.

In our empirical work we look at the locations of both headquarters and research labs. However,

we do not have data on the geographic locations of labs. To circumvent this problem, we use patent

data. Specifically, each patent gives the addresses of its inventors, and we construct geographic

R&D locational distributions from those addresses.

We do this as follows. Suppose that there are K geographic regions, k = 1, . . . , K. Let FG
ik be

the fraction of firm i’s inventors that are located in region k and FG
i be firm i’s geographic–region

locational distribution. All of our geographic proximity weights are of the form

wG
ij = ∑

k
∑
`

fijk`C(dk`), i 6= j, wG
ii = 0, C′ ≤ 0,

where dk` is the Euclidean distance between regions k and ` and fijk` is a function depending on

the FG
ik ’s defined in equation (12) below. We assume that cross–regional spillovers are weakened,

or at least not strengthened by geographic distance. Similar to our other two spillover variables,

our geographic spillover pool, SpillGeog, is defined as a weighted sum of R&D stocks,

(11) SpillGeogit = ∑
j 6=i

wG
ij Sjt.

There are a number of attributes of our geographic measure that should be noted. First, unlike

our product market and technology class measures, with our geographic measure spillovers

can occur across regions but cross–regional spillovers are weighted by a declining function of

geographic distance between regions. In addition, our measure specializes to headquarters, which

is equivalent to considering firms that have only one lab or have all of their labs in the same

region.

We distinguish between measures of match ( f ) and measures of Euclidean distance (C).
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Our measure of match. We use the following function of the locational distributions,

(12) fijk` =
FG

ik FG
j`√

[∑K
m=1(FG

im)
2][∑K

m=1(FG
jm)

2]
.

Note that, unlike the Jaffe (1986) measure, (12) allows for cross–regional spillovers (k 6= `). We

experimented with alternatives but ultimately settled on this one as it is a multidimensional

relative of the uncentered correlation coefficient.11

Measures of Euclidean distance. We use two alternative functions of Euclidean distance. Specifically,

we define the following functions C(.) of the Euclidean distance, dk`, between regions k and `,

(13) Ccorr(dk`) =

{
1, k = `,

0, k 6= `,

and

(14) Cexp(dk`) = exp(−αdk`).

With the first function, the distance between regions does not matter. Indeed, all ‘other’ regions

are the same regardless of distance. We use the subscript corr to indicate that this is the distance

measure that is implicit when the uncentered correlation coefficient is calculated (i.e., our measures

of technology and product–market spillovers). With the second measure, the effect of distance

decays gradually, and the parameter α, which determines the rate of decay, can be estimated or set

exogenously. We use the subscript exp to denote exponential decay. The exp measure collapses into

the one used by Keller (2002) when f (.) ≡ 1 and each firm has labs in only one region. Finally,

when f (.) ≡ 1 and C = Ccorr one obtains the popular 0/1 measure. Our measures of geographic

proximity therefore include those used by previous researchers as special cases.

To illustrate the construction of our geographic spillover measure, consider the example with

three firms and four regions illustrated in Figure 1. Here, FG
23 = 1 because all of firm 2’s inventors

are located in region 3. Note that
√

∑K
m=1(FG

im)
2 (which is in the denominator of the right hand

side of (12)) equals 0.6, 1, and 0.6 for i = 1, 2, 3, respectively. Thus,

f1324 =
0.4× 0.4
0.6× 0.6

=
4
9

,

since 40% of firm 1’s inventors are in region 2 and 40% of firm 3’s inventors are in region 4. With

Ccorr, f1324 is multiplied by zero because regions 1 and 4 are not the same, but with Cexp, f1324

would receive a (presumably small) positive weight. To complete the example, note that using

11See Lychagin et al. (2010) for experiments with different specifications of match.
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Ccorr, 
wG

12 =
0.4× 0 + 0.4× 0 + 0.2× 1 + 0.0× 0.0

0.6× 1
=

1
3

,

wG
13 =

0.4× 0.2 + 0.4× 0.4 + 0.2× 0.0 + 0.0× 0.4
0.6× 0.6

=
2
3

,

such that SpillGeog1t = S2t/3 + 2S3t/3.12

V. DATA

V(i). Sources

We use two firm level data sources. Accounting data (sales, employment, capital, etc.) come

from U.S. Compustat 1980–2000. Since we focus on manufacturing, we removed all firms whose

primary industries are outside of the manufacturing sector (SIC codes 2000–3990). The data items

available in Compustat, which are those reported in standard corporate income statements, are

used to construct our measures of output and conventional inputs, Q, K, L, and M. We construct

firm–specific price indices for sales, capital and materials using the NBER–CES Manufacturing

Industry Database and information on firm activity by industry from the Compustat Segments

data. We then use these price indices to deflate sales, book values of capital and material expenses

to obtain Q, K, and M.

The Compustat Segment data allow us to create breakdowns of each firm’s activities across

product markets, which pinpoints the firm’s location in the product space. Specifically, firms’ sales

are allocated to 308 3–digit industry codes.13 On average each firm reports sales in approximately

5 different industry codes.

The Compustat firms were matched to the U.S. Patent and Trademark Office (USPTO) data

from the NBER data archive. This archive contains detailed information on almost three million

U.S. patents granted between January 1963 and December 1999 and all citations made to those

patents between 1975 and 1999 (Hall et al., 2001; Jaffe et al., 1993). We kept only those firms that

were assigned patents in the period of 1970–2000 leaving an unbalanced panel of 1383 firms. The

USPTO allocates patents into 410 3–digit technology classes, such as class 042 (“Firearms”) and

class 257 (“Solid state devices”), which is the breakdown that we use to construct technological

proximity. On average each patenting firm owns 323 patents in 28 classes.

Inventor locations are taken from the addresses of the inventors of the patent, which are

recorded at the city level. This is the standard measure of inventor location used inter alia by

12Please note that the fact that the weights add up to one is a coincidence here.
13The original Compustat Segments data often contain 4–digit product codes. However, in many cases 4–digit codes

fail to represent a segment’s product as many segments are categorized under “catch–all” codes. Instead of relying
on imprecise 4-digit codes we chose to aggregate segment data to the 3–digit SIC level. For instance, most segments
producing industrial organic chemicals (3-digit SIC code 2860) are categorized under SIC code 2869 (“Industrial Organic
Chemicals, Not Elsewhere Classified”). Other 4-digit codes from this group are 2861 (“Gum and Wood Chemicals”)
and 2865 (“Cyclic Organic Crudes and Intermediates, and Organic Dyes and Pigments”). By using 3-digit SIC codes to
pinpoint firm location in product space we pool these three types of industrial chemicals into one product category.
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Jaffe and Trajtenberg (2005); Griffith et al. (2006), among many others. We feel that it is a more

appropriate proxy for the location of the firm’s R&D, and thus the potential for spillovers, than

the headquarters of the firm, as it is a better indicator of where the key research was conducted.

We allocate R&D activity into 2,070 geographic units, where a unit is a county. Because there

are multiple patents, we are able to build up a picture of the location of the firm’s R&D activity

spatially. We do not use inventor information outside the United States. Since these are U.S. firms,

most of their inventors are located inside the U.S. so we focus on within–U.S. interactions.

Each firm’s own stock of knowledge, S, is constructed from R&D expenditure data as in

equation (3) with the depreciation rate δ set to 0.15 following Hall et al. (2005). We denote the hor-

izontal product–market spillover measure defined by equation (10) SpillSIC and the technological

spillover measure defined by equation (9) SpillTech. Finally, the measures of geographic proximity

defined by equation (11) are denoted SpillGeog. Note, however, that SpillGeog varies according to

the choice of function of geographic distance (C) and whether we use inventor or headquarters

locations.

V(ii). Descriptive Statistics

A more detailed description of the data is found in Appendix A, but we sketch some details in

this section. Table I provides some basic descriptive statistics for the accounting and patenting

data and the technology, product market, and geographic distance measures, SpillTech, SpillSIC,

and SpillGeog. The sample firms are large (mean employment is over 11,000), but with much

heterogeneity in size (measured by output, employment, or physical capital), R&D intensity,

patenting activity, and location. The three spillover measures also differ widely across firms.

In order to distinguish between the effects of own R&D and technology, product market, and

geographic spillovers econometrically we need independent variation in all of these variables. To

gauge this we do two things.

First, we calculate and report in Table II raw correlation coefficients between pairs of measures

of R&D stocks. To interpret Table II, consider the first column. The first row in that column contains

the correlation coefficient between product and technology market spillover pools, lnSpillSIC

and lnSpillTech, and the second between detrended and demeaned versions of those variables,

∆lnSpillSIC and ∆lnSpillTech.14 Column (4) has the correlation between the firm’s own R&D

stock (lnOwnS) and its product market spillover (lnSpillSIC). In performing these calculations,

we used the exponential measure of distance and inventor locations to construct SpillGeog.

The correlations between the levels and the detrended and demeaned R&D stock variables are

positive and significant at the 1% level. However, they are well below unity, implying substantial

independent variation in each of the three measures. Finally, the third row contains raw covariances

between spillover measures.

14∆X is defined as the residual from a regression of X on firm fixed effects and time dummies, where X = lnOwnS,
lnSpillSIC, lnSpillTech, and lnSpillGeog.



12 S. LYCHAGIN, J. PINKSE, M. SLADE, J. VAN REENEN

Second, we plot each pair of weights. Figures 2, 3, and 4, which show wT, wP, and wG plotted

against each other, these figures reveal that the relationships between proximity measures are far

from being perfectly correlated. For example, there are numerous pairs of firms that use a similar

technology but are far apart in the product space. Furthermore, consistent with Table II, these

figures show that the geographic spillover measures are less highly correlated with the other two

proximity measures than those two are with each other.

We also investigate the relationship between the locations of inventors and headquarters in

two ways. First, we calculate the aggregate distribution of inventor locations, which shows the

aggregate fraction of inventors that are located at various distances from their headquarters. The

quintiles of this distribution are reported in Table III, which shows that although many firms have

all of their research activities located in close proximity to their headquarters, the activities of

others are much more dispersed.

Second, we picked four firms that exhibit very different patterns. The information for those

firms is summarized in Figure 5. The triangles in the graphs locate each firm’s headquarters,

whereas the circles show the distribution of its inventors. The first firm, Polaroid, has almost all

of its research activities located in close proximity to its headquarters; the second, Motorola, has

four concentrations of inventors, one of which is close to its headquarters; the third, Eaton (a

power management company), has many concentrations of research activities. This dispersion is

due to the fact that Eaton has expanded mainly through acquisitions; finally, the fourth, Union

Carbide, has most of its R&D activities located in the Northeast where its headquarters used to be.

However, when it relocated its headquarters to Texas it largely left its labs in place.

The geographic distribution of Motorola inventors demonstrates that we succeed in capturing

the locations of major R&D labs. According to the company’s website, Motorola had four U.S.-

based development centers in 2009. Those centers are located in Schaumburg, IL, Phoenix, AZ,

Plantation, FL, and Fort Worth, TX. This matches perfectly the four large clusters of Motorola

inventors in Figure 5.

VI. ECONOMETRIC METHODOLOGY

VI(i). The Model

There are at least two approaches that can be used to assess productivity in our production–

function framework. The first is to simply estimate equation (2) using firm and time period

fixed effects to capture firm heterogeneity and aggregate shocks, respectively. To implement this

approach one must specify a functional form for h, the function of conventional inputs, which for

example could be Cobb–Douglas or translog. With this specification, ait is a function of the firm’s

own knowledge stock and the spillover variables, as discussed earlier. Unfortunately, this approach

suffers from an input endogeneity problem that we discuss below. However, there are methods

of overcoming this problem with standard panel data econometric techniques. We experimented
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with these formulations, and we discuss the results in Section VII(v). We only note here that the

conclusions that can be drawn from the production–function and index–number estimations are

essentially the same.

The second approach, which is the focus of our empirical work, involves constructing a

productivity index, an index of outputs divided by an index of inputs, and regressing this index

on own knowledge stocks and the spillover variables. There are many possible functional forms

for productivity indices and some of them are exact for a flexible technology (e.g., the Tornqvist

and the Fisher Ideal); in other words they provide a second–order approximation to an arbitrary

technology. We use the former, which is exact for the translog.

Consider firm i and some comparison for i. The most standard comparisons are (i) to compare

firm i in period t to firm i in period t− 1, (ii) to compare firm i in period t to firm k in period

t (a unilateral comparison), or (iii) to compare firm i in period t to a hypothetical ‘average’

firm in period t (a multilateral comparison). We use a fourth and compare firm i in period t
to a hypothetical ‘average’ firm i. This is very similar to the multilateral approach developed

in Caves et al. (1982). However, whereas the averages there are taken over firms in period t,
here they are taken over time for firm i. The reason is as follows. The Caves et al. method is

usually used for country comparisons, where the production function is a country aggregate.

Since macro production functions are arguably similar across countries, averaging across firms is

not unreasonable in their context. In our case, however, we have firm data and firm technologies

can be vastly different. The aggregation problem is therefore especially problematic. A possible

problem with averaging over time is that there can be a trend in aggregate productivity.15 The

time–period fixed effects, however, solve this problem.

With our data we have only one output per firm, qi, and therefore do not need to construct an

output index. If each firm uses J inputs indexed by j, our Tornqvist productivity index is16

(15) TFPit = (qit − q̄i)−∑
j

1
2
(sijt + s̄ij)(xijt − x̄ij),

where sj is factor j’s share of costs and bars denote firm–specific time averages.17 This index is

regressed on our spillover measures, own R&D, and firm and time–period fixed effects.

There are several properties of our index number approach that are worth noting. First, the

production function parameters need not be estimated. Second, the input endogeneity problem is

solved by moving the inputs to the left hand side of the equation. Finally, the translog parameters

can differ by firm up to the second order. In particular, this means that if the technology were Cobb–

Douglas, the functional form that is used in most of the R&D spillover literature, all parameters

15Note that, since we estimate rates of change, there is no obvious trend.
16Recall that lower case variables are in logarithms.
17We assume constant returns to scale and competitive markups, which imply that it doesn’t matter if we use cost

or revenue shares. The assumption of constant returns is consistent with the production function estimates that are
reported in Section VII(v). The zero markup assumption is more problematic since the two assumptions combined
imply that firm sizes are indeterminate.



14 S. LYCHAGIN, J. PINKSE, M. SLADE, J. VAN REENEN

would be firm specific.

We include a firm’s own stock of knowledge lnOwnS, the horizontal product–market spillover

measure lnSpillSIC, and the technological spillover measure lnSpillTech as explanatory variables,

where variables that are preceded by ln are in natural logarithms. The presence of own R&D on

the right hand side may appear puzzling because in the firm accounts R&D will be captured

by labor, capital or materials. Thus, it will already be captured in the TFP measure insofar as

it is a conventional factor of production. We include it in our estimating equation first because

this makes our estimates more comparable with the existing literature but second because R&D

is related to the quality of standard inputs like labor and capital.18,19 Most equations that are

reported below contain all of these variables. In addition, they contain one or more measures

of geographic proximity, lnSpillGeog, that differ according to the choice of geographic distance

function (C) and whether an inventor or headquarters measure is used.

Our index–number estimating equation is thus20

(16) yit = β0 + (zit − z̄i)β + ωt + uit, i = 1, . . . , nt, t = ti0, . . . , Ti,

with yit = TFPit and

(17) zit = [ln OwnSit, lnSpillSICit, lnSpillTechit, lnSpillGeogit],

where z̄i denotes a within firm average. The number of firms differs by period and the years in

which a firm is observed differ by firm because the panel is unbalanced.

VI(ii). Econometric Issues

Identification. The potential bias in OLS estimates of production functions has long been recognized

(see e.g., Marschak and Andrews Jr, 1944). This bias results from the possible correlation between

input levels and firm level productivity shocks. Specifically, when firms experience a large

productivity shock, they might respond by using more inputs. Applied economists have devised

alternatives to OLS that attempt to circumvent this problem. Most use either a variant of the

method developed by Olley and Pakes (1996) and extended by Levinsohn and Petrin (2003);

Gandhi et al. (2013); De Loecker (2011) or the GMM methods proposed by Arellano and Bond

(1991); Arellano and Bover (1995); Blundell and Bond (2000). We have chosen to focus on GMM

approaches because it is not straightforward to introduce endogenous R&D into Olley–Pakes

18In addition, the econometric production function specifications include lnK, lnL, and lnM.
19Some of our firms do not perform R&D and thus have zero stocks; observations with zero R&D stocks account for

8% of the sample. To overcome this problem, we follow Klette (1996) and set lnOwnS = 0 when S = 0 and include a
dummy variable that equals one when this occurs. We experimented with several other specifications for the OwnS
variable and found that our basic conclusions were robust to these changes.

20Our demeaned specification produces estimates that are almost identical to one that includes firm fixed effects and
levels of the dependent and explanatory variables (i.e., without demeaning).
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approaches. (see, e.g., Ackerberg et al., 2007, as well as Buettner, 2004).21

With the index–number specifications, the conventional inputs do not pose an endogeneity

problem because they appear on the left hand side of the estimating equation.22 Nevertheless, the

own stocks of knowledge are potentially endogenous.23 We therefore also consider the Arellano

and Bond (1991) correction for endogeneity to lnOwnS.

Identification of (16) relies on within–firm variation of the spillover measures. We have shown

that, in the data, there is substantial independent variation in the measures. However, much of

that variation is cross sectional. We therefore assess time–series variation within a firm, first with

an example and second with a figure.

Suppose that there are three firms, the firm of interest i, a second firm g that is in close

geographic (but not technological) proximity to i, and a third t that is in close technological

(but not geographic) proximity. When firm g varies its R&D expenditures, SpillGeogi will vary

while SpillTechi remains constant. The opposite will be true when firm t changes its R&D efforts.

Differences in the weights therefore lead to independent variation in i’s spillovers from the three

sources. The firm–specific spillover weights are (in our baseline estimates) held fixed over time,

but they are specific to every dyad of firms. Firms are subject to differential shocks in R&D over

time, and the effect of such a change in R&D will be heterogeneous across firms depending on the

distance metric (e.g. geographical vs. patent class). So identification comes from the interaction

between a time invariant characteristic and a time-varying shock.

While the example shows that, in theory, independent variation exists, we must also show

that it occurs in practice. Figure 6 assesses this issue. The figure shows the distribution across

firms of within–firm correlation between detrended spillover pairs. The first part of the figure,

which assesses within firm correlation between lnSpillGeog and lnSpillTech, shows that, although

correlation is high for some firms, there is a substantial number of firms for which correlation

is low or negative. The same is true for correlation between geographic and product market

spillovers. In contrast, the correlation between technological and product market spillovers is

higher, confirming our earlier findings.

21 Essentially, the Arellano and Bond approach assumes that serial correlation of the error term (after controlling for
fixed effects) is of finite order. In the simplest case of no serial correlation this implies that levels dated t− 2 and earlier
are valid instruments. If there is some first order correlation (e.g. MA(1)) we can use t− 3 dated instruments. One can
also use the additional moments for the levels equations suggested by Arellano and Bover (1995) and first used in a
production function context by Blundell and Bond (2000). The GMM approach does have issues, however. First the
instruments may have weak power in the first stage. Second, the construction of our TFP index uses past and future
realizations of shocks to inputs and outputs, so will likely violate the assumption of no serial correlation of uit in (16).
There is no one perfect way to estimate the TFP equations, so we consider it useful to contrast OLS and GMM to see
whether our conclusions are substantially robust.

22The index–number and production–function approaches are based on different assumptions about the way in
which conventional inputs adjust. In particular, the first is based on the assumption that inputs adjust instantly whereas
the second requires that all inputs adjust with a lag.

23It is more plausible to take rival knowledge stocks as exogenous for three reasons. First, in a competitive model,
R&D levels are not chosen jointly. Second, we follow the spillover literature, as well as the differentiated–products
literature, in assuming that a firm’s position in space, whether it be geographical, technological, or product–characteristic
space, is exogenous. See, e.g., Keller (2002); Berry (1994) for the two literatures. Third, Bloom et al. (2013) consider
instrumenting spillovers with R&D tax credits and found that their OLS and IV results were similar.
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Estimation. We use two different methods to estimate the unknown coefficients in (16): OLS and

GMM. The OLS estimator here is essentially equivalent to the standard fixed effects estimator,

i.e., the OLS estimator after subtracting out the means (over time) for each firm. For GMM we

consider both a static and a dynamic version.

For the static versions of GMM we use the methodology of Arellano and Bond (1991) with

sufficiently lagged xit’s as instruments. This presumes that such instruments are orthogonal

to current and (one–period) lagged errors. This assumption is substantially weaker than the

assumption of strict exogeneity of the instruments even if the errors are serially dependent.

The dynamic version of the model is similar to that of Blundell and Bond (2000). Define TFP

in levels,24

(18) TFPLit = qit −∑
j

(sijt + s̄ij)xit

2
,

and consider an equation in levels with firm fixed effects,

(19) y`it = zitβ + νi + ωt + uit,

where y` = TFPL. If the error term follows the AR(1) process

(20) uit = ρuit−1 + ε it,

where ε it is serially independent, one can substitute (19) into equation (20) to obtain

(21) y`it = π1y`it−1 + zitπ2 + zit−1π3 + ν∗i + ω∗t + ε it,

where ν∗i = (1− ρ)νi, ω∗t = ωt − ρµt−1, π1 = ρ, and π2, π3 satisfy the common factor restriction

(22) β = π2 = −π3

π1
.

We estimate the unrestricted model of equation (21) and then impose (22) by minimum distance

methods.

Finally, the standard errors that are shown in all tables are clustered at the firm level.

VII. TFP INDEX NUMBER ESTIMATES

The Tables IV–X contain a number of specifications of our index number equation with knowledge

spillovers, all of which include year fixed effects. We begin with the OLS estimates.

24We formulate the GMM equation in levels with firm fixed effects because the Arellano and Bond estimation
differences the data to remove those effects, which is the same as demeaning.
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VII(i). OLS

Single spillover measures. Table IV, which assesses each spillover measure in isolation as well

as all three jointly, shows that when only one measure is considered, the coefficient of that

measure is positive and significant at conventional levels. However, the coefficients of lnSpillTech

and lnSpillGeog25 are much larger than the coefficient of lnSpillSIC, even though their standard

deviations are of similar size. This remains true when all three measures are included in the

same equation. Moreover, all spillover coefficients are smaller in the fourth specification, which is

due to the fact that the spillover variables are positively correlated and thus the single–measure

coefficients are biased. This clearly implies the need to consider a multi–space model as we do.

With some specifications, the coefficient of lnOwnS, although positive, is not significant, a

regularity that persists in most of the later tables. When we drop the observations with OwnS

= 0, or when we use other measures of the R&D stock, the coefficient of that variable becomes

positive and significant. For example, when
√

OwnS is substituted for lnOwnS,26 its coefficient

is significant. However, in the interest of full disclosure we decided to report specifications with

lnOwnS because its construction is consistent with previous literature. In addition, our research

does not focus on the magnitude or significance of the coefficient of that variable.

Multiple spillover measures. Table V contains further estimates of the index number equation. As

indicated in the table, the first three specifications (columns 1–3) are based on the locations of

inventors using our new geographic spillover measure. The next two (columns 4 and 5) are based

on the locations of headquarters as has been customary in previous work, and the last two columns

(6 and 7) contain both inventor and headquarters measures. Furthermore, specifications 1 and

2 for inventors (4 and 5 for headquarters and 6 and 7 for both inventors and headquarters) are

distinguished by the specification of the distance function C. The first of each pair is based on

the exponentially decaying distance function (Exp) and the second on the 0/1 distance function

(Corr). Finally, column (3) shows a specification that includes both the exponential and the 0/1

distance function for inventors.

First consider the top half of the table, which contains the variables that are common across

equations. It shows that the signs, magnitudes, and significance of the coefficients of those variables

are stable across specifications of the geographic distance function. Furthermore, all coefficients

are similar to those found in column (5) of Table IV, which is column (1) in Table V.

To assess geographic spillovers in more detail, one must examine the bottom half of Table V.

First, compare inventor–based measures (denoted INV) to headquarter–based measures (denoted

Head). These specifications are found in columns (1) and (4) and (2) and (5). With both comparisons,

the coefficients of the inventor measures are much larger than those of headquarters measures.

25In this table, the SpillGeog variable is constructed using the inventor measure of match and the exponential distance
function.

26Taking the square root of a persistent variable to overcome the zero–value problem and to capture diminishing
returns is common in the advertising literature. See, e.g., Gasmi et al. (2005), Slade (1995); Kadiyali (1996).
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Finally, when both inventor and headquarters measures are included (columns 6 and 7) the

coefficients of the inventor variable are larger and with the second comparison, the headquarters

coefficient is insignificant. These findings imply that the elasticity of TFP with respect to our new

inventor–based measure is at least twice as large as,27 and generally more significant than, that

for the headquarters measure.

Second, compare the exponentially decaying geographic distance function (denoted Exp) to

the zero/one measure (denoted Corr). With the Corr measure, the region in which a firm performs

R&D matters. Indeed, a firm that has a lab (headquarters) in a particular location benefits from

the R&D activities of rival firms in that location. In contrast, with the Exp measure, not only

does the region in which one locates matter but distance between regions matters as well. In

particular, firms benefit from R&D performed in more distant locations but at a rate that decays

with geographic distance. The comparisons between Exp and Corr, which can be found in columns

(1) and (2), (4) and (5), and (6) and (7), show that the coefficients of the exponential measures are

always much larger and more significant that those of the 0/1 measure. Finally, when measures

based on both distance functions are included in the same equation (16), the coefficient of the Corr

measure is insignificant. One can therefore conclude that ignoring inter regional spillovers and

the distance between regions results in an underestimate of geographic spillovers.

Table V thus reveals two regularities that persist in alternative specifications. First, although

match — having local R&D distributions that are similar — by itself is important, it is clear that

considering both match and Euclidean distance is associated with estimates of spillover effects that

are both larger and more significant than when distance is ignored. Second, geographic distance

effects are larger when inventor rather than headquarter locations are chosen. Our use of the

patent data therefore appears to result in an improved geographic measure.

To demonstrate the magnitude of geographic spillovers we perform the following thought

experiment.28 We track the total factor productivity (TFP) of a hypothetical firm, whose inventors

are located in Los Angeles County (“incumbent LA firm”). We assume that another hypothetical

firm has a lab in the same county with an R&D stock of $500m (1987 prices). We then relocate this

lab farther and farther away from LA. As the lab moves to an infinite distance, its contribution to

the LA incumbent’s geographic spillover variable declines to zero, while the product market and

the technology spillovers are left unaffected. Having such a lab in LA raises the incumbent LA

firm’s TFP by 0.84%, whereas having the mobile R&D lab in San Diego would raise TFP by only

0.43%. If the lab were moved to San Francisco, its contribution would decline further to 0.13%.

Having the lab as far as Seattle would only raise the LA–based firm’s TFP by 0.005% (essentially

zero). This is a substantial effect and could rationalize why cities and states compete so eagerly

for the location of R&D activities (Wilson, 2009).

Finally, we assess the relative magnitudes of spillover effects across firms by looking at the

27This is true because, in our setting, the ratio of the coefficients of two spillover measures equals the ratio of the
comparable elasticities.

28This thought experiment is based on the estimates from the last column of Table IV.
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implied impact on TFP of a one standard deviation change in each measure.29 All comparisons are

relative to lnSpillGeog calculated using exponential decay with distance and inventor locations.

According to this calculation, the effect of geographic spillovers is 8% higher than that of technology

spillovers and 367% higher that that of product market spillovers. These comparisons should be

interpreted cautiously, however, since our measure of geographic spillovers is more sophisticated

than the other two. Comparing different geographic measures, we find that the inventor measure

based on exponential decay is 32% higher than the headquarters measure that is based on

exponential decay and is 235% higher than the inventor measure that uses a 0/1 distance function.

VII(ii). GMM

An obvious concern with the estimation strategy is that, even after controlling for heterogeneity

at the firm and sectoral level, the own knowledge stocks are endogenous. Column (1) in Table

VI presents GMM estimates of the static index number formulation (an IV estimate of column

(1) in Table V) using Arellano and Bond instruments. The results are consistent with our previ-

ous estimates: geographically and technologically–based knowledge spillovers are positive and

significant, albeit with coefficients that are smaller than the OLS estimates.

To evaluate instrument strength we conducted both standard first stage F tests and the mini-

mum eigenvalue test proposed in Cragg and Donald (1993) , the results of which were statistically

acceptable.30 Further, the serial correlation tests at the base of column (1) suggest no problems

(we expect first order serial correlation due to the MA(1) nature of the first differenced errors).

However, the Hansen test rejects the null of instrument validity which could indicate misspecifica-

tion. If we assume that there is an AR(1) error term in the TFP equation as in (19) and (20), this

generates a model that includes a lagged dependent variable and lags of all explanatory variables

in the first equation, which we show in column (2).

As outlined in Section VI(ii), the structure of the model implies common factor (COMFAC)

restrictions on the coefficients in column (2), which we impose in column (3). The qualitative

results from this COMFAC model are consistent with the findings in column (1) and elsewhere in

the paper. In particular, there is a significant effect of the geographically–based R&D spillover term

in addition to the standard technological spillover term. As in column (1), however, there remain

diagnostic problems. The Hansen test is slightly better (but still rejects at the 10% level), there is

29In other words, we multiply the coefficient of a spillover variable times the standard deviation of that variable.
30The individual F statistic values were greater than 11 so they met the Staiger and Stock (1997) cutoff. However,

nonidentification and weak identification can occur even if some of the coefficients in the first stage are nonzero. We
therefore used the (F–statistic implementation of the) minimum eigenvalue test, which verifies that the rank condition
required by IV–type methods is satisfied. The statistic value was 4.5 for 106 numerator degrees of freedom. This
suggests that the null of nonidentification is soundly rejected (with a p–value equal to zero up to at least six decimal
places). Stock and Yogo (2005) propose cutoff values that are much greater than the 5% critical values of the minimum
eigenvalue test since it is possible to construct examples in which GMM type estimators perform poorly if the first stage
F–statistics fall below the thresholds they compute. The cutoff values listed in their paper depend on the estimation
method used, none of which corresponds exactly to ours. Our F statistic value exceeds the cutoff value listed in Stock
and Yogo (2005) for two out of the three methods listed plus it should be noted that these cutoffs are based on the
worst case, not the typical, scenario.
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now evidence of second order serial correlation, and the COMFAC restrictions are rejected.31

In summary, the GMM results broadly support the earlier findings. In particular, the positive

and significant effect of the spillover terms is invariant to many experiments with different

specifications. Although no one specification is ideal, we feel that our key conclusions are robust.

VII(iii). Alternative TFP Index Number Specifications

It seems clear that location and distance are important determinants of R&D spillovers. Several

questions, however, remain. First we ask why distance matters and second we ask if, even though

distance is not dead, it might be in the process of dying. Finally we revisit the endogeneity issue.

Interactions between spillovers. Geographic distance could be an important determinant of R&D

spillovers for the reasons that we state in the introduction; that is, importance could be due to

the formation of social networks, R&D agglomeration effects, and within–region labor mobility.

However, there are alternative hypotheses. From the outset, the literature has had difficulty

distinguishing between ‘pure’ distance effects and distance effects that reflect differences in local

and distant technologies. We now try to dig deeper into the reasons why knowledge flows fade

with distance. In particular, knowledge flows might diminish because face–to–face meetings,

second and third–hand information flows, and R&D agglomeration effects might decline as

distance increases. We call this the ‘declining–contact–with–distance’ hypothesis. Alternatively,

knowledge flows might decline with distance because nearby knowledge is on average more

similar and more relevant — through industry clustering — than distant knowledge. We call this

the ‘decreasing–relevance–with–distance’ hypothesis.

Although we have conditioned our estimates of geographic spillovers on measures of technol-

ogy and product market spillovers, we have not yet included interactions that would allow us to

distinguish between the two hypotheses. Table VII contains specifications of our index–number

TFP equation that include interactions of lnSpillGeog with lnSpillSIC (SICGeog) and lnSpillTech

(TechGeog). If the declining–contact–with–distance hypothesis dominates, the coefficients of the

interaction variables should be insignificant and that of the geographic spillover variable should

remain unchanged. If, in contrast, the decreasing–relevance–with–distance hypothesis dominates,

the opposite should be true.

Table VII shows specifications with each interaction variable included by itself as well as one

that contains both interactions. One can see that, with all three specifications, the coefficients of

the interaction variables are insignificant. Furthermore, the coefficient of lnSpillGeog is stable.

Finally, when SICGeog is included, the coefficient of lnSpillSIC loses its significance. Since the

31We also experimented with using further “levels” moments that follow if we make assumptions over the initial
conditions (essentially mean stationarity) as suggested by Arellano and Bover (1995); Blundell and Bond (1998).
Unfortunately these additional levels moments did not appear to be valid in our context. In particular, the coefficient
on the lagged dependent variable in the COMFAC model was one (greater than one in some specifications) and its t
statistic was 171 (several hundred in some specifications). Moreover, many of the other coefficients were negative.
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magnitude of this coefficient is stable, the inclusion of SICGeog may simply introduce too much

noise. Alternatively, insignificance could be taken as evidence that estimated product market

spillovers are to some extent due to geographic clustering of firms that produce similar products

(e.g., automakers in Detroit).32 Regardless of how one interprets the coefficients of lnSpillSIC,

however, the results in Table VII support the declining–contact–with–distance hypothesis.

Is distance dying? Our data span the 1980 – 2000 period, a period when the use of computers, the

internet, and wireless technology was growing at a fast pace. It is therefore possible that, even

if distance is not dead, its importance is fading with time. We call this the ‘distance–is–dying’

hypothesis.

To determine if geographic spillover effects became less important in later years, or, in other

words, if the areas over which ideas are easily communicated became larger, we broke the sample

into two periods, the 80s and the 90s. We then recalculated the spillover weights, wG
ijt, based on

inventor locations in the two time periods and recalculated SpillGeog based on the period weights.

We then estimated the half life of the geographic spillover effect — the distance at which one half

of the spillover is dissipated — for the entire period as well as for each subperiod.33

Table VIII, which contains two specifications of the TFP equation with estimated half lives, one

for the entire period and one in which the inventor weights and half lives differ by subperiod,

shows that the estimated half lives are remarkably similar across periods. We therefore conclude

that distance is not dying, or at least it was not showing signs of mortality at the end of the 20th

century.

A four–factor TFP index. Although our dynamic GMM estimations are supportive of our main

conclusions, diagnostic problems remain. In particular, the COMFAC restrictions are rejected. We

therefore return to the endogeneity issue for our final index number specification. The potential

endogeneity problem arises because the stock of own R&D, lnOwnS, appears on the right–hand

side of our estimating equation. To circumvent this problem we calculated a four factor TFP index

that includes not only capital, labor, and intermediate inputs, but also the stock of own R&D.34

Table IX, which is comparable to Table IV with share–weighted lnOwnS subtracted from the left

hand side, contains OLS estimates of the four–factor TFP equation. One can see that the coefficients

and t statistics in the two tables are very similar. This evidence, combined with our earlier GMM

estimations, leads us to conclude that endogeneity cannot overturn our main conclusions.

32The insignificance of lnSpillSIC, when SICGeog is included is also consistent with the model in Bloom et al. (2013),
where R&D by product market rivals affects market value negatively due to a business–stealing effect, but has no effect
on total factor productivity, as it does not alter technological capabilities conditional on own R&D.

33Note that the half life is functionally related to α in equation 14.
34The share of R&D is calculated as a ratio of R&D expenditures to sales. It is also assumed that 50% of R&D expenses

account for labor, and another 50% account for intermediate materials. We adjust the respective expenditures to avoid
double accounting.
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VII(iv). Alternative Explanations

As we have demonstrated, lab and headquarters locations are correlated, if only imperfectly. It

is also true that plant and headquarters locations are imperfectly correlated, which raises the

possibility that the geographic spillover effects that we are finding are spurious and are in fact

due to colocation of firms’ labs and plants. In other words, it is possible that the TFP effects that

we are attributing to R&D spillovers between labs are really agglomeration effects associated

with proximity of production facilities. In this subsection, we explore this and other alternative

explanations for our results.

Agglomeration spillovers could confound our findings through the following channel. Suppose

that firm j performs R&D that raises its productivity (its output, holding inputs constant). An

increase in j’s output would cause i’s output to rise through the agglomeration effect. If agglom-

eration effects are strong and colocation is common, the R&D spillovers that we have measured

could be spurious.

More formally, in the presence of agglomeration effects, the production function takes the form

(23) qi = f (sj, si, qj, xi),

where lower case letters denote logarithms, sj is shorthand for the pool of geographic–distance

weighted rival stocks, and xi is a vector of conventional inputs. We include distance–weighted

rival output, qj, to capture the agglomeration effect.

Differentiating equation (23) holding inputs constant we obtain

(24)
dqi

dsj
=

∂qi

∂sj
+

∂qi

∂si

dsi

dsj
+

∂qi

∂qj

dqj

dsj
.

The first term in equation (24) is the spillover effect that we have measured. In the second term,

dsi/dsj is the response of own R&D to rival R&D in the current period. Since the increments to the

R&D stocks are chosen simultaneously, this term will be zero in either a competitive equilibrium

or a Nash equilibrium of a static R&D game.35 This leaves the third term, which is the potential

agglomeration bias that we have assumed to be zero. We don’t have data on the locations of firms’

plants and thus can not calculate the agglomeration effect, ∂qi/∂qj. However, we know that this

derivative must be less than one. A value for the second part of the third term can be found in

Table IV. In particular, the coefficient of lnOwnS in the first equation in that table, which is 0.05, is

our estimate of dqj/dsj.36

These calculations imply that, although an agglomeration bias might be present, it is small.

35We assume that R&D markets are competitive. With a static Nash equilibrium, firms would simultaneously choose
inputs and R&D expenditures, and those choices, plus the spillovers and sit−1 and sjt−1, would determine their outputs.

36Since we do not include the spillover variables in the first equation in Table IV, this coefficient captures the indirect
effects of those variables. In other words, it is the total effect, dqj/dsj, not the partial effect, ∂qj/∂sj.
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Indeed, it is less than 0.05,37 whereas the spillover effect that we measure is large, approximately 0.8.

After subtracting the potential agglomeration bias from our estimate, we still obtain a substantial

geographic spillover effect of 0.75.

It would nevertheless be interesting to test the agglomeration hypothesis more formally. This

could be accomplished by constructing an output based measure — a weighted sum of other firms’

outputs calculated using weights that are based on the geographic proximity of firms’ plants,

not labs — and including that measure in our regressions. However, we do not have data on the

locations of firms’ plants. We therefore construct an imperfect proxy based on the geographic

R&D location weights, wG
ij ,

(25) SpillXit = ∑
j 6=i

wG
ij Xjt,

where X is some measure of a firm’s production or size. This measure is exact if production and

R&D locations are perfectly correlated. To the extent that the two differ, however, the usefulness

of the proxy declines.

It is not clear how to choose the best measure of firm size. Indeed, the most obvious candidate,

output or Q, is likely to be highly endogenous. We have therefore chosen two alternative size

measures, a firm’s physical capital K, which is least likely to be endogenous, and its employment

L. Table X contains specifications that include these size measures. Column 1 is our baseline

specification (column 1 in Table V) whereas the size based measures lnSpillK and lnSpillL have

been added to columns 2 and 3, respectively. The table shows that, with either measure of size, the

coefficient of the R&D spillover variable is significant at the 5% level but that of the size spillover

is not.

Finally, it is possible that firms chose to locate their research labs in regions where other labs

are present, in which case locations would be endogenous. However, we are interested in the

short–run effects of R&D, conditional on the long–run choice of location.38 Our findings show

that, if firms chose to cluster their labs, those choices were good ones.

VII(v). Production Function Estimates

We emphasize our index number specifications because they are more flexible and because they

do not suffer from the input–endogeneity problem. Nevertheless, it is natural to ask if estimates

of R&D spillovers based on an econometric model of the production function are similar or if

some of our conclusions are reversed when we adopt that approach. We therefore report some

production function specifications. For our production function estimations, we use a Cobb–

Douglas functional form, as is standard in this literature, and include both firm and year fixed

37 The comparable value for the production function coefficient of lnOwnS is 0.035, which is even smaller.
38Our analysis is comparable to the numerous studies of short run output or price choices conditional on location in

product market or product characteristic space (see, e.g., Berry et al., 1995).
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effects.

Table XI is comparable to Table V. In contrast to that table, however, the dependent variable

here is lnQ and the conventional inputs, lnK, lnL, and lnM, are included on the right–hand side.

One can see that the results are very similar to those reported earlier. In particular, all of our main

conclusions continue to hold. Furthermore, the coefficients of the conventional inputs are stable

across specifications. Finally, with these specifications, in contrast to the TFP versions, one can

assess economies of scale. Table XI shows that the sum of the coefficients of the conventional

inputs is very close to, but slightly less than, one, which indicates that constant returns to scale is

not a bad approximation.

We have estimated the production function equivalents of the other index number tables and

have found that our conclusions are robust. To save on space, however, we do not report these

specifications.39

VIII. CONCLUSIONS

A number of conclusions can be drawn from our study. First and foremost, geography matters.

Indeed, intraregional spillovers are significant, sizable, and economically important, even after

conditioning on technological and product–market spillovers. In other words, a lab’s location is

an important determinant of a firm’s productivity. This finding is consistent with an emerging

literature on plant, not lab, location, which suggests important local production spillovers (Green-

stone et al., 2010). It is also consistent with the sizable literature on agglomeration economies, as

summarized in Rosenthal and Strange (2003). We conclude that social learning and capitalization

of complementarities among firms’ research activities can be important factors for economic

growth.

Our finding is also consistent with the idea that, when skilled workers change jobs, they are

apt to move to a different firm in the same geographic region and they take their knowledge

with them. For example, Fallick et al. (2006) and Freeman (2008) provide evidence that U.S.

skilled employees move rapidly among firms in high tech clusters in the computer and software

publishing industries. In addition, Almeida and Kogut (1999) investigate interfirm intraregional

mobility of U.S. engineers and conclude that the flow of knowledge is embedded in regional

labor networks. Job hopping within regions is also common in other countries. For example,

Combes and Duranton (2006) find that, when French skilled workers change jobs, about 75%

stay in the same region. Finally, even when an inventor leaves a region, due to the persistence of

social networks, the region can still benefit from the inventor’s ideas. Indeed, Agrawal et al. (2006)

confirm this hypothesis and find that the effect is especially important across research fields.

Second, interregional spillovers matter. More precisely, a geographic distance function that

allows spillovers to decay gradually as regions become farther apart outperforms a specification

39All production function tables are available from the authors upon request.
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that constrains spillovers to occur only within regions (i.e., a zero/one distance function that

indicates that two regions are the same or different).

Third, estimated geographic spillover effects are larger when the distribution of each firm’s

inventors is used as a measure of R&D location rather than the location of its headquarters. Our

use of the patent data to create spatial distributions of the location of firms’ research activities

therefore appears to be a worthwhile extension.

Finally, not only is distance not dead, but it does not appear to be dying, as witnessed by the

fact that, even though our data span a period of rapid growth of computerization of information

and instant access to ideas, estimated geographic spillovers were just as local in the 1990s as they

were in the 1980s.

Turning to technological spillovers, we have experimented less with different measures of

this important variable. Nevertheless, as with geographic spillovers, we find that technological

spillovers are significant, sizeable, and economically important. In fact, in most specifications,

the magnitude of the coefficients of this measure are comparable to those of the geographic

measures.40

The picture with respect to product–market R&D spillovers is somewhat different. Indeed,

although the coefficient of this variable is positive in most specifications, it is always smaller

and economically less important. This finding is consistent with the model outlined in Bloom

et al. (2013), where R&D by product market rivals affects market value negatively due to a

business–stealing effect, but should have no effect on total factor productivity, as it does not alter

technological capabilities conditional on own R&D.

What have we learned from a policy point of view? We can conclude that since estimated

spillover effects are large, there is a sizable public–good aspect to R&D activity. In the absence

of public policy to rectify this externality, we might therefore expect to see underinvestment in

R&D. Nevertheless, as there are also costs associated with intervention, more research would be

required before one could gauge whether the current amounts of R&D subsidy are optimal or

not. In addition, we find that geographic spillovers are moderately local, which is bad news for

regional convergence. This could explain, however, why federal policymakers subsidize the R&D

activities of domestic firms and why state officials invest substantial sums in tax incentives to

attract R&D labs to their states (Wilson, 2009).

Although we have used specifications of proximity measures that allow for cross–regional

spillovers only for geographic regions, the same could be done for product and technology markets.

To illustrate, consider product markets. It is clear that the production of cars is much closer to that

of trucks and buses than it is to that of breakfast cereals and ladies apparel. However, the zero/one

distance function that is implicitly assumed in research to date does not allow for intermediate

cases (i.e., two activities are in different but close product markets).41 It might therefore be fruitful

40Note, however, that we have given the geographic measure the benefit of the doubt, since we pay more attention to
its construction.

41This extension is similar to the methods developed in Pinkse and Slade (2004) to model differentiated products.
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to modify the product and technology proximity measures to incorporate nontrivial distance

functions. Moreover, the construction of SICs and technology classes, which involves classification

into n–digit groups, gives one a natural distance metric.
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DATA APPENDIX

The patents and Compustat databases

We obtained our dataset by merging firm-level accounting data from S&P Compustat with the

NBER Patents database. We started with the universe of Compustat manufacturing firms with

headquarters based in the U.S.42 We kept firms that had non-zero sales in at least one year between

1980 and 2000 and appeared in the Compustat Segment (“line of business”) Database. The Segment

Database allocates firm sales into four digit industries each year using firm’s descriptions of their

sales by lines of business. See Villalonga (2004) for a more detailed description. This left us with

6,890 firms in our sample.

Next, we matched the remaining firms into the NBER data on patents. The NBER patents

database provides detailed patenting and citation information for around 2,500 firms (as described

in Hall et al., 2005; Jaffe and Trajtenberg, 2005). We used patent data between 1970 to 2000
43, and

kept only patenting firms. The accounting and the patent data do not have to be concurrent. For

example, a firm which patented in 1985, 1988 and 1989, had Segment data from 1993 to 1997, and

accounting data from 1980 to 1997 would be kept in our dataset for the period 1980 to 1997. After

this stage, our sample contains data on 1,542 firms.

The dataset was further cleaned to remove accounting years with extremely large jumps in

sales and gaps in firms’ annual reports signaling merger and acquisition activity. We also used

the Compustat footnotes that indicate significant mergers. When we remove a year we treat the

firm as a new entity and give it a new identifier (and therefore a new fixed effect) even if the

firm identifier (GVKEY reference) in Compustat remained the same. This is more general than

including a full set of firm fixed effects as we are allowing the fixed effect to change over time.

This left a final sample of 1,383 firms to estimate the model on with accounting data for at

least some of the period 1980 to 2000 and patenting data for at least some of the period between

1970 and 2000. The panel is unbalanced as we keep new entrants and exitors in the sample.

Variables

We use deflated sales as our output measure (Compustat mnemonic SALE). The book value of

capital is the net stock of property, plant and equipment (PPENT). Employment is the number

of employees (EMP). R&D expenditure (XRD) is used to create R&D capital stocks calculated

using a perpetual inventory method with a 15% depreciation rate. Material expenses are defined

as in Bresnahan et al. (2002): sales less operating income before depreciation (OIBD) less labor

expenses (XLR). Labor expenses are not always reported in the Compustat dataset; in such cases

we construct labor expenses by taking a product of a firm-specific wage and the number of

42We dropped firms with headquarters outside of the U.S. as many of those firms do not have domestic plants and
thus face different factor prices. However, including those firms makes little difference to our results.

43We dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
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employees. The construction of the spillover variables is described in Section IV above in detail.

About 95% of the variance of the spillover measures, SpillSIC, SpillTech and SpillGeog is between

firm and 5% is within firm. When we include fixed effects we are, of course, relying on the time

series variation for identification.

In order to construct the Tornqvist productivity index (15), we use firm and time specific cost

shares of inputs. This allows for possible heterogeneity in the production technology across firms

and years. We assume that the technology exhibits constant returns to scale, so that the total

cost equals total revenue and the shares of labor and intermediate materials equal the respective

expenses divided by sales. We do not directly observe capital expenses; the share of capital in

total cost is found by subtracting the shares of labor and materials from unity.

Geographic coordinates

We obtain the geographic coordinates of inventors by merging the patents data and the extract

from the Geographic Names Information System (GNIS) provided by the U.S. Geological Survey.

All inventor records contain address information, in most cases the names of the home state and

the city. The GNIS records provide coordinates for all established geographic names.

Most of the time city and state names are not sufficient to uniquely identify a geographic place:

a typical city name has a number of duplicates within its state. If these duplicates are located in

the same county or within 0.1 degrees of latitude and longitude, we treat them as one entity.

If the duplicated names are located far apart, we give preference to incorporated places. Names

of incorporated places are usually more permanent and stable, they are more likely to be used by

the U.S. Postal Service. In turn, inventors are more likely to indicate a USPS-preferred city name

when they are asked to provide their home address.

Following these rules, we are able to match 98.25% of inventor records that are related to the

firms in our sample. To reduce computational burden, we aggregate all geographic data to the

county level. For example, we assign identical coordinates to inventors from Long Beach CA and

Los Angeles CA: both cities are located in Los Angeles County.

The geographic coordinates of firm headquarters are obtained from the Compustat dataset.

The drawback of using the Compustat data is that we observe only the last known locations at the

time when the data had been downloaded. Some companies in our sample (e.g. Boeing) relocate

their headquarters after 2000; by using headquarter locations from Compustat we misplace these

firms in geographic space.
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Deflators

Sales are deflated by the geometric mean of prices of all 4-digit manufacturing products sold by a

firm weighted by the product shares in the total sales of the firm:

(26) PQ
it = exp

(
∑
SIC

SALESIC,it

SALEit
ln PQ

SIC,t

)

The total firm sales are broken into 4-digit SIC categories using Compustat segment data. Year-

specific product level prices, PQ
SIC,t, are obtained from the NBER-CES Manufacturing Industry

Database (Bartelsman et al., 2000).

Capital stock deflator. To deflate the book value of capital we follow Hall (1990). First, we use the

depreciation in year t to calculate Ait, an average age of firm i’s working capital stock. Second, we

divide the net book value of firm i’s property, plant and equipment in year t by the firm-specific

capital expenditure deflator that matches the average age of working capital, PK
t−Ait

.

Capital expenditure deflator is the geometric mean of investment prices in all 4-digit SIC

industries where the firm was active at any year weighted by the share of investment ISIC,i/Ii

made by the firm in each product line in the firm’s total investment expenses:

(27) PK
it = exp

(
∑
SIC

ISIC,i

Ii
ln PK

SIC,t

)
, where ISIC,i = ∑

t

ISIC,it

PK
SIC,t

, Ii = ∑
SIC

ISIC,i

The industry–specific price of investment PK
SIC,t is obtained from the NBER-CES database; firm-level

capital expenditures are drawn from the Compustat Segments file.

Materials price deflator. Material expenses are deflated using industry level material prices from

the NBER-CES database. We construct the firm-specific price index for materials by taking the

weighted geometric mean of the industry prices:

(28) PM
it = exp

(
∑
SIC

αSIC,it ln PM
SIC,t

)
, where ∑

SIC
αSIC,it = 1

The weights αSIC,it are proportional to sales of the firm’s respective products and shares of

industry–level material expenses (MAT) in total industry shipments (SHIP):

(29) αSIC,it ∝ SALESIC,it
PM

SIC,tMATSIC,t

SHIPSIC,t

The weights αSIC,t are meant to approximate the relative material requirement of each product

segment of the firm.
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Wages. Firm level wage, wit, is equal to total adjusted44 labor expense divided by the number of

employees:

(30) wit = ∑
SIC

(
wSIC,itLSIC,it

γSIC,t

)
/Lit,

We observe neither segment specific labor expenses, nor segment specific employment. Therefore,

we need extra assumptions about the structure of firm labor expenses in order to compute

wages. We assume that the share of labor expenses in each segment’s sales is a product of

two components: (1) an industry–level share, found from the NBER–CES data, (2) an unknown

firm-specific multiplier:

(31)
wSIC,itLSIC,it

SALESIC,it
=

wSIC,tEMPSIC,t

SHIPSIC,t
bit.

We also assume that all firms pay the same wage within an industry, i.e. wSIC,it = wSIC,t. Then,

by solving for LSIC,it and taking a sum across SIC codes, one should obtain the total number of

employees, Lit, as a function of bit. Since Lit is available in the Compustat data, one can compute

bit:

(32) bit = Lit

(
∑
SIC

EMPSIC,t

SHIPSIC,t
SALESIC,it

)−1

All variables on the right hand side are available in the data; by substituting bit we find segment-

specific labor expenses. Finally, we use these expenses to calculate the firm-specific wage wit.

R&D deflator. R&D expenses are deflated using aggregate input price index for R&D performed

by private businesses, published by BEA as a part of the R&D Satellite Account.

44The adjustment is necessary to account for fringe benefits, which are not included in the NBER-CES payroll data.
The adjustment factor γSIC,t is found from NIPA 2-digit industry accounts, and is equal to the ratio of industry payroll
to total industry compensation (see Chang and Hong, 2006, for more details).
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Region 1

0.4, 0.0, 0.2
Region 2

0.4, 0.0, 0.4

Region 3

0.2, 1.0, 0.0
Region 4

0.0, 0.0, 0.4

Figure 1

Construction of Geographic Spillover Measures

There are three firms and four regions. The fraction of inventors belonging to each firm in each region is indicated in
the graph, so firm 1 has 40% of its inventors in region 1, 40% in region 2 and 20% in region 3, firm 2 has all inventors in
region 3 and firm 3 has 20% in region 1, 40% in region 2 and 40% in region 4.

Figure 2

SIC and TECH Correlations

Each dot represents a (wP,wT) combination for a pair of firms, measuring product and technology proximity respectively.
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Figure 3

SIC and GEOG Correlations

Each dot represents a (wP,wG) combination for a pair of firms, measuring product and geographic proximity respectively.

Figure 4

GEOG and TECH Correlations

Each dot represents a (wG,wT) combination for a pair of firms, measuring geographic and technology proximity
respectively.
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Figure 5

Inventor Distributions, Selected Firms
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Figure 6

Within Firm Correlations of Spillover Measures

The graphs display the distributions of within–firm correlations between pairs of spillover measures. Correlations
corr(lnSpillTech, lnSpillGeog) are computed by removing the respective year means from the technological and the
geographic spillover variables and finding their correlation coefficient for every firm with at least five observations in
the data. corr(lnSpillSIC, lnSpillGeog) and corr(lnSpillTech, lnSpillSIC) are found in the analogous way.
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Table I
Descriptive Statistics

Variable (1) (2) (3)
Mean Median Std.dev.

Output, Q 2,010 279 10,279

Stock of physical capital, K 725 74 2,830

Employment, L 11,562 2,545 35,754

Materials, M 1,128 154 4,688

R&D stock, S 254 15 1,317

Technological spillovers, SpillTech 15,094 12,264 11,636

lnSpillTech 9.266 9.414 0.986

Product market spillovers, SpillSIC 15,149 9,574 16,297

lnSpillSIC 8.867 9.167 1.536

Geographic spillovers, SpillGeog 131,747 116,994 87,850

lnSpillGeog 11.525 11.670 0.831

The means, medians and standard deviations are taken over all non-missing observations between 1980 and 2000;
values measured in 1987 prices in $million. The geographic spillover measure is based on inventor locations. The
half–life distance of geographic spillovers is set to 200 km.

Table II
Correlations Between the R&D Stock Measures

Correlation (1) (2) (3) (4) (5) (6)
between SIC–Tech SIC–Geog Geog–Tech Own–SIC Own–Tech Own–Geog
X 0.475 0.144 0.332 0.212 0.342 0.190

∆X 0.530 0.224 0.299 0.280 0.355 0.197

Covariance
X 0.720 0.183 0.272 0.726 0.753 0.353

All correlations are significant at the 1% level. X denotes lnSpillSIC, lnSpillTech, lnSpillGeog, or lnOwnS. ∆X is defined
as the residual from a regression with firm fixed effects and time dummies.

Table III
Distance Between Inventors and Headquarters

Percentile 0% 20% 40% 60% 80% 100%
Distance 0 km 0 km 52 km 414 km 1,603 km 8,097 km

Each quintile shows the aggregate percentage of inventors that are located at various distances from their headquarters.
Approximately 99.94% of inventors are located within a 4,300 km radius from their headquarters (roughly, the distance
between Boston and San Francisco); the remaining 0.06% involve labs or headquarters in Alaska or Hawaii.
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Table IV
OLS Index Number Estimates, Single Proximity Measures

Dependent variable is TFP
(1) (2) (3) (4) (5)

None SpillSIC SpillTech SpillGeog All Three
lnOwnS 0.050 (5.45) 0.028 (3.64) 0.011 (1.61) 0.032 (4.12) 0.001 (0.10)
lnSpillSIC 0.340 (6.67) 0.123 (3.34)
lnSpillTech 0.921 (7.45) 0.654 (6.47)
lnSpillGeog 1.113 (5.10) 0.835 (4.36)
# obs. 17,010 17,010 17,010 17,010 17,010

This table reports OLS estimates of TFP on the demeaned explanatory variables. Year fixed effects are included.
t-statistics are in parentheses (using clustering by firm). The geographic spillover variable is based on inventor locations
and the exponential–decay distance function; the spillover is set to decay at a rate of 50% per 200km. lnOwnS = 0 if
OwnS = 0. Otherwise, lnOwnS = ln(OwnS). A dummy variable that indicates that OwnS = 0 is included.

Table V
OLS Index Numbers, Inventors and Headquarters, Different C Functions

Dependent variable is TFP
(1) (2) (3) (4) (5) (6) (7)

Based on locations of: Inventors Headquarters Both
Distance Fn (C) Exp Corr Both Exp Corr Exp Corr
lnOwnS 0.001 0.005 0.001 0.002 0.006 0.000 0.004

(0.10) (0.72) (0.12) (0.31) (0.79) (0.06) (0.53)
lnSpillSIC 0.123 0.142 0.126 0.122 0.141 0.118 0.146

(3.34) (3.71) (3.36) (3.36) (3.31) (3.26) (3.34)
lnSpillTech 0.654 0.704 0.662 0.689 0.879 0.655 0.802

(6.47) (6.53) (6.46) (6.76) (7.06) (6.56) (6.97)
lnSpillGInvExp 0.835 0.912 0.427

(4.36) (4.46) (2.70)
lnSpillGInvCorr 0.202 -0.058 0.201

(3.25) (-1.29) (2.84)
lnSpillGHeadExp 0.444 0.295

(4.34) (3.05)
lnSpillGHeadCorr 0.028 0.015

(1.75) (1.00)
# obs. 17,010 16,982 16,982 17,010 14,772 17,010 14,748

This table reports OLS estimates of TFP on the demeaned explanatory variables. Year fixed effects are included.
t-statistics are in parentheses (clustered by firm). Exp denotes an exponentially decaying distance function; the spillover
is set to decay at a rate of 50% per 200km. Corr denotes a 0/1 distance function (same or different geographic region).
lnOwnS = 0 if OwnS = 0. Otherwise, lnOwnS = ln(OwnS). A dummy variable indicating that OwnS = 0 is included.
Variables lnSpillGInvExp and lnSpillGInvCorr use inventor locations, while lnSpillGHeadExp and lnSpillGHeadCorr
use headquarter locations.
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Table VI
GMM Index Number Estimates

Dependent variable is TFPL
Arellano & Bond Dynamic GMM COMFAC

(1) (2) (3)
TFPLt−1 0.406 0.390

(4.07) (4.03)
lnOwnS 0.076 0.003 0.006

(1.37) (0.06) (0.12)
lnOwnSt−1 0.068

(1.51)
lnSpillSIC 0.082 -0.107 0.085

(1.92) (-0.52) (1.83)
lnSpillSICt−1 0.266

(0.78)
lnSpillTech 0.196 1.622 0.322

(1.96) (2.24) (2.86)
lnSpillTecht−1 -1.875

(-2.13)
lnSpillGeog 0.420 -2.549 0.381

(2.82) (-1.12) (2.03)
lnSpillGeogt−1 3.025

(1.33)
# instruments 129 128 128

Comfac Rest p-val 0.03

Hansen test χ2(104) = 131 χ2(103) = 132

Hansen p-val 0.04 0.06

AR(1) p-val 0.00 0.00

AR(2) p-val 0.10 0.02

# obs. 15,039 13,272 13,272

TFPL denotes TFP in levels as defined in equation (18). Year fixed effects are included; t-statistics are reported in
parentheses (clustered by firm). The geographic spillover variable is based on inventor locations and the exponential–
decay distance function; the spillover is set to decay at a rate of 50% per 200km. lnOwnS = 0 if OwnS = 0. Otherwise,
lnOwnS = ln(OwnS). A dummy variable indicating that OwnS = 0 is included; its lag is included in column 2. In all
three specifications we use moment equations in first differences. Lags 2–4 of lnOwnS and the zero R&D dummy are
used as GMM-style instruments for the differences of these variables and the lagged difference of TFP. The instruments
are defined as in Roodman (2006) by creating a separate set of lags for each time period and replacing missing values
with zeros. Differences of the spillover variables are treated as exogenous.
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Table VII
Interactions

Dependent variable is TFP
(1) (2) (3) (4)

lnOwnS 0.001 (0.10) 0.001 (0.10) 0.001 (0.08) 0.001 (0.12)
lnSpillSIC 0.123 (3.34) 0.130 (1.06) 0.122 (3.31) 0.150 (1.07)
lnSpillTech 0.654 (6.47) 0.654 (6.47) 0.635 (3.83) 0.619 (3.39)
lnSpillGeog 0.835 (4.36) 0.837 (4.42) 0.825 (4.52) 0.830 (4.49)
SICGeog -0.001 (-0.05) -0.003 (-0.21)
TechGeog 0.003 (0.15) 0.005 (0.24)
# obs. 17,010 17,010 17,010 17,010

This table reports OLS estimates of TFP on the demeaned explanatory variables. Year fixed effects are included; t-
statistics are reported in parentheses (clustered by firm). The geographic spillover variable is based on inventor locations
and the exponential–decay distance function; the spillover is set to decay at a rate of 50% per 200km. lnOwnS = 0
if OwnS = 0. Otherwise, lnOwnS = ln(OwnS). A dummy variable indicating that OwnS = 0 is included. SICGeog
denotes the interaction of lnSpillSIC and lnSpillGeog. TechGeog denotes the interaction of lnSpillTech and lnSpillGeog.

Table VIII
Half–life Estimates

Dependent variable is TFP
(1) (2)

Half–life, km 259

(2.48)
Half–life (1980–1990), km 247

(2.63)
Half–life (1991–2000), km 254

(2.63)
lnOwnS 0.001 0.001

(0.11) (0.11)
lnSpillSIC 0.124 0.128

(3.37) (3.49)
lnSpillTech 0.658 0.659

(6.52) (6.47)
lnSpillGeog 0.916 0.923

(3.99) (4.38)
# obs. 17,010 17,010

This table reports the estimates of spillover half-life. Year fixed effects are included; t-statistics are reported in parentheses
(clustered by firm). The geographic spillover variable is based on inventor locations and the exponential–decay distance
function with estimated half-life. lnOwnS = 0, if OwnS = 0. Otherwise, lnOwnS = ln(OwnS). A dummy variable
indicating that OwnS = 0 is included.
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Table IX
OLS Four-factor TFP Estimates, Single Proximity Measures

Dependent variable is four-factor TFP
(1) (2) (3) (4)

SpillSIC SpillTech SpillGeog All Three
lnSpillSIC 0.350 (6.57) 0.116 (3.19)
lnSpillTech 0.886 (7.24) 0.601 (6.17)
lnSpillGeog 1.127 (5.13) 0.800 (4.20)
# obs. 17001 17001 17001 17001

This table reports OLS estimates of four-factor TFP on the demeaned explanatory variables. The four factors are
labor, capital, intermediate inputs and R&D stock. The share of R&D is calculated as a ratio of R&D expenditures to
sales. It is assumed that 50% of R&D expenses account for labor, and another 50% account for intermediate materials.
We adjust the respective expenditures to avoid double accounting. Year fixed effects are included; t-statistics are
reported in parentheses (clustered by firm). The geographic spillover variable is based on inventor locations and the
exponential–decay distance function; the spillover is set to decay at a rate of 50% per 200km.

Table X
OLS Index Number Estimates Using Different Measures of Size

Dependent variable is TFP
(1) (2) (3)

lnSpillK lnSpillL

lnOwnS 0.001 0.000 0.000

(0.10) (0.02) (0.06)
lnSpillSIC 0.123 0.118 0.123

(3.34) (3.18) (3.32)
lnSpillTech 0.654 0.667 0.662

(6.47) (6.60) (6.57)
lnSpillGeog 0.835 0.718 0.762

(4.36) (4.08) (4.23)
lnSpillK 0.177

(1.80)
lnSpillL 0.160

(1.54)

# obs. 17010 17010 17010

This table reports OLS estimates of TFP on the demeaned explanatory variables. Year fixed effects are included; t-
statistics are reported in parentheses (clustered by firm). The geographic spillover variable is based on inventor locations
and the exponential–decay distance function; the spillover is set to decay at a rate of 50% per 200km. lnOwnS = 0, if
OwnS = 0. Otherwise, lnOwnS = ln(OwnS). A dummy variable indicating that OwnS = 0 is included. lnSpillK and
lnSpillL denote the measures of local manufacturing activity based on capacity and employment, respectively, using
geographic R&D weights.
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Table XI
OLS Production Functions, Inventors & Headquarters, Different C Functions

Dependent variable is lnQ
(1) (2) (3) (4) (5) (6) (7)

Based on locations of: Inventors Headquarters Both
Distance Fn (C) Exp Corr Both Exp Corr Exp Corr
lnK 0.052 0.054 0.053 0.052 0.056 0.051 0.052

(3.67) (3.76) (3.73) (3.65) (3.56) (3.59) (3.30)
lnL 0.316 0.310 0.315 0.313 0.296 0.316 0.301

(14.10) (13.39) (14.08) (14.08) (12.13) (14.25) (12.42)
lnM 0.615 0.623 0.615 0.616 0.638 0.613 0.635

(24.97) (24.68) (25.00) (24.84) (25.17) (24.88) (25.08)
lnOwnS 0.005 0.008 0.005 0.006 0.007 0.005 0.006

(0.78) (1.24) (0.80) (1.03) (1.04) (0.84) (0.93)
lnSpillSIC 0.070 0.084 0.071 0.067 0.084 0.065 0.088

(2.01) (2.35) (2.01) (1.99) (2.08) (1.92) (2.14)
lnSpillTech 0.627 0.669 0.639 0.656 0.802 0.630 0.750

(6.40) (6.45) (6.41) (6.68) (6.99) (6.52) (6.80)
lnSpillGInvExp 0.765 0.867 0.352

(4.44) (4.67) (2.40)
lnSpillGInvCorr 0.167 -0.078 0.152

(3.01) (-1.68) (2.40)
lnSpillGHeadExp 0.422 0.301

(4.61) (3.36)
lnSpillGHeadCorr 0.025 0.016

(1.76) (1.13)
# obs. 17,010 16,982 16,982 17,010 14,772 17,010 14,748

Firm and year fixed effects included; t-statistics are reported in parentheses (clustered by firm). Exp denotes an
exponentially decaying distance function; the respective geographic spillover variables are set to decay at a rate of
50% per 200km. Corr denotes a 0/1 distance function (same or different geographic region). lnOwnS = 0 if OwnS = 0.
Otherwise, lnOwnS = ln(OwnS). A dummy variable indicating that OwnS = 0 is included. Variables lnSpillGInvExp
and lnSpillGInvCorr use inventor locations, while lnSpillGHeadExp and lnSpillGHeadCorr use headquarter locations.
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