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Abstract

We solve and test experimentally a global game of speculative attack where agents choose,

at a cost, the precision of their private signal. We prove existence of a unique equilibrium in the

coordination game and explore strategic incentives in information acquisition. In the experiment,

we find that subjects follow the strategies suggested by the theory. However, contrary to our

predictions, as signals become more precise the actions of subjects move towards effi ciency

and not risk dominance, which contradicts previous well known results of global games. We

document empirically a path to convergence towards the effi cient equilibrium under complete

information.
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1 Introduction

The last decade of the twentieth century and the beginning of this century were characterized by

frequent episodes of currency crises.1 The existing models of currency crises at the time (of which

Obstfeld, 1996, remains a classic example) seemed to explain the occurrence of currency crises, but

could only offer a limited amount of policy guidance due to the self-fulfilling nature of the outcome,

which led to multiplicity of equilibria.

The paper by Morris and Shin (1998) was a breakthrough for the modeling of speculative attacks

through the use of global games. As defined by Carlsson and van Damme (1993), a global game is

a coordination game where the information structure is perturbed in such a way that the players

no longer have certainty over payoffs and over the other players’beliefs over payoffs. This implies

that there is no longer common knowledge of the structure of the game, which leads to a unique

equilibrium. Morris and Shin (1998) use this global games setup to analyze a reduced form version

∗We would like to thank the National Science Foundation via grant SES-105962 and the Center for Experimental
Social Science at New York University for financial support. All remaining errors are ours.
†Department of Economics, University of British Columbia, michal.szkup@ubc.ca.
‡Department of Economics, University of California, San Diego, itrevino@ucsd.edu.
1Examples of these episodes include the European Exchange Rate Mechanism (ERM) in 1992-93, Mexico in 1994,

Asia in 1997-98, and Argentina in 2001.
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of the model by Obstfeld (1996). In this model agents get a noisy private signal of the underlying

state of the economy and have to decide simultaneously whether to attack the currency or not. If

an agent chooses not to attack, he gets a nonnegative payoff with certainty. If he chooses to attack,

his payoff depends on the underlying state of the economy and on the number of attacking agents.

The global games refinement pins down a unique rationalizable equilibrium characterized by the

use of threshold strategies, where an agent attacks if he gets a signal above this threshold, and does

not attack otherwise.

The richness and applicability of the global games models have given rise to a vast literature that

tries to understand under what conditions the uniqueness result holds, and how far one can extend

the setup to better portray economic realities. The information structure has always played a

central role and even small changes in the assumptions of the model have important consequences

on equilibrium selection.2 In most global games models, however, the information possessed by

agents is typically given to them exogenously, rather than chosen. We develop a global games

model of speculative attack where each agent has the possibility to choose the precision of his

private information. In our model, two agents covertly choose the precision of the private signal

they will observe about the state of the economy, at a cost, and then play the coordination game of

speculative attack, as in Morris and Shin (1998), using the information acquired in the first stage.

We solve the model and then test the predictions of this model in the laboratory in order to observe

how information sets are generated and implemented in a speculative attack.

In the experiment we find that subjects follow the strategies predicted by theory, with over 92%

of subjects using threshold strategies and 40% choosing the equilibrium precision level. We observe

that subjects’choices are stable over time and do not exhibit significant fluctuations. However,

contrary to the theoretical predictions, we find that as subjects choose more precise information

they coordinate more often on attacking the currency, and as a result attacks are more successful

when agents hold more precise information. Thus, we find that as subjects acquire more precise

information their behavior moves towards the effi cient equilibrium and away from the risk dominant

equilibrium, which contradicts well known results about behavior in global games in the limit, as

the noise vanishes. Moreover, as the noise of the private signals vanishes, we observe empirically

a path to convergence towards the effi cient equilibrium of the complete information version of our

model, since subjects behave in accordance to the effi cient threshold in a treatment with complete

information about fundamentals. These departures from the theory lead to a welfare improvement

with respect to the expected payoff in equilibrium and with respect to a constrained effi ciency

benchmark.

The above results raise an important question about using risk dominance (and the global games

predictions in the limit) as an empirically relevant equilibrium selection device. In particular, the

2Examples include Hellwig (2002) who characterizes uniqueness of equilibrium based on the relative informativeness
of private and public signals. In Hellwig et al (2006) and Angeletos and Werning (2006), equilibrium parity conditions
create an endogenous public signal through prices that restores multiplicity of equilibria. In Angeletos et al (2006)
multiple equilibria are restored by the introduction of cheap talk from the monetary authority.
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results suggest that subjects behave in a similar way under complete information and under incom-

plete information when their information is very precise. This contrasts the theoretical literature

that predicts that players’behavior in coordination games differs dramatically under complete and

incomplete information.3

We believe that the study of costly private information acquisition in a speculative attack

brings the global games model closer to the macroeconomic phenomenon of interest. Investors

involved in speculative attacks do not hold symmetric and exogenously given information about

the economy. Instead, they continuously make efforts to improve the information they possess,
and they are willing to pay for it. Investment groups and individuals pay experts to extract more

accurate information about the financial system in order to minimize losses, creating a market for

information expertise and financial advising. Therefore, it seems both a natural and a necessary

extension to study a speculative attack game where agents get to improve the precision of the

information they receive.

Different authors have studied costly information acquisition in coordination games with im-

perfect information. In Szkup and Trevino (2015) we develop a similar model with a continuum

of players, which allows for explicit analytical solutions and a full equilibrium characterization.

Hellwig and Veldkamp (2009) investigate what agents choose to observe when there is a cost to

acquiring information and how information choices affect equilibrium outcomes in a beauty contest

model. In a more general setup, Colombo, Femminis and Pavan (2014) study the welfare effects of

endogenous information acquisition in a flexible framework of quadratic loss functions that include

beauty contest models as a special case.4 In a global games context, some studies related to ours

are Bannier and Heinemann (2005), in which the monetary authority chooses the precision of the

private signals in order to minimize the probability of currency crises, and Yang (2015), where

information acquisition in coordination games is modeled using a rational inattention framework.

With a notable exception of Yang (2014), none of these papers, however, studied a model with a

finite number of agents, where agents directly take into account strategic effects of their choices

on the equilibrium outcomes. More importantly, this is the first paper to test the predictions of a

coordination game with costly information acquisition experimentally.5

3Our results support the notion of using payoff-dominance as the equilibrium selection device, as suggested by
Harsanyi and Selten (1988), when signals are very precise. The experimental literature on equilibrium selection in
coordination games with complete information and Pareto ranked equilibria suggests that subjects do not necessarily
coordinate on the effi cient equilibrium without additional mechanisms. While the initial studies of Cooper et al.
(1990, 1992) and van Huyck et al (1990, 1991) find mostly coordination failure, later studies reported mechanisms
to enhance coordination in the effi cient equilibrium (e.g. communication). Haruvy and Stahl (1999) compare the
predictive power of different selection principles in coordination games with complete information and find that payoff
dominance performs the worst, followed by risk dominance. See Devetag and Ortmann (2007) for a comprehensive
survey on this literature.

4Szkup and Trevino (2015) compares the results of costly information acquisition in a global game with existing
results for beauty contest type of games.

5 In addition, Nikitin and Smith (2008) and Zwart (2008) study costly information acquisition in a Diamond and
Dybvig (1983) type of model and in a liquidity run setup, respectively. However, in these last two studies information
acquisition is modeled as a binary decision to acquire a private signal with a given precision or not to acquire a signal
at all, which contrasts our setup where all agents observe private signals and have to choose their individual precision.
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Global games have proven themselves to be very relevant for modelling coordination games

with incomplete information not only because they predict a unique equilibrium, but also because

their predictions are consistent with observed behavior in the laboratory. Heinemann et al. (2004,

2009) test the model by Morris and Shin (1998) experimentally and find a robust use of threshold

strategies, even for treatments with perfect information. Just like Heinemann et al. (2004), we

find that subjects follow the strategies predicted by the global games refinement, for any precision

chosen. However, we generalize their results by showing how the incidence and success of speculative

attacks varies with different precision levels when we endogenize information choices and by studying

an empirical path to convergence as the noise of the private signals vanishes. Our results have

strong implications for the existing theory of global games by showing that this empirical path to

convergence leads to the effi cient equilibrium, and not the risk dominant one that is suggested by

the theory.

The paper is structured as follows. In section 2 we present and solve the theoretical model for

two players and review the theoretical predictions for the set of parameters used in the experiment.

The experimental design and results are presented in section 3. We discuss our results in section

4 and we conclude in section 5. All the proofs from the theory and additional tables from the

experimental analysis are relegated to the appendix.

2 Theory: Speculative attack with information acquisition

Our framework for the speculative attack game builds on the 2×2 model of Carlsson and van Damme
(1993) (CvD93 henceforth), and a discrete version of Morris and Shin (1998). In contrast to these

papers, we add an initial stage where agents privately choose the precision of their information

before playing the speculative attack game.

Initially, the exchange rate is held fixed at some arbitrary level. Each agent is endowed with

one unit of domestic currency and has to decide whether to change it for foreign currency (attack)

or to keep it (not attack). If a high enough fraction of the agents attacks the currency, the currency

is allowed to float at the underlying (shadow) exchange rate. The economy is characterized by θ,

the net gain from attacking the currency in case of a devaluation.6 The payoff of holding domestic

currency is normalized to zero. If an agent chooses to attack, he has to pay a transaction cost T ,

and gets payoff θ if the attack is successful and devaluation occurs. If the attack is unsuccessful

and the currency is not devalued, then the profit of an agent who chooses to attack is −T . Thus,
the payoffs of the speculative attack for each one of the agents are defined as follows:

This difference has important implications since a unique equilibrium is not guaranteed in the setup of Nikitin and
Smith (2008) and Zwart (2008).

6One can think of θ as an inverse measure of the strength of fundamentals.
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Devaluation No Devaluation

Attack θ − T −T
Not Attack 0 0

Let A(θ) be the number of agents that attack when the level of fundamentals is θ and A∗(θ) be

the minimum number of attacking agents needed to enforce a devaluation. Since a high θ implies

weaker fundamentals, we assume that A∗′(θ) < 0. A devaluation occurs whenever the number

of players that attacked, A (θ), is greater than A∗ (θ), the minimum number of attacking players

needed for the attack to be successful.7

There are two agents in the economy. With the use of the function A∗(θ) we define two cutoff

values for the state of the economy,
{
θ, θ
}
, that will determine the number of agents that are

needed to attack in order to provoke a devaluation. Specifically, when θ ≥ θ = A∗−1(1) one agent

alone can provoke devaluation, and when θ < θ = A∗−1(2), the economy is strong enough so that

devaluation does not take place even if both agents attack. Therefore, for θ ∈ [θ, θ) agents have to

coordinate on the attack in order for devaluation to occur.

In the game with complete information (common knowledge of θ), multiple equilibria arise:

• If θ ≥ θ, it is a dominant strategy to attack.

• If θ < θ, it is a dominant strategy not to attack.

• If θ ∈ [θ, θ), there are two equilibria in pure strategies and one in mixed strategies.

Following CvD93, to obtain a unique equilibrium we assume that the state θ is a random variable

that follows a normal distribution with mean µθ and variance σ
2
θ.
8 The actual realization of θ is

unobserved by the agents. Instead, each agent i = 1, 2 observes a noisy private signal of the state

θ,

xi = θ + σiεi

for i = 1, 2 where σi > 0 and εi is a random variable, normally distributed with mean zero and

variance 1. We assume that εi is i.i.d. across agents and we denote by f(·) the normal density of
εi, and F (·) its cumulative distribution function. Note that the precision of the signal that each
agent receives is defined by its standard deviation, σi.9 Information acquisition in our model will

take place through the choice of σi.

7Specifically, assume that the government derives a benefit b > 0 from defending the exchange rate at the fixed
level. However, there is a cost to it, which depends on θ and on the size of the attack A, c(θ,A). We assume that
cθ(θ,A) > 0 and cA(θ,A) > 0. Following Morris and Shin (1998), we do not model explicitly the decision of the
central bank here, but it underlies our analysis since we assume that the central bank observes the size of the attack
A and mechanically decides to devalue if A ≥ A∗(θ), where A∗(θ) solves b = c(θ,A∗(θ)).

8We make the additional technical assumption that µθ ∈
[
θ, θ
]
.

9Recall that the precision is defined as the inverse of the variance of a random variable that follows a normal
distribution. Therefore, in what follows we will use either of the following terms to refer to the same situation: higher
precision, lower variance, or lower standard deviation.

5



We add to the above one-shot game an initial stage where agents get to choose the precision of

the noisy signal they receive. This means that, starting from an initial common standard deviation

σ0, each agent can either keep this level of noise or improve his precision by “buying”a lower σi
at a cost C(σi). C(·) is continuous, with C(σ0) = 0, C ′(σ0) = 0, C ′(σ) < 0, C ′′(σ) > 0, for all

σ ∈ (0, σ0), and limσ→∞C ′ (σ) =∞. We assume that the level of precision that each agent chooses
is private information, and hence not observed by the other player.10

2.1 Solving stage two: Uniqueness of equilibrium in the speculative attack game

We solve the model by backward induction. At the beginning of the second stage each agent

observes his own signal xi = θ + σiεi, where σi corresponds to agent i’s choice of precision in the

first stage. Note that the second stage alone can be thought of as a standard 2 × 2 global game

with the notable difference that agents are potentially heterogenous with respect to the precision of

their signals. This is a significant departure from the original model of CvD93 and from standard

models of global games.11

After observing their own signals, agents update their beliefs about the fundamental θ and

about the other agent’s type.12 Given signal xi, agent i’s posterior belief regarding θ is given by

θ|xi ∼ N
(
θ̂i, σ̂

2
i

)
, where θ̂i =

σ2
iµθ + σ2

θxi
σ2
i + σ2

θ

and σ̂i =
σ2
iσ

2
θ

σ2
i + σ2

θ

As in the classic global games setup, in the second stage agents follow threshold strategies,13

i.e. for i = 1, 2 :

a(xi;σ) =

{
1 (attack) iff xi ≥ x∗i (σ)

0 (not attack) iff xi < x∗i (σ)

Notice that agents do not necessarily have the same thresholds because they are a function of their

chosen precisions.

Next, we derive the expected payoff to agent i from attacking the currency. Suppose that agent

i believes that agent j uses a threshold x∗j . Furthermore, recall that if θ < θ a devaluation cannot

occur even if both players coordinate on the attack, if θ ≥ θ one agent alone is capable of inducing a
10This is a common way to model information acquisition in the literature (see Persico, 2000, Colombo et al., 2014,

or Szkup and Trevino, 2015, among others).
11Corsetti et al. (2004) allow agents to have asymmetric distirbutions of noise. However, in their setup the agents

differ also with respect to other characteristics, such as size, leading to very different dynamics than the usually present
in standard global games models. See Yang (2014) for another recent exercise where agents might be heterogenous.
12 In this context the type of an agent is described by the signal he observes and his precision choice. Recall that

we assume that agents hold correct beliefs about each other’s information choices, so after observing his own signal
xi, agent i = 1, 2 only forms beliefs about agent j’s signal, xj .
13We first focus on threshold strategies and then verify that the resulting equilibrium is indeed the unique equi-

librium of the second stage. In particular, we show that any equilibrium of the game will be in monotone strategies
(thresholds), and that there is a unique dominance solvable equilibrium threshold. This is proven in Theorem 1 in
the appendix.
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devaluation, and if θ ∈ [θ, θ) a devaluation occurs if and only if both agents attack. Thus, assuming

that agent j follows a threshold strategy with a switching point x∗j , agent i’s expected payoff from

attacking, conditional on observing signal xi, is given by:

E
[
θPr

(
xj ≥ x∗j | θ

)
| xi, θ ∈ [θ, θ̄)

]
Pr(θ ∈ [θ, θ̄)|xi) + E

[
θ | xi, θ ∈ [θ̄,∞]

]
Pr(θ ∈ [θ̄,∞]|xi).

We denote this payoffby vi(xi, x
∗
j ;σ). Using our distributional assumptions, we can express vi(xi, x

∗
j ;σ)

as:

vi(xi, x
∗
j ;σ) =

∫ θ

θ
θ

(
1− F

(
x∗j − θ
σj

))
1

σ̂i
f

(
θ−θ̂i
σ̂i

)
dθ+

∫ ∞
θ

θ
1

σ̂i
f

(
θ−θ̂i
σ̂i

)
dθ − T (1)

where θ̂i =
µθσ

2
i+xiσ

2
θ

σ2
i+σ

2
θ
, σ̂2

i =
σ2
i σ

2
θ

σ2
i+σ

2
θ
and 1 − F

(
x∗j−θ
σj

)
is the probability that agent j attacks the

currency, conditional on the realization of θ. The next lemma establishes two basic properties of

this function.

Lemma 1 The payoff for agent i of attacking, vi(xi, x∗j ;σ), is increasing in his own signal xi, and

decreasing in the other agent’s threshold x∗j , for i, j = 1, 2, i 6= j.

To compute the equilibrium of the model we need to analyze the optimal thresholds. A threshold

x∗i is defined as the value of agent i’s signal xi for which he is indifferent between attacking and not

attacking, taking as given the strategy of the other player. For i = 1, 2, i 6= j, taking x∗j as given,

the optimal threshold of agent i, x∗i , solves the following equation:

vi(x
∗
i , x
∗
j ;σ)= 0. (2)

We now define an equilibrium for the second stage of the game.

Definition 1 Given (σi, σj), an equilibrium in monotone strategies for the second stage of the

game is a pure strategy profile ai(xi;σ) such that, for i = 1, 2

ai(xi;σ) =

{
1 if xi ≥ x∗i (σ)

0 if xi < x∗i (σ)

where x∗i (σ) solves

v(x∗i (σ), x∗j (σ);σ) = 0

Lemma 1 implies that the best response functions are well defined. To prove that there is

a unique equilibrium in the second stage of the game, we need to show that there is a unique

pair of thresholds that satisfies the above equilibrium conditions, i.e. that there exists a unique
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combination of (x∗1, x
∗
2) that solves simultaneously equilibrium condition (2) for i = 1, 2.14 This is

demonstrated in Theorem 1.

Theorem 1 There exists a unique, dominance solvable equilibrium of the second stage of the game

in which both players use threshold strategies characterized by (x∗1, x
∗
2) if either:15

1. σi
σθ
< Ki(θ, θ, µθ), i = 1, 2 holds, for any pair of (σ1, σ2),16 or

2. σθ > σθ, where σθ is determined by the parameters of the model.

This result is in line with previous work on global games, like Hellwig (2002), who introduces a

public signal to the model of Morris and Shin (1998) and shows that uniqueness of equilibrium is

preserved when the public signal is noisy enough with respect to the private signals. Our conditions

are in the same spirit as those of the above papers, however, due to the strategic effects of individual

actions present in our model, they take more complex functional forms. Moreover, in our model

as σθ → ∞, the coordination game with asymmetric players has always a unique equilibrium. In
our context we can think of the prior as being a public signal, since it carries information about

the fundamental that is available to all agents at no cost. Finally, it is important to note that the

conditions on precisions stated in Theorem 1 are only suffi cient but not necessary for uniqueness

of equilibrium in the second stage.

14To prove this result we make use of the literature on monotone supermodular games. In Appendix 2, we show
that the game specified above belongs to the class of Bayesian monotone supermodular games, as defined by Vives
and van Zandt (2007). In particular, we extend the result of Vives and van Zandt (2007) to prove existence of the
least and the greatest Bayesian Nash Equilibria in monotone strategies in games with unbounded but integrable
utility functions. This extension allows us to prove uniqueness of equilibrium in the second stage of our game by
showing that the least and greatest BNE of our game coincide, and thus there is a unique equilibrium in threshold
strategies.
15This result implies that the game specified in the second stage is dominance solvable (Milgrom and Roberts,

1990). While the dominance solvability of symmetric binary global games is well understood (see Morris and Shin,
2003), our contribution is to show that it also applies to an asymmetric game where both thresholds are functions
of each other. Corsetti et al (2004) also show dominance solvability in a binary action global game with asymmetric
players. Nevertheless, in that setup the optimal threshold of a “large”player is independent of the threshold of the
“small”players. Frankel, Morris, and Pauzner (2003) also show dominance solvability for players with bounded utility
functions and asymmetric noise distributions with finite support. In our setup, utility functions are unbounded and
noise distributions have infinite support.

16Where K1(θ, θ, µθ) :=
1−F

(
θ−θ
σ̂2

)
+ 1
σ̂2
f
(
θ̄−θ
σ̂2

)
κ1

1√
2π

 1√
2π

+

θσ2
1

(
1+

σ2
1
σ̂2

2

)
−σ̂2

2

σ2
2
σ2
θ

σ̂2
2+σ2

1


,

K2(θ, θ, µθ) :=
1−F

(
θ−θ̂min
σ̂1

)
−
[
F

(
θ−θ̂min
σ̂1

)
−F

(
θ−θ̂max
σ̂1

)]
F

(
σ2(θ̂max−θ̃2)

σ̂2
2

)
+ 1
σ̂1
f

(
θ̄−θ∗min
σ̂1

)
κ2

1√
2π

 1√
2π

+

θσ2
2

(
1+

σ2
2
σ̂2

1

)
−σ̂2

1

σ2
1
σ2
θ

σ̂2
1+σ2

2



and κi := θF

σ2

(
θ∗min−

σ2
θθ̄+σ

2
2µθ

σ2
θ

+σ2
2

)
σ̂2

2

+ θ

1− F

σ2

(
θ∗max−

σ2
θθ+σ

2
2µθ

σ2
θ

+σ2
2

)
σ̂2

2




where θ∗min, θ
∗
max, θ̂min, θ̂max, and θ̃2 are defined endogenously in detail in the appendix.
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2.1.1 Limiting case

We now investigate what happens with the unique equilibrium in the limit, as the noise of the private

signals vanishes. This result will be useful for the experiment, since it has been shown (Heinemann

et al., 2004) that when agents play the speculative game without information acquisition in the

laboratory, subjects use threshold strategies even under complete information.

For i = 1, 2, i 6= j, we consider what happens when both σi → 0 and σj → 0 simultaneously

and σi
σj
→ c, for some c ∈ R+, i.e. when the signal noise goes to zero for both agents while the ratio

of their noises tends to some constant c.

Lemma 2 Suppose that σi → 0, σj → 0 and σi
σj
→ c where c ∈ R+. If the above game has a

unique equilibrium, then this equilibrium converges to the risk-dominant equilibrium of the complete

information game, i.e. x∗i → 2T and x∗j → 2T .

Note that, given the payoff structure, if θ ≥ 2T then attacking is the risk dominant action,

and if θ < 2T not attacking is the risk dominant action. The result of the lemma is of particular

importance because it implies that the global games equilibrium converges to the risk-dominant

equilibrium of the complete information game (as defined by Harsanyi and Selten, 1988) in the case

of players with asymmetric signal distributions. This feature was first pointed out by Carlsson and

van Damme (1993) for 2×2 global games with symmetric noise structures. Lemma 2, thus, extends

their limiting result for the case of unbounded utility functions and asymmetric noise distributions

with infinite support.

2.2 Solving stage one: Optimal information acquisition

Given the equilibrium strategies in the second stage of the game, we now study the first stage where

agents get to choose the precision of the private signal they will observe, at a cost. Agents initially

have a common prior about the underlying state of the economy, θ ∼ N
(
µθ, σ

2
θ

)
. During this first

stage they can improve the precision of the signal they will receive in the second stage. If an agent

does not improve his precision he will receive a signal xi ∼ N(θ, σ2
0). We assume that the ratio σ0

σθ

satisfies the uniqueness condition for the equilibrium in the second stage of the game derived in

section 2.1.17

The expected utility of agent i, who chose standard deviation σi, and who believes that his

opponent chose standard deviation σj and that his opponent holds correct beliefs about his own

choice of σi, is given by:

17 In general, if the condition for uniqueness is not satisfied, the game played in the second stage will have three
equilibria in monotone strategies (which can be Pareto ranked). If we assume that agents play a Pareto dominant (or
Pareto dominated) equilibrium, as the precision of their private signals decreases and we enter the dominance region,
the equilibrium threshold would experience a jump, creating a discontintuity in the first period expected utility at
that point.
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Ui(σi, σj) =

∫
xi≥x∗i

vi(xi, x
∗
j ;σ)

1√
σ2
i + σ2

θ

f

 xi − µθ√
σ2
i + σ2

θ

 dxi − C(σi) (3)

where vi(·) is defined in equation (1). C(σi) is the cost associated with agent i’s choice of precision,

and 1√
σ2
i+σ

2
θ

f

(
xi−µθ√
σ2
i+σ

2
θ

)
is the unconditional density of agent i’s signal, given his choice of σi.

We now define a pure strategy Bayesian Nash Equilibrium for the full game and proceed to

analyze the problem faced by each agent.

Definition 2 (Equilibrium) A pure strategy Bayesian Nash Equilibrium is a pair of information

choices (σ∗i , σ
∗
j ), optimal decision rules for the second stage ai(xi;σ), and belief functions µi :

(0, σ0)→ [0, 1] such that for each i = 1, 2 we have:

• Ui(σ∗i , σ∗j ) ≥ Ui(σi, σ∗j ) ∀σi ∈ (0, σ0)

• The belief function µi satisfies µi (σ∗j ) = 1 and µi (σj) = 0 for σj 6= σ∗j ;

• For i = 1, 2, given the belief function µi, agent i’s decision rule is given by

ai(xi;σ) =

{
1 if xi ≥ x∗i (σi, σ∗j )
0 if xi < x∗i (σi, σ

∗
j )

where x∗i (σ) solves

v(x∗i (σi, σ
∗
j ), x

∗
j (σ
∗
i , σ
∗
j );σ) = 0

The first condition is an optimality condition and it requires agent i to have no incentives to

deviate from his equilibrium precision choice. The second condition requires that an agent assigns

positive probability only to the actual equilibrium choice of his opponent. Finally, the last condition

requires each agent to act optimally in the second stage, even after unilateral deviations.

It is convenient at this stage to define the benefit of choosing σi, i.e. the gross payoff of choosing

σi:

Bi(σi;σj) :=

∫
xi>x∗i

vi(xi, x
∗
j ;σ)f(xi;σi)dxi

One can show that the marginal benefit of information is always finite and converges to zero (see

the appendix). Since limσi→0C
′(σi) = ∞ it follows that that agents will never find it optimal to

choose infinitely precise signals.

We now establish existence of equilibrium for the full game. The proof involves establishing two

intermediate results that state that the best response functions are well defined and that agents

improve their precision in any equilibrium of the game.

Theorem 2 (Existence) There exists a symmetric pure-strategy Bayesian Nash Equilibrium of

the game with costly information acquisition.
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In the model with two agents, because of the lack of a closed form solution, it is diffi cult

to derive parametric conditions to characterize comparative statics explicitly and to perform a

thorough equilibrium characterization.18 We briefly discuss some results that arise from numerical

simulations that will be helpful to understand the predictions of the model for the set of parameters

used in the experiment.

For most parameter values there are increasing differences in precision choices, i.e. more in-

formation is always beneficial (B′i(σi, σj) > 0) and the marginal benefit of increasing individual

precisions is increasing in the precision of the other agent
(
∂B′i(σi,σj)

∂σj
> 0
)
. Therefore, there are

strategic complementarities in information acquisition.

The next observation pertains to the way in which optimal thresholds vary with each player’s

precision choices. As pointed out by Metz (2002), Bannier and Heinemann (2005), and Szkup and

Trevino (2015), typically in global games the comparative statics with respect to precisions depend

on the agents’prior beliefs. A similar result applies in this case. More precisely, we find that when

agents are optimistic about the state of the world and the cost of attacking is low, i.e. when µθ is

high with respect to T , thresholds are increasing functions of both precisions, irrespective of σθ. In

the remaining cases (when agents are pessimistic about the state of the world and costs are high,

or when costs and prior beliefs are of about the same magnitude, i.e. when µθ is very low with

respect to T , or when µθ is very similar to T ) the direction in which precisions affect thresholds

depends on the precision of the prior. In particular, when the prior is very noisy (high σθ), the

threshold of each agent is increasing with the precision of both agents. When the precision of the

prior is high (but noisy enough so that a unique equilibrium in the second stage is ensured), the

threshold of each player is a decreasing function of the precision of both agents.

In the next subsection we state the equilibrium predictions for the parameters used in the

experiment.

2.3 Theoretical predictions for the experiment

The theoretical model is governed by a set of parameters Θ =
{
µθ, σθ, (θ, θ), T, {σi} , {C(σi)}

}
.

The parameters chosen for the experiment are:

Θ = {50, 50, (0, 100), 18, {1, 3, 6, 10, 16, 20} , {6, 5, 4, 2, 1.5, 1}}

In particular:

• The fundamental θ is randomly drawn from a normal distribution with mean 50 and standard

deviation of 50.

• The coordination region is for values of θ ∈ [0, 100).

18For a complete equilibrium characterization of the model with a continuum of agents see Szkup and Trevino
(2015).
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• The cost of attacking is T = 18.

• A discrete choice set of precisions and the cost associated with each precision was presented
in the form of a menu of 6 precision levels, standard deviations, and costs:19

Precision Standard Cost
level deviation
1 1 6
2 3 5
3 6 4
4 10 2
5 16 1.5
6 20 1

Table 1: Precision choices

We decided not to have a default precision chosen for subjects in order to avoid status quo biases.

The reason to introduce a discrete choice set for precisions was to simplify the choice for subjects

and the data analysis. We believe six is a reasonable number of options to observe dynamics in the

level of informativeness that subjects choose, without losing statistical power.

Given these parametric assumptions we characterize the predictions of the model in the form

of three main hypotheses to be tested with our experiment:

Hypothesis 1 For any precision choices, subjects use threshold strategies.

Hypothesis 2 Thresholds are increasing functions of precisions.

Hypothesis 3 (Equilibrium) Subjects coordinate on a precision level of 4 and set a symmetric
threshold of 28.31.

Hypothesis 1 establishes that subjects will use the type of strategy predicted by global games,

for any precision choices, as shown in subsection 2.1. We have chosen a situation where the mean

of the prior is high with respect to the cost of attacking to ensure that the effect of precisions

on thresholds does not depend on the precision of the prior (see Szkup and Trevino, 2015). This

allows us to formulate Hypothesis 2, which states that the optimal threshold in stage two for each

agent is increasing in the precision of both agents. Finally, Hypothesis 3 aims to test the unique

symmetric equilibrium prediction for the parameters used in the experiment, which corresponds

to subjects coordinating on their choice of precision level 4 and setting a symmetric threshold at

28.31. Implicit in this prediction is that precision choices are strategic complements, which leads

agents to coordinate on both precisions and actions. As an additional feature of the model coming
19 In the remaining of the paper we will refer to information choices as precision choices to be consistent with the

language used in the implementation of the experiment. We will use the term precision as a qualitative measure of
informativeness of the signals, i.e. we will compare levels of precision, and not magnitudes of standard deviations.
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from section 2.1.1, note that the equilibrium prediction in the limit, as signal noise vanishes, is

equal to 2T = 36, which corresponds to the risk dominant equilibrium for our game. Previous

experimental evidence shows that subjects coordinate on this limiting threshold when playing a

global game without information acquisition (see Heinemann et al., 2004).20

3 The experiment

We present results of a series of laboratory experiments designed to test the implications of the

model from section 2. The experiment was conducted at the Center for Experimental Social Science

at New York University using the usual computerized recruiting procedures. Each session lasted

from 60 to 90 minutes and subjects earned on average $25, including a $5 show up fee. All subjects

were undergraduate students from New York University.21

3.1 Experimental design

We implement a between subjects design that allows us to directly compare the behavior of subjects

across treatments. Each session consists of 50 independent rounds. Our experimental design

is closely related to the work of Heinemann et al. (2004) (HNO04 henceforth), who test the

predictions of the model by Morris and Shin (1998) in the laboratory (a global game without

information acquisition).

There are three main treatments. In the Control treatment subjects play the game without

information acquisition (as in HNO04) with an exogenously fixed and commonly known precision

for the signal distribution. This precision coincides with the equilibrium precision of the game with

information acquisition (level 4). Since our experimental design differs from the one presented in

HNO04 in the number of subjects in each group and in the distributional assumptions, we cannot

directly compare our results with theirs. Thus, the first treatment serves as a benchmark for our

subsequent analysis.

In the second treatment subjects play the speculative attack game with costly information

acquisition of section 2. In this treatment subjects choose from a set of discrete precisions with no

default option, as described in Table 1, then receive a signal, and finally they choose an action. We

refer to this as the treatment with Endogenous Precision and Action choices (EPA).

The purpose of treatment 3 is to observe the evolution of thresholds across rounds. In this

treatment subjects play the speculative attack game with information acquisition using the strategy

method for the second stage. The precision choice stage is the same as in the EPA treatment, but

in the second stage subjects have to choose a cutoff value such that they would attack if their signal

20Note that in our case with 2 players the risk dominant equilibrium coincides with the prediction of global games
in the limit, as the noise vanishes. Moreover, there is experimental evidence that shows that the risk dominant
equilibrium is often selected in 2× 2 coordination games (see Cabrales et al, 2000).
21 Instructions for all treatments can be found in:
http://econweb.ucsd.edu/~itrevino/pdfs/instructions_st.pdf .
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was higher than this cutoff and not attack if their signal was lower than the cutoff they report.

Hence, this treatment allows us to observe thresholds directly, rather than infer them as in the EPA

treatment.22 We refer to this as the treatment with Endogenous Precision and Strategy method

choices (EPS).

On top of these three main treatments we also run additional sessions to assess two alternative

hypotheses to Hypothesis 2 that could explain departures from the theory (explained in detail

in section 4). For the first alternative hypothesis we run sessions of the Control treatment with

exogenous high and low precisions and we refer to these two extra treatments as Control High

and Control Low. For each of these treatments there are sessions in which subjects choose actions

directly and sessions that use the strategy method for thresholds. We also run an additional session

for the original Control treatment (with the equilibrium precision) using the strategy method. To

study the second alternative hypothesis discussed in section 4 we run one session with complete

information where subjects observe the true value of θ before making a decision and we call this

the complete information treatment.

Overall, we ran 15 sessions, leading to a total of 292 participants. Table 2 summarizes our

experimental design.

Treatment # Sessions # Subjects Signal precision Choice of action
1: Control 2 40 Level 4 Direct choice
2: EPA 2 40 Endogenous Direct choice
3: EPS 3 44 Endogenous Strategy method
Additional treatments:

Control - Strategy method 1 24 Level 4 Strategy method
Control High 2 38 Level 1 Direct choice
Control High - Strategy method 1 20 Level 1 Strategy method
Control Low 2 44 Level 6 Direct choice
Control Low - Strategy method 1 20 Level 6 Strategy method
Complete information 1 22 Perfect Direct choice

Table 2: Experimental design

Subjects are randomly matched in pairs at the beginning of the session and play with the

same partner in all rounds.23 To avoid framing effects, the instructions use a neutral terminology.

Subjects are told to choose between two actions A or B, avoiding terms such as “speculative attack”.

To avoid bankruptcies, subjects enter each round with an endowment of 24 tokens from which they

22This feature of our treatment is related to the study of Duffy and Ochs (2012) who use the strategy method to
elicit thresholds in coordination games. See Brandts and Charness (2011) for a survey on the strategy method.
23We choose fixed pairs, as opposed to random pairs, to be able to study coordination of information choices over

time. As is well understood in the experimental literature, there is a trade-off between these two matching protocols.
Random matching preserves better the spirit of a one shot game. However, due to the complexity of our setup,
subjects might need to learn about the type of opponent they are facing and about the game itself. Our game is a
double coordination game in actions and precision choices and we believe fixed pairs are better suited to study such
environments. The complexity of our setup also makes it unlikely for subjects to treat it as a repeated game. In
particular, we find no evidence of agents using punishment schemes in their strategies across rounds.
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subtract their precision cost. From Table 1 we can see that even if subjects choose the most precise

information, the lowest payoff they can get in a round is zero (in case of an unsuccessful attack).

Before starting the first paying round, subjects have access to a practice screen where they

can generate signals for the different available precisions and they are given an explanation of the

payoffs associated to each possible action, given their signal and the underlying state θ. They can

spend up to 5 minutes in the practice screen.

Each round of the game with information acquisition consists of two decision stages:

1. Subjects choose from a menu of precisions and associated costs (see Table 1).

2. Subjects observe a signal xi ∼ N(θ, σ2
i ) and simultaneously decide whether to attack (A) or

not attack (B).

As stated above, treatment EPS differs from treatment EPA through the use of the strategy

method in the second step. For the Control treatment, where subjects do not choose precisions,

they receive their private signal drawn independently from the same normal distribution with mean

θ and standard deviation of 10, which is the optimal level of precision dictated by the theory for

that set of parameters.24

After each round, subjects receive feedback about their own choice of precision, their own private

signal, their choice of action, the realization of θ, how many people in their pair chose A, whether

A was successful or not, and their individual payoff for the round. In addition, each subject can

access the history of precision choices made over the previous rounds by pressing a button.

The computer randomly selects five of the rounds played and subjects are paid the average of

the payoffs obtained in those rounds, using the exchange rate of 3 tokens per 1 US dollar.

The experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007).

3.2 Experimental results

We first address the three hypotheses stated in section 2.3 that derive from the theory. This is

followed by a welfare analysis and some additional results about the stability of thresholds over

time that enrich the predictions of our model. The analysis is based on behavior in the last 25

rounds of the experiment (once behavior has stabilized), unless otherwise specified.

Hypothesis 1 For any precision choices, subjects use threshold strategies.

We find strong support for Hypothesis 1 in the data for both the Control and the EPA treat-

ments. We say that a subject’s behavior is consistent with the use of threshold strategies if the

subject uses either perfect or almost perfect thresholds. A subject uses a perfect threshold if he

does not attack for low values of the signal and attacks for high values of the signal, with exactly

24The additional sessions of the control treatment were run with exogenously given precision levels 1 and 6 from
Table 1.
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one switching point (i.e. the set of signals for which a subject attacks and the set of signals for

which he does not attack are disjoint). This type of behavior is illustrated in panel (a) of Figure 1,

which has the signal a subject receives on the horizontal axis and a binary value (0 for not attack,

1 for attack) on the vertical axis. For almost perfect thresholds, we allow these two sets to overlap

for at most three observations. This means that subjects do not attack for low signal values and

attack for high signal values, but these two sets can intersect for at most three observations. Such

behavior is portrayed in panel (b) of Figure 1 where we fit a logistic function to the observed data

of a specific subject.
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Figure 1: Examples of perfect and almost perfect thresholds

In our Control treatment, we find that 92.5% of the behavior is consistent with the use of

threshold strategies.25 In particular, we find that 67.5% of the subjects use perfect thresholds, and

25% use almost perfect thresholds.

Once we have identified the subjects who use threshold strategies, we use two different methods

to estimate their mean thresholds. For the first method we pool the data of all the subjects who use

thresholds in each treatment and fit a logistic function with random effects (RE) to determine the

probability of attacking as a function of the observed signal.26 The cumulative logistic distribution

function is defined as

Pr(A) =
1

1 + exp(α+ βxi)

By fitting the pooled data to a logistic function, we estimate the mean threshold of the group

by finding the value of the signal for which subjects are indifferent between attacking and not

attacking, i.e. the value of the signal for which they would attack with probability 1
2 , which is

given by −α
β . As pointed out by HNO04, the standard deviation of the estimated threshold,

π
β
√

3

is a measure of coordination and reflects variations within the group. We call this the Logit (RE)

method.

For the second method we take the average, individual by individual, between the highest value

of the signal for which a subject chooses not to attack and the lowest value of the signal for which

25This result is similar to HNO04. However, HNO04 use a different metric to measure the use of threshold strategies
and have 10 decision situations in each round of the experiment.
26For the EPA treatment we pool the data of subjects according to the level of precision chosen.

16



he chooses to attack. This number approximates the value of the signal for which he switches from

taking one action to taking the other action. Once we have estimated individual thresholds using

this approach, we take the mean and standard deviation of the thresholds in the group. We refer

to this estimate as the Mean Estimated Threshold (MET) of the group.

The estimated mean thresholds for the Control treatment are shown in the middle column of

Table A.1 in the appendix, corresponding to a medium precision. Standard deviations are reported

in parenthesis. These thresholds are not statistically different from each other and coincide with

the risk dominant equilibrium predicted by the theory, i.e. the optimal threshold in the limit, as

noise in the private signal vanishes.27 This result is also consistent with the findings of HNO04,

therefore, we can conclude that their results extend to our framework.28

We now proceed to analyze the use of thresholds for the EPA treatment when subjects choose

their precision. Since optimal thresholds depend on the precision chosen, we must ask whether,

conditional on the choice of precision, subjects use a threshold strategy.29 Therefore, to illustrate

the use of threshold strategies we first establish stability of individual precision choices and then

analyze actions for the precision level that was mostly chosen by each subject.

We find that, on average, in the last 25 rounds of the experiment subjects choose the same

level of precision for more than 22 out of the last 25 periods and that the most popular precision

choice is the equilibrium level 4. To illustrate this result, in figure 2 we report the transition matrix

of precision choices in the last 25 rounds.30 The entry aij of the matrix shows the probability of

choosing precision level j in t + 1, given that a subject chose precision level i at t, for i, j ∈ [1, 6]

and t > 25.

Prec 1 Prec 2 Prec 3 Prec 4 Prec 5 Prec 6

Prec 1

Prec 2

Prec 3

Prec 4

Prec 5

Prec 6



0.95 0.03 0 0 0 0.02
0.08 0.74 0.08 0.05 0 0.05
0 0.02 0.87 0.09 0 0.02
0 0 0.04 0.92 0.02 0.02
0.01 0.01 0.10 0.15 0.58 0.15
0.01 0 0.02 0.04 0.03 0.90


Figure 2: Transition matrix of precision choices in the last 25 rounds, EPA and EPS treatments

By looking at the diagonal entries of the transition matrix, we can see that most precision levels

(except for level 5) are absorbent states.31 This effectively means that precision choices are stable

27 In particular, we cannot reject the hypothesis that the theshold estimated with the logit is different from the risk
dominant threshold to the 1% level of significance.
28 In our case, because we have two players, this threshold corresponds to the risk dominant equilibrium of the

underlying complete information game, see Lemma 2
29 If individual precision choices were unstable over the last 25 periods, it would be diffi cult to condition on a

precision choice, since it would be constantly changing.
30This includes precision choices in treatments EPA and EPS. We aggregate the data because the distributions of

precision choices are not statistically different between these two treatments. This was expected since the treatment
effect is in the second stage of the game.
31Very few subjects choose precision level 5 and their behavior in the second stage is mostly random.
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over the last 25 rounds, i.e. that subjects on average choose their precision consistently with respect

to their own previous choices.

Given this stability result, we characterize subjects by their preferred precision choice. Table

3 shows the percentage of subjects that choose each precision level for the last 25 rounds of the

experiment.32

Precision Standard Cost Precision choices
level deviation in last 25 rounds
1 1 6 14.7%
2 3 5 3.7%
3 6 4 18.4%
4 10 2 36.9%
5 16 1.5 3.9%
6 20 1 22.4%

Table 3: Precision choices in the last 25 rounds, for EPA and EPS treatments

We now analyze subject behavior in the EPA treatment. We identify three types of subjects:

those who use thresholds, those who use a degenerate strategy, and those who act randomly. The

use of thresholds can be either by perfect or almost perfect thresholds, as defined above. We say

that a subject uses a degenerate strategy if his choice of action is constant and does not vary with

the signals (i.e. always attack or never attack). For a subject that exhibits random behavior, the

choice of action is independent of his signal realization.

As shown in Table 4, we find that 100% of subjects choosing precision levels 1, 2, or 3 use

threshold strategies. For precision level 4, all but one subject use threshold strategies, which

corresponds to 93.75% of the subjects. There is only one subject choosing precision level 5, whose

behavior is random. For precision level 6, 75% of the subjects use threshold strategies and 25% use

degenerate strategies. This suggests that when subjects invest in more precise information their

behavior is more likely to be consistent with the use of threshold strategies.

In total, 90% of the subjects in the EPA treatment use threshold strategies for their most

preferred precision choice. This implies that the theoretical prediction of a threshold strategy is

robust also under endogenous information.

Hypothesis 2 Thresholds are increasing functions of precisions.

We first analyze how the individual decision to attack depends on individual precision choices.

Then we study behavior at the pair level to establish how the joint decision to attack (and hence

the success of attacks) depends on the precision chosen by both pair members.

32Precision choices in the first rounds are not very dissimilar to the precision choices portrayed in table 3. In
particular, if we compare the choices of the first 5 rounds with the choices of the last 5 rounds of the experiment, we
observe the following proportion of choices, by precision level (the first number corresponds to the first 5 rounds and
the second to the last 5 rounds). Level 1: 16.2% vs 13.8%; level 2: 11.9% vs 4%; level 3: 25% vs 19%; level 4: 21.4%
vs 36.8%; level 5: 4.8% vs 4%; level 6: 20.7% vs 22.4%. We observe the highest shift in precision choices to be in
favor of the equilibrium precision level 4.
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Precision Thresholds Degenerate strategies Random behavior
1 100% - -
2 100% - -
3 100% - -
4 93.75% - 6.25%
5 - - 100%
6 75% 25% -

Table 4: Strategies followed in the second stage, for EPA treatment

Figure 3 plots the cumulative distribution function (pooled over all subjects in treatment EPA)

to illustrate the probability of attacking for each signal realization, by precision levels. The value

of the signal for which subjects attack with probability 0.5 determines the threshold. Looking at

the intersection of the curves corresponding to the different precision levels with the 0.5 horizontal

line, from left to right, we can see that the values of the estimated thresholds are larger for lower

precisions.33 This suggests that the subjects who acquire more precise information attack more

often. We also see that as we move towards lower precision levels the slopes of the CDFs are

decreasing, indicating that the dispersion of the observations within each precision group increases.
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Figure 3: Probability of attack, by precision choices in EPA treatment

In order to better understand this phenomenon, we also run two regressions (one for the EPA

and one for the EPS treatment) to determine the statistical effect that each level of precision has

on the decision to attack (for EPA) and on the reported thresholds (for EPS).

For EPA, we estimate a random effects logit where the dependent variable is the decision to

attack (1) or not attack (0) and the independent variables are dummies for the six precision levels,

interacted with the signal realizations. We interact precisions and signals because the decision to

33This is true except for precision level 2, but less than 4% of the subjects chose this level in the EPA treatment.
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attack is determined by the value of the signal, and the information choice affects how precise

the signal is. As shown in Table A.2 in the appendix, we find that all the coeffi cients for the

interacted variables are positive and significant to the 1% level, and that the magnitudes of the

coeffi cients decrease for lower precisions. The positive coeffi cients mean that subjects attack for

higher signal realizations, for all precision levels, which is consistent with the monotonicity implied

by threshold strategies. The fact that the magnitudes of the coeffi cients decrease for less precise

information implies that this effect is stronger when subjects observe very precise signals than

when they observe noisier signals. If we categorize precision levels into high precision (levels 1 and

2), medium precision (levels 3 and 4), and low precision (level 6),34 we find that the coeffi cients

for high precision are statistically smaller than the coeffi cients for medium precision (at the 10%

level of significance), and that the coeffi cients for medium precision are statistically smaller than

the coeffi cient for low precision (at the 1% level of significance). We can therefore conclude that

subjects that choose higher precision levels attack more often.

We find further evidence of this effect in the EPS treatment by analyzing how reported thresh-

olds vary with precision choices. Table A.3 in the appendix reports the results of a random effects

OLS regression where the dependent variable is the threshold reported by subjects and the inde-

pendent variables are dummies for each level of precision. Each of these dummies takes the value of

1 if the subject chooses this precision level and 0 otherwise. We find that the reported thresholds

depend positively and significantly on the level of precision chosen. In particular, the magnitudes

of the coeffi cients for each precision level increase as we move towards less precise information,

suggesting that less precise information gives rise to higher thresholds, i.e. a subject with a lower

precision attacks less often than a subject with a higher precision. This corroborates the findings

in the EPA treatment and, together, these results are at odds with Hypothesis 2, which states that

higher precisions lead to higher thresholds.

In order to fully test Hypothesis 2 we need to study the behavior at the pair level because

thresholds depend on the precision choices of both pair members. Therefore, we need to establish

first a notion of convergence in precision within a pair to understand how joint precision choices

affect the incidence and success of attacks. We separate precision choices within a pair in four

categories, which are illustrated in Figure 4. We define individual convergence in precision as a

situation where a subject chooses the same precision level for the last 25 rounds, with at most

three deviations. We say that a pair exhibits non-stable behavior if at least one of its members

does not converge individually in his precision choice (panel (a)). A pair that has stability but not

convergence is a pair in which both members converge individually in their own precision choices,

but the levels at which they converge are more than one level apart (panel (b)). We define weak

convergence as pairs in which both members converge individually to a level of precision and these

two precision levels are at most one level away from each other (panel (c)). We say that a pair

34We do not include precision level 5 since there is only one subject choosing it, who behaves randomly in the
second stage.
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exhibits full convergence if both members converge individually to the same level of precision for

the last 25 rounds of play (panel (d)).35
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Figure 4: Examples of types of convergence in precision

In what follows, we use the notion of weak convergence and we restrict our attention to pairs that

coordinate on high precision (levels 1 and 2), medium precision (levels 3 and 4), and low precision

(levels 5 and 6). Note that weak convergence includes full convergence. Table 5 summarizes

the combinations of precision choices across pairs according to this notion of weak convergence.

If we use this qualitative characterization we find that approximately two thirds of the pairs in

the endogenous precision treatments exhibit weak convergence in precision choices. Moreover,

the majority of the pairs converge to a medium precision, which corresponds to the theoretical

prediction.

High Medium Low
H 10.00% 13.81% 3.05%
M 40.00% 16.67%
L 16.48%

Table 5: Weak convergence of precision choices, EPA and EPS treatments

Given this notion of convergence in precision choices, we now characterize how the incidence

and success of attacks is determined by precision choices in a pair. In tables 6 and 7 we report,

for the EPA and EPS treatments respectively, the number of attacks and the number of successful

attacks as proportions of the total number of situations when subjects are in the coordination

region θ ∈ [0, 100), for each combination of precision choices within pairs.36 The number of attacks

corresponds to the instances when at least one of the pair members decides to attack and θ ∈ [0, 100),

while the number of successful attacks corresponds to the number of cases where both subjects

attack and θ ∈ [0, 100).

From tables 6 and 7 we see that in both treatments the incidence and success of speculative

attacks increases with the precision at which subjects converge (diagonal entries), which is in line

with our findings at the individual level and establishes that our data does not find support for
35Table A.4 in the appendix shows all the combinations of precision choices made by the different pairs in our

experiment (for both the EPA and EPS treatments). The diagonal entries correspond to the pairs that exhibit full
convergence.
36We thank readers of a previous version for suggesting these tables.
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Hypothesis 2. We provide further evidence for this result in Table A.5 in the appendix where we

report the results of a random effects probit regression where we test how the success of an attack

is determined by the level of precision to which each pair weakly converges for the EPA treatment.

In section 4 we study possible explanations for this departure from the theoretical predictions.

Number of attacks
Total situations

Number of successful attacks
Total situations

High Medium Low High Medium Low

H 23
29 (79.31%)

41
44 (93.18%)

2
2 (100%)

18
29 (62.07%)

35
44 (79.54%)

2
2 (100%)

M 82
115 (77.39%)

36
68 (52.94%)

59
115 (51.30%)

18
68 (26.47%)

L 16
34 (50.00%)

5
34 (14.7%)

Table 6: Incidence and success of attacks, by precision choices, EPA treatment

Number of attacks
Total situations

Number of successful attacks
Total situations

High Medium Low High Medium Low

H 35
37 (94.59%)

43
55 (78.18%)

7
19 (36.84%)

34
37 (91.89%)

33
55 (60%)

3
19 (15.79%)

M 125
149 (83.89%)

40
49 (81.63%)

99
149 (66.44%)

35
49 (71.43%)

L 66
77 (85.71%)

48
77 (62.34%)

Table 7: Incidence and success of attacks, by precision choices, EPS treatment

Hypothesis 3 (Equilibrium) Subjects coordinate on a precision level of 4 and set a

symmetric threshold of 28.31.

In Table 8 we compare, for high, medium, and low precision levels, the mean estimated thresh-

olds (MET) and the random effects logit estimations from the EPA treatment, and the mean

reported thresholds (MRT) from the EPS treatment with the theoretical predictions. Remember

that we define weak convergence to high precision as pairs that converge to precision levels 1 or 2,

medium precision as pairs that converge to precision levels 3 or 4, and low precision as pairs that

converge to precision levels 5 or 6. Therefore, for each precision level (high, medium, or low) we

include the two predictions that correspond to each of the precision levels (1 and 2, 3 and 4, or 5

and 6), as well as the risk dominant equilibrium, i.e. the threshold prediction when the signal noise

converges to zero. Standard deviations are reported in parenthesis.

We find that the logit and MET estimates for medium precision in the EPA treatment are not

statistically different from the predictions from the theory for the equilibrium precision level 4,

which is a threshold of 28.31. This means that the subjects that coordinate on medium precision
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Full information High precision Medium precision Low precision
Logit (RE) (EPA) 22.77 24.99 30.30 74.62

(11.76) (7.44) (12.32) (21.48)
MET (EPA) 21.07 25.29 27.84 50.65

(11.85) (9.27) (17.65) (28.65)
MRT (EPS) - 19.77 38.23 32.13

- (1.14) (13.24) (12.19)

Theoretical prediction x*
Info 1 Info 2
35.31 33.88

Info 3 Info 4
31.61 28.31

Info 5 Info 6
22.82 18.73

Risk dominant equilibrium 36 36 36 36

Table 8: Estimated thresholds and equilibrium predictions

levels behave on average in accordance to the unique equilibrium suggested by the theory, unlike

those who converge to either a high or low precision.

Table 8 and Figure 5 illustrate how subjects with high and low precisions set thresholds in the

opposite direction of what is predicted by the theory. Figure 5 plots the theoretical thresholds and

the mean estimated thresholds of the EPA treatment for each precision level. We can see in this

figure that the theory predicts thresholds to increase with higher precisions, while the experimental

data suggests the opposite. However, note that the theoretical predictions and the mean estimated

thresholds coincide for the equilibrium precision (level 4). This means that subjects who coordinate

on precision level 4 understand the trade off between precision and the cost associated to it by

choosing a medium level of precision, and then apply this information optimally in the speculative

attack game by choosing the threshold level that maximizes their expected profits, given that their

opponent also chooses a medium level of precision.

Figure 5: Theoretical and estimated thresholds, EPA treatment
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3.2.1 Payoff effi ciency

We now analyze whether the actions taken by the subjects in our experiment increase their payoffs

with respect to the equilibrium actions predicted by the theory and to two other benchmarks of

surplus extraction. Table 9 compares the average realized payoffs of subjects for the treatments with

endogenous precision choices (EPA and EPS, separated by precision choices) to three benchmarks.37

The first one is the average expected payoff that would have arisen if subjects had followed the

equilibrium strategy for each realization of the state θ observed in the different sessions of the

experiment. The second is a constrained effi ciency benchmark where agents truthfully reveal their

signals and jointly choose actions to extract the maximum surplus, for each realization of θ observed

in the experiment. This means that subjects would still face fundamental uncertainty and would

have to purchase precisions for their signals to deal with it, but they would not face strategic

uncertainty (it is as if a planner could choose actions for both pair members to extract the maximum

surplus). In this case, we find that the optimal precision choice would be level 6. The payoffs we

report for these two benchmarks are built using the observed realizations of θ from the experiment.

For each θ we get the distribution of signals that would correspond to the precision level that is

chosen in each benchmark (levels 4 and 6, respectively). We do not use the observed signals from

the experiment to calculate payoffs because for each benchmark a specific precision is assumed to

be chosen and each precision gives rise to a different distribution of signals.

The third benchmark corresponds to the average payoffs that would have arisen if subjects had

chosen a “first-best” action under complete information, i.e. if they had attacked whenever they

could get a positive payoff (θ > 18). This first-best definition is similar to the setup where a social

planner can observe the realizations of θ and prescribe the actions that would maximize the payoffs

of both agents without informational constraints. This would correspond to the case where subjects

would attack as long as θ ≥ 18 and would not attack otherwise. Therefore, only the realization of θ

in the experiment is used to construct this benchmark and no signals are taken into consideration.

For this reason, we assume that subjects do not pay a cost to improve the precision of their signals.

Standard deviations are reported in parenthesis.

Clearly, among all of these benchmarks, the highest possible payoffs come from the first-best

outcome with complete information, followed by the constrained effi ciency benchmark, and finally

followed by the equilibrium play. The results in Table 9 show that subjects who choose a high level

of precision increase their payoff with respect to the constrained effi ciency and the equilibrium play

in the EPA treatment. For the EPS treatment we can see that the realized and the equilibrium

payoffs are not statistically different. We can conclude that subjects who choose a high precision

see a Pareto improvement with respect to equilibrium due to the departure from the theory that

leads them to set lower thresholds and attack more often.

For subjects with medium and low precisions equilibrium payoffs are higher than realized payoffs.

37We look at net realized payoffs substracting the cost of acquiring information and the cost of attacking, if
applicable.
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High precision Medium precision Low precision
Treatment EPA EPS EPA EPS EPA EPS
Realized payoffs 32.94 38.76 26.16 38.08 18.11 37.63

(7.25) (7.37) (8.61) (4.14) (12.97) (4.30)
Expected equilibrium 31.06*** 39.40 30.83*** 39.20*** 33.63*** 39.46***
payoffs (6.65) (0.84) (6.66) (0.66) (5.75) (0.90)
Expected constrained 31.21*** 39.76** 30.97*** 39.56*** 33.84*** 39.84***
effi cient payoffs (6.83) (0.75) (6.84) (0.58) (5.90) (0.79)
First-best complete 35.25*** 43.62*** 35.02*** 43.43*** 37.80*** 43.70***
information payoffs (6.61) (0.71) (6.62) (0.56) (5.71) (0.74)
Statistically different from realized payoffs at the ***1%; **5%; *10% level of significance

Table 9: Average payoffs

However, for the EPA treatment, realized payoffs for subjects with medium precision are at most

13.4% less than the corresponding equilibrium payoffs, whereas realized payoffs for subjects with

low precisions are up to 45.9% less than the corresponding equilibrium payoffs.38 This effectively

means that choosing a low precision leads to the highest loss in individual payoffs with respect to

equilibrium.

In our game an increase in the incidence of speculative attacks for subjects who coordinate on

a high precision improves individual payoffs because this high precision minimizes the probability

of making the mistake of attacking when fundamentals are strong. This analysis is related to the

findings of the previous section that show a departure from the theory in the way that precisions

determine thresholds. As Table 9 indicates, it is beneficial for subjects who coordinate on a high

precision to set a lower threshold than what is predicted by the theory. By doing this, both pair

members pay the high cost to get the most precise signal in order to coordinate on attacking for a

wider range of fundamentals. In theory, the highest precision is not an equilibrium because there

is an individual incentive to deviate and save some of the cost, while still getting the benefit of

having a very well informed pair member that will make more accurate decisions. However, by

coordinating on the highest precision both pair members get more accurate signals, thus reducing

the probability of making the mistake of attacking when an attack is unsuccessful. Clearly, such a

cooperative agreement results in a higher payoff than the one predicted in equilibrium.

3.2.2 Welfare

Even though individual investors extract a higher surplus by choosing a higher precision, it is

important to keep in mind that, for the specific context of our model, speculative attacks that

38Even if subjects who choose equilibrium precisions also set equilibrium thresholds, we can still observe differences
in realized payoffs with respect to the expected equilibrium payoffs. This is due to the fact that we are comparing
payoffs from the realization of θ for a small sample to the expected payoffs that would arise according to the dis-
tribution of a population. By a similar argument, constrained effi ciency payoffs should, on average, be higher than
realized payoffs, but over finite samples this might not be the case.
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lead to a devaluation can be detrimental for society. This means that an increase in an individual

investor’s welfare is not necessarily beneficial to other members of society (non-investors). If one

were to model society’s welfare in this context, we could think that the interests of society are

aligned to those of the central bank. In this sense, for very bad states of the economy (θ ≥ 100) it

is not optimal for the central bank to defend the currency, so a devaluation is the best outcome.

For very good states of the economy (θ < 0) the central bank always defends the currency, so

a devaluation never takes place. However, when devaluations are driven by self-fulfilling beliefs

(coordinated attacks for θ ∈ [0, 100)) they can be detrimental to society because, in principle, the

central bank would have been able to defend the currency and avoid the instability caused by the

devaluation if an attack had not occurred. To analyze social welfare in this context, we construct

a measure with our data by looking at the number of successful attacks as a fraction of total

realizations of θ ∈ [0, 100). This would serve as an index of society’s welfare loss (the higher the

number of coordinated attacks, the higher the loss in welfare for society).

Tables 6 and 7 report the indices of society’s welfare loss for treatments EPA and EPS, re-

spectively, for each level of precision. We see that there is a higher welfare loss for society when

investors coordinate on a higher precision and that the smallest loss of welfare for society arises

when investors choose lower precisions, since a high precision leads to a higher rate of successful

attacks. This can be seen by comparing the rate of successful attacks for the EPA treatment to

be 62.07% for high precision, 51.3% for medium precision, and 14.7% for low precision. Likewise,

for the EPS treatment we observe the rate of successful attacks to be 91.89% for high precision, as

opposed to 66.44% and 62.34% for medium and low precisions, respectively. By looking at these

numbers it is evident that the interests of individual investors and the rest of society are not aligned

in this model, so that when speculators coordinate on a high precision they improve their individual

welfare by extracting a higher surplus, but this translates into a reduction of social welfare.39 This

illustrates the trade-off between investors’and society’s welfare in episodes of high speculation and

endogenous precision choices.

3.2.3 Stability of thresholds

We now analyze the stability of reported thresholds across rounds for the EPS treatment for the

pairs that converge to high, medium, and low levels of precision. First, we analyze the evolution of

individual thresholds by taking the average period-to-period differences (in absolute value) of the

individual reported thresholds in each of the last 25 periods of the experiment, for subjects in pairs

that coordinate on high, medium, and low precision. We calculate, for each subject, the difference

in absolute value between the threshold chosen in one period with respect to the previous period,

and then we take the average of these differences across subjects from pairs that coordinate on

39Note that our results can also be applied to different contexts, such as an investment decision or a social revolt.
In these cases the interests of society would be aligned to the interests of the agents in the model. For example, a
successful investment would be beneficial to both individual investors and society.
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each precision level. This is portrayed in Figure 6. The vertical bar at period t illustrates how

much, on average, a subject changed the value of his own threshold in period t with respect to the

threshold he reported in period t − 1. We find that pairs that coordinate on high precision levels

converge individually in their thresholds, since the mean difference is consistently zero, except for

the last round. For medium precision levels the mean difference is less than 7 in all periods, and

for low precision levels it is less than 7 in all but one period. Therefore, convergence in individual

thresholds is less stark as subjects choose lower precisions.
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Figure 6: Convergence of individual thresholds, EPS treatment

Given this behavior, we also plot the difference in absolute value between the reported thresholds

of the members in each pair, for each precision level. In Figure 7 we see, for each period and each

precision level, the average difference in absolute value between the reported thresholds of both

members of each pair, i.e. we observe by how much subjects coordinate on the same threshold

with their pair member. Recall that subjects do not receive feedback about the threshold reported

by their pair member, but only observe whether action A (attack) was successful or not. We can

see that subjects from pairs that converge to high precision levels seem to coordinate also on their

thresholds, and that this is less clear as we move towards less precise levels of information. Figure

7 suggests thus that convergence to a unique threshold within a pair is more likely as subjects

coordinate on more precise information.
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Figure 7: Convergence of thresholds within a pair, EPS treatment
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4 Discussion

The most striking finding of our analysis above is that, opposite to the predictions of the the-

ory, subjects who choose and coordinate on the highest precision set lower thresholds than those

subjects who coordinate on lower precisions. That is, contrary to the theoretical predictions, our

experimental results show that a higher precision level leads subjects to behave closer to the effi -

cient equilibrium under complete information, and further away from the risk dominant one. This

is an important departure from the theoretical framework, since it has direct implications about the

consequences of more precise information on welfare. It is thus crucial to understand this departure

from the theory. Below, we investigate several potential explanations of our experimental results.

4.1 Sunk cost and forward induction

One possible explanation for this departure from the theory is that subjects do not take the cost of

precision as a sunk cost. Instead, subjects that choose a high precision might take into account the

high cost that they have paid for information when they make their decision to attack, i.e. they

attack more often to make up for the high cost paid.40 Alternatively, subjects might use a high

precision to signal to their opponents that they are willing to set lower thresholds and, thus, make

the most out of the high cost paid (a forward induction reasoning).

To address these alternative explanations for our results, we run extra sessions with exogenous

high (level 1) and low (level 6) precisions to shut down the active role of precision choice on

threshold formation. We run sessions where subjects choose actions (as in the Control treatment,

where subjects had an exogenously given medium precision, at level 4) and sessions with the

strategy method to elicit thresholds directly.41 We find that the thresholds of subjects that are

given either a medium or a low precision exogenously are not statistically different from each other,

but when subjects are exogenously endowed with a high precision they choose a significantly smaller

threshold than for medium and low precisions, just as in the case of endogenous precision choices.

This implies that the sunk cost hypothesis and the forward induction argument do not explain

our findings. Instead, these sessions provide more evidence that subjects seem to respond to more

precise information in the opposite direction from what is predicted by the theory in a systematic

way, i.e. when precision is chosen by them or is given to them exogenously.

4.2 Level-k reasoning

Another possible way to explain our findings is to think about how a higher precision of signals

influences the level of reasoning of subjects when forming thresholds. In our model we assume

that agents are rational in their belief formation process and this leads them to choose the actions

40There is numeruous evidence from psychology that suggests that subjects are willing to take riskier choices to
make up for sunk costs, see for example Arkes and Blumer (1985). In economics Thaler (1980) uses prospect theory
to explain the sunk cost fallacy.
41We report the estimated thresholds for these sessions in the last three columns of Table A.1 in the appendix.
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predicted by the theory. However, this might not be the way in which subjects in the experiment

reason when making a decision.42

Different models of cognition have been proposed to explain the observed departures from the

theoretical predictions in strategic settings, such as level-k and cognitive hierarchy (see Nagel, 1995,

Costa-Gomes and Crawford, 2006, to name a few). These models suggest that in experimental

settings subjects might exhibit a bounded depth of reasoning. In a global games context (without

costly information acquisition), Kneeland (2014) develops a theoretical model of level-k thinking

to incorporate experimental evidence about the role of private and public information on threshold

formation. The main argument of Kneeland (2014) is that the results from HNO04 are better

approximated by a model of limited depth of reasoning than by equilibrium play.

We use a level-k model to investigate whether the results in our experiment are due to the

subjects’limited depth of reasoning.43 We assume that the level-0 player chooses randomly whether

to attack or not, irrespective of the signal he receives, and that a level-k player best responds to

the behavior of a level-(k− 1) player. Compared to the model analyzed in Kneeland (2014), in our

setup a level-k player is described by a two-dimensional strategy {x∗k, σ∗k} where x∗k is a threshold
set by a player with level-k depth of reasoning, while σ∗k is his choice of standard deviation. Figure

8 presents the predictions of the level-k model applied to our setup for the parameters used in

the experiment. The left panel reports precision choices σ∗k for each level-k, while the right panel

presents the corresponding threshold, x∗k (σ∗k) for each level-k. We see that, given our parametric

assumptions, this level-k model predicts no information acquisition to take place, and, as such, it

cannot explain the findings of our experimental data.44

4.3 Convergence towards the equilibrium under complete information

As presented in section 2.1.1 and consistent with previous well known results of global games, the

theory predicts that in the limit, as the noise of the private signals vanishes, the unique equilibrium

of the game coincides with the risk dominant equilibrium of the underlying complete information

game. For the parameters used in the experiment, this would imply that as the private signals

become more informative the thresholds set by subjects increase towards the risk dominant thresh-

old of 36. As reported above, this is not the case. We observe that as subjects in our experiment

42One might think that our results reflect the fact that subjects could be relying less on the prior than what is
assumed by the theory, therefore putting more weight on the private signal. However, doing this is equivalent to
behaving as if the precision of the private signal was higher than the actual precision chosen, in which case the theory
would predict an even higher threshold. Thus, this type of overconfidence cannot explain our results.
43Alternatively, we could also think about other belief-based models that would seem appropriate to global games

to explain this departure, such as understanding how the reduction in fundamental and strategic uncertainty due to
a higher precision affects the belief formation process. While a systematic investigation of these issues is beyond the
scope of this paper, we deem this endeavour as an exciting avenue for future research.
44This result does not change if we allow a level-k player to best respond to a distribution of players with lower

levels of reasoning. However, as in Kneeland (2014), thresholds might be increasing or decreasing on the bound k,
depending on the assumptions made for level-0 types. We view this as an important limitation of this particular
model.
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Figure 8: Level-k Thinking - Numerical Results

converge to choosing higher precisions, they set thresholds that are further away from the risk dom-

inant threshold and closer to the effi cient threshold of 18. Moreover, this result cannot be explained

by a limited depth of reasoning or forward induction arguments, or by a sunk cost fallacy, and it is

robust to exogenously given precisions.

In this section we explore a different possibility. We argue that as the precision of the private

signals increases, the behavior of agents converges to the behavior of subjects that play the same

game under complete information, which is different to the equilibrium suggested by the theory.

To test this theory, we run a complete information treatment where subjects observe the state

θ perfectly in every round. We then test whether the thresholds of subjects corresponding to

(endogenous and exogenous) low, medium and high precisions converge towards the thresholds

observed in this complete information session.45 We find that all of the subjects in the complete

information treatment use threshold strategies, and that 77.27% of them, in fact, use exactly the

effi cient threshold of 18.46 That is, the vast majority of our subjects not only select one of the

two equilibria of the complete information game, but more importantly, they select the effi cient

equilibrium, and not the risk dominant one. This is a stark contrast from the theoretical predictions

for this game.47

In Table 10 we compare the mean estimated thresholds of all the subjects in the treatment with

complete information (second column) to the mean estimated thresholds (MET) corresponding to a

low, a medium and a high precision in the treatments with and without information acquisition and

45The details of the complete information treatment are in the last row of table 2.
4686.36% of the subjects use perfect thresholds and 13.64% use almost perfect thresholds.
47This argument is related to the findings reported in HNO04. In their treatment with complete information,

subjects set a lower threshold than in their treatment with noisy private signals. That is, under complete information,
subjects not only choose a threshold strategy (which is by itself a departure from the theoretical prediction of
multiplicity of equilibria under complete information), but the threshold they set is closer to effi ciency than in the
presence of noisy private signals. HNO04 do not invesitgate, however, the convergence behavior of thresholds as the
noise in the signals vanishes.
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direct action choices (EPA). We see that in the case of endogenous precision choices, the thresholds

display a clear convergence towards the threshold obtained under complete information. We observe

a similar convergence, albeit less strong, in the case of exogenous information. Furthermore, we

can see that the mean estimated threshold from the complete information treatment is significantly

smaller than the mean estimated thresholds from the sessions where subjects are exogenously

endowed with a high precision and when they endogenously choose a high precision and choose

actions directly. Thus, the results reported in Table 10 suggest internal consistency in subjects’

behavior across treatments, in the sense that, as the precision of the signals increases, subjects’

behavior converges towards the complete information behavior.

Complete info High Precision Medium Precision Low Precision
Mean estimated threshold
(Endogenous Precision) 21.07 25.29 27.84 50.65
Mean estimated threshold
(Exogenous Precision) 21.07 27.42 40.37 36.23

Table 10: Mean estimated thresholds, by treatment

This systematic path to convergence illustrates an underlying force in the game that is not cap-

tured by the theory. Indeed, the data shows convergence of thresholds in the limit as the noise of

private signals vanishes, but the limit that we actually observe does not correspond to the limit pre-

dicted by the theory. Thus, our findings suggest that in environments with precise but incomplete

information, and contrary to many existing theories of equilibrium selection (including the theory

of global games), subjects behave similarly to the case of environments of complete information and

common knowledge of fundamentals. This observation can have important consequences for the

theoretical modelling of incomplete information. We deem further investigation of this hypothesis

a fruitful avenue for future research.

5 Conclusion

We have characterized equilibrium selection in a global game with a discrete number of agents and

an endogenous information structure. We show theoretically that when agents choose privately

the precision of their signal, uniqueness of equilibrium in the coordination game can be guaranteed

as long as the precision of the prior is diffuse enough with respect to the precision of the private

signals, which is consistent with previous results in the case of symmetric noise distributions. For

most ranges of parameters, strategic complementarities in information acquisition arise, leading

to symmetric precision choices in equilibrium. We test the model experimentally in an effort to

understand how real agents make decisions in this double coordination game.

The experimental results of our model give us further insights about the behavior during spec-

ulative attacks in which subjects are allowed to choose the precision of the signals they observe,

at a cost. We find that over 30% of the subjects behave as is predicted in equilibrium since they

understand the trade off between precision and cost, and thus choose a medium level of precision
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and coordinate on this level within their group. These subjects seem to apply correctly the infor-

mation they acquire on their decision in the speculative attack by using a threshold that coincides

with the unique equilibrium predicted by the theory.

However, we also find subjects who acquire high and low precision levels, which is contrary to

the theoretical predictions. In our model, the theory suggests that the incidence of speculative

attacks should decrease as agents coordinate on higher levels of precision, i.e. that better informed

agents should be more careful and attack when they have more certainty of a successful outcome.

This theoretical prediction suggests that having more informed agents would decrease the incidence

and success of speculative attacks. However, our experimental results show the opposite. In our

study, subjects that acquire more precise information attack significantly more often than those

who acquire less precise information. As a result, the overall success of attacks increases for better

informed market participants: they achieve higher individual payoffs by coordinating on successful

attacks for a wider range of fundamentals.

One possible interpretation for this departure from the theory could be that subjects fail to

take the cost of precision as a sunk cost, and thus attack more often when they invest in better

information. The results from extra sessions that address this hypothesis show that subjects attack

more often when faced with a higher precision, even if this precision is given to them exogenously

at no cost.

In order to understand the departure from the theory that associates lower thresholds with

higher precisions, we also study the behavior of agents under complete information. We find that,

contrary to the theoretical predictions under complete information (multiplicity of equilibria), the

vast majority of subjects select the effi cient equilibrium. Therefore, our results show a systematic

path to convergence in threshold formation (in the limit, as the noise of the private signals vanishes)

towards the effi cient equilibrium under complete information, which contrasts the theory that

predicts convergence to the risk dominant equilibrium. This finding has important consequences

from an economic theory point of view. Our results suggest that while economic theory provides

a good approximation to the observed behavior in coordination games when there is a substantial

amount of noise in the environment, it fails to explain the observed behavior when information is

very precise or complete. Understanding what drives these differences and how to augment the

theory in order to improve its predictive power remains an important challenge for future research.

In terms of welfare, our experimental results show that having better quality of information

leads to a significant increase in individual investor’s welfare since it allows them to extract higher

payoffs than equilibrium play. In the context of a speculative attack, even if this behavior improves

the welfare of individuals, an increased incidence and success of speculative attacks is detrimental

for society, as proven by the numerous episodes of currency crises in the last two decades. In this

sense, the results of the experiment illustrate the trade off between individual and social welfare in

episodes of speculative attack when agents can improve their private information at a cost. This

finding sheds light on the importance for policy making of taking into account the role that private
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information acquisition plays on speculative attack outcomes. However, our results can also be

applied to different contexts (e.g. an investment decision or a social revolt), in which case different

qualitative implications on welfare might apply.
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A Appendix 1 - Tables and figures

Complete info High precision Medium precision Low precision

Logit (RE) (EPA) 22.01 27.61 40.16 35.79

(7.15) (5.86) (9.13) (9.00)

MET (EPA) 21.07 27.42 40.37 36.23

(11.85) (19.16) (18.77) (23.36)

MRT (EPS) 32.98 37.34 37.83

(16.75) (18.98) (15.47)

Equilibrium x* 35.31 28.31 18.73

Risk dominant eq. 36 36 36

Table A.1: Estimated thresholds and equilibrium predictions for treatments without information

acquisition
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Variable Attack {0,1}

Precision 1*signal 0.178***

(0.03)

Precision 2*signal 0.191***

(0.05)

Precision 3*signal 0.096***

(0.01)

Precision 4*signal 0.088***

(0.01)

Precision 5*signal 0.062***

(0.02)

Precision 6*signal 0.057***

(0.01)

Constant -3.559***

(0.46)

N 1000

Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.2: Attack as a function of precision, EPA treatment

Variable Reported threshold

Precision 2 6.25

(4.00)

Precision 3 10.65***

(3.48)

Precision 4 10.78***

(3.39)

Precision 5 12.87***

(3.66)

Precision 6 12.54***

(3.23)

Constant 20.66***

(5.14)

N 1100

Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.3: Reported threshold as a function of precision, EPS treatment
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Choice of pair member 2

Prec 1 Prec 2 Prec 3 Prec 4 Prec 5 Prec 6

Prec 1 7.24% 2.19% 5.71% 4.29% 1.24% 1.52%

Choice Prec 2 0.57% 0.29% 3.52% 0.10% 0.19%

of pair Prec 3 5.43% 14.00% 0.57% 5.33%

member Prec 4 20.57% 1.71% 9.05%

1 Prec 5 0.10% 4.00%

Prec 6 12.38%

Table A.4: Combination of precision choices, EPA and EPS treatments

Variable Success of attack {0,1}

High precision*signal 0.194***

(0.061)

Medium precision*signal 0.119***

(0.022)

Low precision*signal 0.044***

(0.01)

Constant -4.534***

(1.052)

N 500

Clustered (by pairs) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.5: Success of attack as a function of precision, EPA treatment
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B Appendix 2 - Relation to monotone supermodular games

FOR ONLINE PUBLICATION

We first prove that the game specified in the second stage of the game belongs to the class of

monotone supermodular games as defined by Vives and van Zandt (2007). Following their notation,

define N = {1, 2} as the set of players indexed by i. Let the type space of player i be a measurable
space (Ωi,Fi). Denote by (Ω0,F0) a state space that is capturing the residual uncertainty.48 We

let F−i be the product σ−algebra ⊗k 6=iFk. Let player i’s interim beliefs be given by a function

pi : Ωi →M−i, where M−i is the set of probability measures on (Ω−i,F−i). Finally, let Ai = {0, 1}
be the action set of player i, A be the set of action profiles and ui : A × Ω → R be the payoff

function.

Definition 3 A game belongs to the class of monotone supermodular games if

1. The utility function ui(ai, a−i, ω) is supermodular in own actions, ai, and has increasing

differences in (ai, a−i) and in (ai, ω).

2. The belief map pi : Ωi →M−i is increasing with respect to a partial order onM−i of first-order

stochastic dominance.

In our case, the type space is defined as follows: Ω0 = R, Ωi = R for i = 1, 2, where $0 = θ,

$i = θ̂i, $j = θ̂j and Fi = B(R), a Borel σ-algebra on R, i = 0, 1, 2. The set of probability

measuresM−i is simply the set of joint normal probability distributions over (Ω−i,F−i) conditional
on the realization of $i.The belief mapping pi : Ωi → M−i maps θ̂i into the posterior distribution

of (θ, θ̂j) using Bayes’rule. Finally, the underlying utility function for agent i is given by

u(ai, aj , θ) = 1{ai=1}

[
θ
[
1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

]
− T

]
and the expected utility of agent i is:

vi(ai, aj , θ) = 1{ai=1}

∫ ∞
−∞

∫ ∞
−∞

θ
[
1{θ∈[θ,θ]}1{sj(θ̂j)=1} + 1{θ>θ}

] 1

σ̂i

1

σj
f

(
θ − θ̂i
σ̂i

)
f

σj
(
θ̂j − θ̃j

)
σ̂2
j

 dθ̂jdθ

−T
where sj : Ωj → Aj is a measurable strategy of player j.

The fact that global games belong to the class of monotone supermodular games was noted first

by Vives (2005) and Vives and Van Zandt (2007). The following lemma shows that our game in

the second stage satisfies the above definition of monotone supermodular games.

48 In a global games setting, we usually interpret (Ωi,Fi) to be the space of possible signals that agent i receives,
while (Ω0,F0) corresponds to the measurable space of the underlying parameter of the game.
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Lemma 3 The game specified in the second stage of the speculative attack game with information
acquisition belongs to the class of monotone supermodular games.

Proof. Consider the ex-ante payoff function of agent i:

1{ai=1}

∫ ∞
−∞

∫ ∞
−∞

θ

[
1{θ∈[θ,θ]}1

{
θ̂j>θ̂

∗
j

} + 1{θ>θ}

]
1

σ̂i

1

σj
f

(
θ − θ̂i
σ̂i

)
f

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ̂jdθ − T


We see that the underlying utility function is simply

u(ai, aj , θ) = 1{ai=1}

[
θ
(

1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

)
− T

]
By example 2.6.2 in Topkis (1998) we conclude that this function is supermodular.

To show that u has increasing differences in (ai, aj) we need to show that

u(1, 0, θ)− u(0, 0, θ) 6 u(1, 1, θ)− u(0, 1, θ)

But this follows immediately from the definition of u, namely

u(1, 0, θ)− u(0, 0, θ) = θ1{θ>θ} − T and u(1, 1, θ)− u(0, 1, θ) = θ1{θ>θ} − T

so that

u(1, 0, θ)− u(0, 0, θ) 6 u(1, 1, θ)− u(0, 1, θ)

The fact that u has increasing differences in (ai, θ) follows immediately from the above expres-

sions. Increasing θ always weakly increases the difference between attacking and not attacking,

regardless of action of the other player.

To show that the belief mapping is increasing with respect to first-order stochastic dominance

it is enough to show that (θ, θ̂1, θ̂2) are affi liated. Let θ′′ > θ′, θ̂
′′
1 > θ̂

′
1, θ̂
′′
2 > θ̂

′
1 and denote by f

the joint PDF of (θ, θ̂1, θ̂2). We need to show that f is log-supermodular (see Milgrom and Weber,

1982). Without loss of generality it is enough to show that

f(θ′′, θ̂
′′
1, θ̂
′′
2)f(θ′, θ̂

′
1, θ̂
′
2) > f(θ′, θ̂

′
1, θ̂
′′
2)f(θ′′, θ̂

′′
1, θ̂
′
2)

Note that

f(θ′′, θ̂
′′
1, θ̂
′′
2)f(θ′, θ̂

′
1, θ̂
′
2) = f(θ̂

′′
1|θ′′)f(θ̂

′′
2|θ′′)f(θ′′)f(θ̂

′
1|θ′)f(θ̂

′
2|θ′)f(θ′)

f(θ′, θ̂
′
1, θ̂
′′
2)f(θ′′, θ̂

′′
1, θ̂
′
2) = f(θ̂

′
1|θ′)f(θ̂

′′
2|θ′)f(θ′)f(θ̂

′′
1|θ′′)f(θ̂

′
2|θ′′)f(θ′′)
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since θ̂1, θ̂2 are conditionally independent. Hence, it is enough to show that

f(θ̂
′′
2|θ′′)f(θ̂

′
2|θ′) > f(θ̂

′′
2|θ′)f(θ̂

′
2|θ′′)

or that f(θ̂2|θ) has an increasing marginal likelihood ratio. Since f(θ̂2|θ) ∼ N
(
σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2
, σ̂4

2
1
σ2

2

)
,

it follows that f(θ̂2|θ) has a monotone likelihood ratio and hence f(θ′′, θ̂
′′
1, θ̂
′′
2)f(θ′, θ̂

′
1, θ̂
′
2) > f(θ′, θ̂

′
1, θ̂
′′
2)f(θ′′, θ̂

′′
1, θ̂
′
2).

Therefore, (θ, θ̂1, θ̂2) are affi liated and the belief mapping is increasing with respect to first-order

stochastic dominance.

In order to prove our main result in this section, we prove the following lemma.

Lemma 4 The following are true about the utility function u (·, ·, ·) :

1. u is bounded from below;

2. u is integrable with respect to µF , a Baire measure implied by F - the distribution function of

θ;

3. There exists a function h, integrable w.r.t. µF , such that |u| < h.

Proof. It is easy to see that u is bounded from below by −T . To prove (3) note that∫
|u| dµF =

∫ ∣∣∣1{ai=1}

[
θ
(

1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

)
− T

]∣∣∣ dµF
6

∫
|θ − T | dµF 6

∫
|θ| dµF +

∫
|−T | dµF <∞

where
∫
|θ| dµF < ∞ since

∫
θdµF = µ < ∞. This shows that |u| is integrable and since u is

measurable it follows that u is also integrable (hence (2) is true).

Finally let h (θ) = |θ|+ |T |. Then |u| < h for all ai, aj and θ since∣∣∣1{ai=1}

[
θ
(

1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

)
− T

]∣∣∣
≤

∣∣∣1{ai=1}

[
θ
(

1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

)]∣∣∣+ |−T |

≤ |θ|+ |T |

We argued above that
∫
|θ| dµF +

∫
|T | dµF <∞ and hence (3) holds.

We proceed now by extending the following result from van Zandt and Vives (2007) for un-

bounded utility functions.

Proposition 1 Assume that a game Γ belongs to the class of monotone supermodular games.

Furthermore, assume that the following hold:

1. Each Ωk is endowed with a partial order,
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2. Ai is a complete lattice,

3. ∀ai ∈ Ai , ui(ai, ·) : Ω→ R is measurable,

4. ui is bounded.

5. ui is continuous in ai49

Then, there exist a least and a greatest Bayesian Nash Equilibrium of the game Γ and each

one of them is in monotone strategies.

Proof. See van Zandt and Vives (2007).
Note that in our setup the underlying utility function u(·) is unbounded, namely as θ → ∞,

u(θ)→∞. Thus, we cannot apply the above proposition to our problem directly. In the following

corollary, we show that, as long as conditions (1) − (3) of Proposition 1 hold, u is bounded from

below, and the distribution of θ satisfies assumptions A1 − A5, we can still reach the conclusion

of the Proposition of Vives and van Zandt (2007) under some further assumptions. The strategy

is to use the Dominated Convergence Theorem in the proof of existence of a greatest and a least

Bayesian Nash Equilibria instead of the Bounded Convergence Theorem and to use the fact that u

is bounded from below to show that the best reply mapping is well defined.

Corollary 1 Assume that the game Γ belongs to the class of monotone supermodular games. Fur-

thermore, assume that assumptions (1)−(3) of Proposition 1 are satisfied, u is bounded from below,

and let vi satisfy the following assumption:

(1C) There exists a measurable function h s.t. h is integrable with respect to p(t−i|ti) for all ti,
and all t−i and |u| < h.

Then there exists a least and a greatest Bayesian Nash Equilibrium of the game Γ and each one

of them is in monotone strategies.

Proof. We prove this corollary in two steps. First, assuming that the greatest best reply mapping
βi is well-defined, increasing, and monotone, we show that the greatest Bayesian Nash Equilibrium

(BNE) exists. Then, we show that under the above conditions βi is indeed well-defined, increasing,

and monotone.

Step 1: Suppose that βi, is well-defined, increasing and monotone and u satisfies assumption
(1C). Then we can repeat the argument of van Zandt and Vives (2007) to show that there is

a greatest and least BNE in monotone strategies. We can relax the boundedness assumption,

since under assumption (1C) we can interchange the order of limit and integration due to the

Lebesgue Dominated Convergence Theorem. Since this is the only step in that proof that requires

boundedness of the utility function, we are done.

Step 2: Here we need to establish that βi is well-defined and increasing. Then, the monotonicity
of βi will follow from Proposition 11 in van Zandt and Vives (2007). The tricky part of this step

49When Ai is finite this condition is vacuous.
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is to show that βi is well-defined, and more precisely that it is a measurable function of $i. For

this purpose we extend the proof of Lemma 9 in Ely and Peski (2006) to cover general measurable

functions. The rest of argument follows from van Zandt (2010).

Fix ai ∈ Ai and define Ui($i, $j) := ui(ai, sj($j), $i, $−i). We need to show that a function

πi : Ai × Ωi → R defined by

πi(ai, $i) =

∫
Ω−i

Ui($i, $−i)dp($−i|$i)

is measurable in ti. To prove this we use a result by Ely and Peski (2006):

Lemma (Ely and Peski) Let A and B be measurable sets and g : A×B → [0, 1] be a jointly

measurable map. If m : A → ∆B (where ∆B denotes the set of probability measures defined on

B) is measurable, then the map Lg : A→ R defined as Lg(a) =
∫
g(a, ·)dm(a) is measurable.

Note however, that the proof of their lemma is essentially unchanged if we allow g : A×B → R,
as long as g is measurable and bounded from below. In this case, there exists an increasing sequence

of simple functions gn such that gn ↑ g, so by the extended Monotone Convergence Theorem (Ash,

2000) we have
∫
gndv →

∫
gdv for a measure v defined on A×B. Hence we conclude that πi : Ai×Ωi

→ R is a measurable function of $i. The rest of the proof follows directly from van Zandt (2010)

section 7.5. Monotonicity of βi follows from Proposition 11 in van Zandt and Vives (2007).
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C Appendix 3 - Proofs

FOR ONLINE PUBLICATION

In order to facilitate notation when solving the model, we rewrite the condition for threshold

strategies in terms of the posteriors that agents hold about the fundamental θ, as in Hellwig

(2002). Note that this is straightforward since the posterior about θ held by agent i, θ̂i, is a linear,

strictly increasing function of the signal he observes, xi. Therefore, agent i will attack whenever

his posterior belief about θ, given his signal realization of xi, is higher than the posterior of θ that

corresponds to agent i’s optimal threshold:

a(xi;σ) =

{
1 iff θ̂i ≥ θ̂

∗
i (σ)

0 iff θ̂i < θ̂
∗
i (σ)

where θ̂
∗
i =

µθσ
2
i+x

∗
i σ

2
θ

σ2
i+σ

2
θ
. In order to write the condition of agent j in terms of his posterior belief,

notice that

x∗j − θ
σj

=
σj

(
θ̂
∗
j − θ̃j

)
σ̂2
j

where θ̃j =
σ2
θθ+σ

2
jµθ

σ2
j+σ

2
θ
.

The expected payoff of attacking for agent i = 1, 2, conditional on observing signal xi and given

that the other agent follows a threshold strategy with switching point θ̂
∗
j is:

vi(xi, x
∗
j ;σ) =

1

σ̂i

∫ θ

θ

θf

(
θ−θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ +
1

σ̂i

∫ ∞
θ

θf

(
θ−θ̂i
σ̂i

)
dθ − T (4)

This notation is used for all proofs in this appendix.

Lemma 1 The payoff for agent i of attacking, vi(xi, x∗j ;σ), is increasing in his own signal

xi, and decreasing in the other agent’s threshold x∗j , for i, j = 1, 2, i 6= j.

Proof. (1)
Note that θ̂i is an increasing function of xi, i.e. ∂θ̂i

∂xi
> 0. Thus, it is enough to show that the

payoff of attacking is increasing with respect to the posterior mean of θ, θ̂i.

Taking a partial derivative of (4) wrt θ̂i yields:

−
θ̄∫
θ

θ
1

σ̂2
i

f ′

(
θ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ −
∞∫
θ̄

θ
1

σ̂2
i

f ′

(
θ − θ̂i
σ̂i

)
dθ
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Consider the second term and apply integration by parts. Then,

−
∞∫
θ̄

θ
1

σ̂2
i

f ′

(
θ − θ̂i
σ̂i

)
dθ = −

[
θ

1

σ̂i
f

(
θ − θ̂i
σ̂i

)]∞
θ̄

+

∞∫
θ̄

1

σ̂i
f

(
θ − θ̂i
σ̂i

)
dθ

= −
[
θ

1

σ̂i
f

(
θ − θ̂i
σ̂i

)]∞
θ̄

+

(
1− F

(
θ̄ − θ̂i
σ̂i

))

Since f(·) is a normal density, this simplifies to:

θ̄
1

σ̂i
f

(
θ̄ − θ̂i
σ̂i

)
+

(
1− F

(
θ̄ − θ̂i
σ̂i

))
> 0 (5)

Now consider the first term. Again apply integration by parts:

−
θ̄∫
θ

θ
1

σ̂2
i

f ′

(
θ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ =

−

θ 1

σ̂i
f

(
θ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

θ̄
θ

+

θ̄∫
θ

1

σ̂i
f

(
θ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ +

θ̄∫
θ

θ
1

σ̂iσj
f

(
θ − θ̂i
σ̂i

)
f

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ

(6)

Note that the first term of the above expression is of unknown sign while the second and third

terms are unambiguously positive.

Putting (5) and (6) together we get:

θ̄
1

σ̂i
f

(
θ̄ − θ̂i
σ̂i

)
+

(
1− F

(
θ̄ − θ̂i
σ̂i

))
− θ̄ 1

σ̂i
f

(
θ̄ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j


+θ

1

σ̂i
f

(
θ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

+

θ̄∫
θ

1

σ̂i
f

(
θ − θ̂i
σ̂i

)1− F

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ

+

θ̄∫
θ

θ
1

σ̂iσj
f

(
θ − θ̂i
σ̂i

)
f

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ > 0 (7)

45



since θ̄ 1
σ̂i
f
(
θ̄−θ̂i
σ̂i

)
> θ̄ 1

σ̂i
f
(
θ̄−θ̂i
σ̂i

)(
1− F

(
σj

(
θ̂
∗
j−θ̃j

)
σ̂2
j

))
. Since θ̂i is an increasing linear func-

tion of xi, this proves the first claim.

(2) Similarly, we note that the posterior θ̂
∗
j is strictly increasing in x

∗
j . Hence, it is enough to

show that the derivative of the payoff of attacking for agent i with respect to θ̂
∗
j is negative.

Take a partial derivative of (4) wrt θ̂
∗
j , which is always negative:

−
θ̄∫
θ

θ
σj

σ̂iσ̂
2
j

f

(
θ − θ̂i
σ̂i

)
f

σj
(
θ̂
∗
j − θ̃j

)
σ̂2
j

 dθ < 0

Therefore, it holds true for x∗j as well.

Theorem 1 There exists a unique, dominance solvable equilibrium of the second stage of

the game in which both players use threshold strategies characterized by (x∗1, x
∗
2) if either:

1. σi
σθ
< Ki(θ, θ, µθ), i = 1, 2 holds, for any pair of (σ1, σ2), or

2. σθ > σθ, where σθ is determined by the parameters of the model.

Proof. As proven in the first section of the appendix, the coordination game belongs to the class
of monotone supermodular games and therefore we know that there are a least and a greatest

Bayesian Nash Equilibria in monotone strategies. To prove the theorem, we only need to show that

these equilibria are the same, i.e. that there is a unique equilibrium in threshold strategies.

For ease of exposition, we will perform the analysis in terms of thresholds over posterior beliefs,

(θ̂
∗
1, θ̂
∗
2). Uniqueness of these thresholds imply uniqueness of thresholds over signals (x∗1, x

∗
2).

Let, si(θ̂
∗
i ) be a threshold strategy of player i with switching point θ̂

∗
i such that si(θ̂

∗
i ) = 1

(attack) if θ̂i ≥ θ̂
∗
i and si(θ̂

∗
i ) = 0 (not attack) if θ̂i < θ̂

∗
i , where θ̂i is the posterior belief that agent

i holds about θ after observing signal xi, for i = 1, 2. Then the equilibrium conditions are given by

the following equations:

v1(θ̂
∗
1, θ̂
∗
2;σ) ≡ 1

σ̂1

∫ θ

θ
θf

(
θ−θ̂∗1
σ̂1

)1− F

σ2

(
θ̂
∗
2 − θ̃2

)
σ̂2

2

 dθ+
1

σ̂1

∫ ∞
θ

θf

(
θ−θ̂∗1
σ̂1

)
dθ − T = 0

(8)

v2(θ̂
∗
2, θ̂
∗
1;σ) ≡ 1

σ̂2

∫ θ

θ
θf

(
θ−θ̂∗2
σ̂2

)1− F

σ1

(
θ̂
∗
1 − θ̃1

)
σ̂2

1

 dθ+
1

σ̂2

∫ ∞
θ

θf

(
θ−θ̂∗2
σ̂2

)
dθ − T = 0

(9)

where θ̂
∗
i =

σ2
iµθ+σ2

θx
∗
i

σ2
i+σ

2
θ
, σ̂i =

√
σ2
i σ

2
θ

σ2
i+σ

2
θ
and θ̃i =

σ2
iµθ+σ2

θθ

σ2
i+σ

2
θ
for i = 1, 2. Note that both equations

determine θ̂
∗
j in terms of θ̂

∗
i . Without loss of generality we analyze the behavior of θ̂

∗
2 as a function
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of θ̂
∗
1 in the (θ̂

∗
1, θ̂
∗
2) space and rewrite equations (8) and (9) as:

v1(θ̂
∗
1, w1(θ̂

∗
1;σ);σ) = 0 (10)

v2(w2(θ̂
∗
1;σ), θ̂

∗
1;σ) = 0 (11)

where θ̂
∗
2 = wi(θ̂

∗
1;σ) for θ̂

∗
2 as defined by the equation that characterized agent i’s payoff function,

for i = 1, 2. Then any θ̂
∗
1 that solves simultaneously both equations defines an equilibrium threshold

for player 1 and the associated threshold for player 2 is simply given by θ̂
∗
2 = w1(θ̂

∗
1;σ).

Consider first equation (10). Define θ
∗
1 as the unique solution to the following equation:

∞∫
θ̄

θ
1

σ̂1
f

(
θ − θ∗1
σ̂1

)
dθ − T = 0

Similarly, denote by θ∗1 the unique solution to the following equation:

∞∫
θ

θ
1

σ̂1
f

(
θ − θ∗1
σ̂1

)
dθ − T = 0

The first of the above conditions corresponds to the situation when player 2 never attacks while

the second condition corresponds to the situation where player 2 always chooses to take the risky

action. Note that -∞ < θ∗1 < θ
∗
1 <∞ and therefore it follows that θ̂

∗
1 is finite (and θ̂

∗
1 ∈

[
θ∗1, θ

∗
1

]
).

Recall that by lemma 1, the LHS of (10) is increasing in θ̂
∗
1 and decreasing in θ̂

∗
2. It follows then

that as θ̂
∗
1 → θ∗1, θ̂

∗
2 → −∞ and as θ̂

∗
1 → θ

∗
1, θ̂
∗
2 →∞. Therefore w1(θ̂

∗
1;σ) has asymptotes at θ∗1 and

θ
∗
1. Similarly define θ

∗
2 and θ

∗
2 for agent two. By lemma 1 we conclude that w2(θ̂

∗
1;σ) is bounded

above by θ
∗
2 and below by θ

∗
2. Finally, let θ

∗
min = min {θ∗1, θ∗2} and θ∗max = max

{
θ
∗
1, θ
∗
2

}
so that θ∗min

is the smallest and θ∗max is the largest threshold that can be rationalized.

Using the implicit function theorem we can find the derivative of w1(θ̂
∗
1;σ) w.r.t. θ̂

∗
1:

dw1(θ̂
∗
1)

dθ̂
∗
1

=

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

> 0
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where

Ṽ1 = 1− F
(
θ̄−θ̂∗1
σ̂1

)
+ θ

1

σ̂1
f

(
θ̄−θ̂∗1
σ̂1

)
F

σ2

(
θ̂
∗
2−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+θ

1

σ̂1
f

(
θ−θ̂∗1
σ̂1

)1− F

σ2

(
θ̂
∗
2−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+

∫ θ

θ

1

σ̂1
f

(
θ−θ̂∗1
σ̂1

)(
1− F

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))
dθ > 0

is strictly positive (since both θ̂
∗
1 and θ̂

∗
2 are finite - see the discussion above).

Similarly, we calculate the derivative of w2(θ̂
∗
1;σ) w.r.t. θ̂

∗
1:

dw2(θ̂
∗
1)

dθ̂
∗
1

=

σ2
θ+σ2

1

σ2
θ

∫ θ
θ θ

1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ∫ θ

θ θ
1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ + Ṽ

2

> 0

where Ṽ2 a strictly positive constant and is defined in analogously to Ṽ1.

Note that a suffi cient condition for uniqueness is

dw1(θ̂
∗
1)

dθ̂
∗
1

>
dw2(θ̂

∗
1)

dθ̂
∗
1

> 0

This translates in the following inequality:

∫ θ
θ
θ 1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ

2
2

σ2
θ

∫ θ
θ
θ 1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

>

σ2
θ+σ

2
1

σ2
θ

∫ θ
θ
θ 1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ∫ θ

θ
θ 1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ + Ṽ 2

Doing some algebraic manipulations, we get that the expression above is equivalent to

Ṽ1∫ θ
θ
θ 1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

+

Ṽ2∫ θ
θ
θ 1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ

+

Ṽ1Ṽ2(∫ θ
θ
θ 1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ
)(∫ θ

θ
θ 1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ
)

>
σ2

1

σ2
θ

+
σ2

2

σ2
θ

+
σ2

1σ
2
2

σ4
θ
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A suffi cient condition for this inequality to hold is to have:

σ21
σ2θ

<
Ṽ1∫ θ

θ
θ 1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

and
σ22
σ2θ

<
Ṽ2∫ θ

θ
θ 1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ

Take the first expression, for agent 1 (the result is analogous for agent 2). We want to find a

lower bound for the RHS, i.e. a lower bound for the numerator of the RHS and an upper bound

for the denominator of the RHS.

We first look at the denominator
∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ. By doing some algebraic

manipulations and with the help of the properties of a normal distribution, we can rewrite this

expression as

∫ θ

θ
θ

1

σ̂1
f

(
θ − θ̂∗1
σ̂1

)
1

σ2
f

(
σ2(θ̂

∗
2 − θ̃2)

σ̂2
2

)
dθ

=
1√

σ̂2
1 + σ2

2

f

 θ̂
∗
1 − Ω√
σ̂2

1 + σ2
2

∫ θ

θ
θ

1√
σ̂2

1σ
2
2

σ̂2
1+σ2

2

f

θ −
σ̂2

1Ω+σ2
2θ̂
∗
1

σ̂2
1+σ2

2√
σ̂2

1σ
2
2

σ̂2
1+σ2

2

 dθ

≤ 1√
σ̂2

1 + σ2
2

1√
2π

θ∗max

(
σ̂2

1 + σ2
2 + σ̂2

1
σ2

2

σ2
θ

)
− σ̂2

1
σ2

2

σ2
θ
µθ

σ̂2
1 + σ2

2

+
1√
2π

√
σ̂2

1σ
2
2

σ̂2
1 + σ2

2


where Ω ≡ (σ2

θ+σ2
2)

σ2
θ

θ̂
∗
2 −

σ2
2

σ2
θ
µθ.

We now look at the numerator Ṽ1. Note that∫ θ

θ

1

σ̂1
f

(
θ−θ̂∗1
σ̂1

)(
1− F

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))
dθ

≥
[
F

(
θ−θ̂∗1
σ̂1

)
− F

(
θ−θ̂∗1
σ̂1

)](
1− F

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))

where θ̃2 ≡
σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2
and therefore

Ṽ1 > 1− F
(
θ−θ̂∗1
σ̂1

)
−
[
F

(
θ−θ̂∗1
σ̂1

)
− F

(
θ−θ̂∗1
σ̂1

)]
F

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)

+θ
1

σ̂1
f

(
θ̄−θ̂∗1
σ̂1

)
F

σ2

(
θ̂
∗
2−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2

+ θ
1

σ̂1
f

(
θ−θ̂∗1
σ̂1

)1− F

σ2

(
θ̂
∗
2−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


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We can bound the last two terms of the RHS of the above expression by

1

σ̂1
f

(
θ̄−θ∗min

σ̂1

)θF
σ2

(
θ∗min−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2

+ θ

1− F

σ2

(
θ∗max−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


Therefore, suffi cient conditions for uniqueness are:

σ2
2

σ2
θ

<
1− F

(
θ−θ̂min

σ̂1

)
−
[
F
(
θ−θ̂min
σ̂1

)
− F

(
θ−θ̂max

σ̂1

)]
F
(
σ2(θ̂max−θ̃2)

σ̂2
2

)
+ 1

σ̂1
f
(
θ̄−θ∗min
σ̂1

)
κ2

1√
2π

 1√
2π

+
θσ2

2

(
1+

σ2
2
σ̂2

1

)
−σ̂2

1

σ2
1
σ2
θ

σ̂2
1+σ2

2


σ2

1

σ2
θ

<
1− F

(
θ−θ
σ̂2

)
+ 1

σ̂2
f
(
θ̄−θ
σ̂2

)
κ1

1√
2π

 1√
2π

+
θσ2

1

(
1+

σ2
1
σ̂2

2

)
−σ̂2

2

σ2
2
σ2
θ

σ̂2
2+σ2

1



Where κi := θF

σ2

(
θ∗min−

σ2
θθ̄+σ

2
2µθ

σ2
θ

+σ2
2

)
σ̂2

2

+ θ

1− F

σ2

(
θ∗max−

σ2
θθ+σ

2
2µθ

σ2
θ

+σ2
2

)
σ̂2

2


If such conditions hold, 0 < dw2(θ̂

∗
1;σ)

dθ̂
∗
1

< dw1(θ̂
∗
1;σ)

dθ̂
∗
1

∀θ̂∗1 ∈ [θ∗1, θ
∗
1]. This means that the least and

greatest Bayesian Nash equilibria of the game, as described by our Corollary in the first section

of the appendix, coincide. Therefore, there is a unique equilibrium in thresholds strategies. This

proves the first part of the theorem.

The proof for the second part of the theorem follows directly from the proof of the above result.

Namely, recall that to prove uniqueness we have to find conditions under which the functions w1(θ̂
∗
1)

and w2(θ̂
∗
1) (there were defined above) are such that

dw1(θ̂
∗
1)

dθ̂
∗
1

>
dw2(θ̂

∗
1)

dθ̂
∗
1

Note that as σθ →∞ we have

lim
σθ→∞

σ2
θ + σ2

1

σ2
θ

→ 1 and lim
σθ→∞

σ2
θ + σ2

2

σ2
θ

→ 1
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Therefore

dw1(θ̂
∗
1)

dθ̂
∗
1

=

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

→

∫ θ
θ θ

1
σ1
f
(
θ−x∗1
σ1

)
1
σ2
f
(
x∗2−θ)
σ2

)
dθ + Ṽ 1∫ θ

θ θ
1
σ1
f
(
θ−x∗1
σ1

)
1
σ2
f
(
x∗2−θ)
σ2

)
dθ

> 1

and

dw2(θ̂
∗
1)

dθ̂
∗
1

=

σ2
θ+σ2

1

σ2
θ

∫ θ
θ θ

1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ

Ṽ2 +
∫ θ
θ θ

1
σ̂2
f
(
θ−θ̂∗2
σ̂2

)
1
σ1
f
(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ

→

∫ θ
θ θ

1
σ2
f
(
θ−x∗2
σ2

)
1
σ1
f
(
x∗1−θ
σ1

)
dθ

Ṽ2 +
∫ θ
θ θ

1
σ2
f
(
θ−x∗2
σ2

)
1
σ1
f
(
x∗1−θ
σ1

)
dθ

< 1

since, as we argued in the proof of the first part of the theorem, Ṽ1 and Ṽ2 are strictly positive.

By continuity of the above expressions we conclude that for any σ1 and σ2 there exists σθ (σ1, σ2)

such that if σθ > σθ (σ1, σ2) we have a unique equilibrium in the coordination game.

The above bound depends on the information acquisition choices made by players. However, it

is easy to show existence of a uniform bound. To do so, recall first that

Ṽ1 = 1− F
(
θ̄−θ̂∗1
σ̂1

)
+ θ

1

σ̂1
f

(
θ̄−θ̂∗1
σ̂1

)
F

σ2

(
θ̂
∗
2−

σ2
θ θ̄+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+θ

1

σ̂1
f

(
θ−θ̂∗1
σ̂1

)1− F

σ2

(
θ̂
∗
2−

σ2
θθ+σ

2
2µθ

σ2
θ+σ2

2

)
σ̂2

2


+

∫ θ

θ

1

σ̂1
f

(
θ−θ̂∗1
σ̂1

)(
1− F

(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

))
dθ > 0

and in particular

Ṽ1 > 1− F
(
θ̄−θ̂∗1
σ̂1

)
> 0

Recall that σ̂1 =

√
σ2

1σ
2
θ

σ2
1+σ2

θ
and that σ2

1 ≤ σ2
0 where σ

2
0 is the precision of a private signal if player 1

did not acquire any information. Let σ2,B
θ be an arbitrary lower bound on σ2

θ such that σ
2,B
θ > 0.

If at σ2
θ = σ2,B

θ we have dw1(θ̂
∗
1)

dθ̂
∗
1

> dw2(θ̂
∗
1)

dθ̂
∗
1

then we are done. Otherwise, we have to show that there

exists a bound on σ2
θ that is higher than σ

2,B
θ for which dw1(θ̂

∗
1)

dθ̂
∗
1

> dw2(θ̂
∗
1)

dθ̂
∗
1

independent of values of
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σ1 and σ2.

To do so we start by finding uniform bounds on θ̂
∗
1. Note that, for any σ1 and σθ, the lowest

threshold that agent 1 can possible choose (which we denote by θ∗1 (σθ, σ1)) is determined by

equation ∫ ∞
θ

1

σ̂2
1

θf

(
θ − θ∗1
σ̂1

)
dθ = T

which corresponds to the situation in which the other agent always chooses to attack (and where

we suppressed the dependence of θ∗1 on(σθ, σ1)). This can be written as

θ∗1

(
1− F

(
θ − θ∗1
σ̂1

))
+ σ̂1f

(
θ − θ∗1
σ̂1

)
= T (12)

By the implicit function theorem we have

∂θ∗1
∂σ̂1

= −
θ∗1f

(
θ−θ∗1
σ̂1

)
θ−θ∗1
σ̂2

1
+ f

(
θ−θ∗1
σ̂1

)
+

(θ−θ∗1)2

σ̂2
1

f
(
θ−θ∗1
σ̂1

)
(

1− F
(
θ−θ∗1
σ̂1

))
+

θ∗1
σ̂1
f
(
θ−θ∗1
σ̂1

)
+

θ−θ∗1
σ̂1

f
(
θ−θ∗1
σ̂1

) < 0

So as σ̂1 increases θ∗1 decreases which implies that an increase in σ
2
θ decreases θ

∗
1 while an increase in

σ1 increases θ∗1. In the same way we can show that the highest threshold that agent 1 can possible

choose (denoted by θ
∗
1) is also decreasing in σ̂1. Therefore, θ∗1 is minimized at σ1 = σ0 and σθ →∞.

This implies that

Ṽ1 > 1− F
(
θ̄−θ̂∗1
σ̂1

)
> K1

where

K1 ≡ 1− F
(
θ̄ − limσθ→∞θ

∗
1 (σθ, σ0)

σ̂1

)
This establishes a bound on Ṽ1 that is independent of σθ, σ0. Note that by symmetry this is also a

lower bound on Ṽ2.

We now show that we can also bound other term appearing in the expression for the derivative

uniformly. But

∫ θ

θ
θ

1

σ̂2
f

(
θ−θ̂∗2
σ̂2

)
1

σ1
f

(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
dθ <

1

2π

[
θ − θ

] 1

σ̂2

1

σ1

Below, when we discuss the first stage of the game we show that the benefit from acquiring in-

formation tends to zero as σi → 0 and therefore, given our assumptions on the cost function, i.e.

C ′ (σi) > 0 and limσi→∞C
′ (σi) → ∞, there is a bound on the precision choice, call it σmin

i , such
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that agent i will never choose to acquire a lower standard deviation than σmin
i . Therefore,

∫ θ

θ
θ

1

σ̂2
f

(
θ−θ̂∗2
σ̂2

)
1

σ1
f

(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
<

1

2π

[
θ − θ

] 1

σ̂2

1

σ1

≤ 1

σ̂2

1

σmin
1

1

2π

[
θ − θ

]
Finally, note that σ̂2 is increasing in σθ and σ2 and so σ̂2 is minimized at σθ = σBθ (our exogenous

lower bound on σθ) and σ2 = σmin
2 and denote by σ̂min

2 the posterior standard deviation of θ for

player 2 when σθ = σBθ and σ2 = σmin
2 . Then

∫ θ

θ
θ

1

σ̂2
f

(
θ−θ̂∗2
σ̂2

)
1

σ1
f

(
σ1(θ̂

∗
1−θ̃1)

σ̂2
1

)
≤ K2

where

K2 ≡
1

σ̂min
2

1

σmin
1

1

2π

[
θ − θ

]
Therefore, we have

dw1(θ̂
∗
1)

dθ̂
∗
1

=

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ + Ṽ 1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

=
σ2
θ

σ2
θ + σ2

2

+
Ṽ1

σ2
θ+σ2

2

σ2
θ

∫ θ
θ θ

1
σ̂1
f
(
θ−θ̂∗1
σ̂1

)
1
σ2
f
(
σ2(θ̂

∗
2−θ̃2)

σ̂2
2

)
dθ

≥ σ2
θ

σ2
θ + σ2

2

+
σ2
θ

σ2
θ + σ2

2

K1

K2

≥ σ2
θ

σ2
θ + σ2

0

+
σ2
θ

σ2
θ + σ2

0

K1

K2

where we used the fact that σ2
2 ≤ σ2

0. Note that as σ
2
θ →∞ we have σ2

θ

σ2
θ+σ2

0
+

σ2
θ

σ2
θ+σ2

0

K1
K2
→ 1+ K1

K2
> 1

and therefore there exists a bound on σ2
θ, call it σ

2,P1
θ such that if σ2

θ > σ2,P1
θ then dw1(θ̂

∗
1)

dθ̂
∗
1

> 1

irrespective of σ1 and σ2.50

Following the same steps us above we can show that there exists a bound on σ2
θ, which we

denote by σ2,P2
θ , such that if σ2

θ > σ2,P2
θ then dw2(θ̂

∗
1)

dθ̂
∗
1

< 1 and σ2,P2
θ is independent of σ1 and σ2.

Setting σθ = max
{
σ2,P1
θ , σ2,P2

θ

}
proves the second part of the theorem.

Lemma 2 Suppose that σi → 0, σj → 0 and σi
σj
→ c where c ∈ R+. If the above game has a

unique equilibrium then this equilibrium converges to the risk-dominant equilibrium of the complete

50We use the superscript P1 to emphasize the fact that this restriction follows from equilibrium condition of player
1.
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information game, i.e. x∗i → 2T and x∗j → 2T .

Proof. Agent i’s expected payoff of attacking is given by:∫ ∞
−∞

1{θ∈[θ,θ]}θ

(
1− F

(
x∗j − θ
σj

))
dασi+

∫ ∞
θ

θdασi−T

where ασi is a measure implied by the CDF of a Normal distribution with mean θ̂i and variance σ̂i
(i.e. ασi is a Baire measure implied by F ). Then the characteristic function of ασi is given by:

φασi
(t) = eitθ̂i−

σ̂2
i t

2

2

where θ̂i =
σ2
i xi+σ

2
θµθ

σ2
i+σ

2
θ
, σ̂2

i =
σ2
i σ

2
θ

σ2
i+σ

2
θ
and xi = θ + σiεi. Note that, as σi → 0 then σ̂2

i → 0, and so

lim
σi→0

φασi
(t) = eitxi

But eitxi is the characteristic function of a probability distribution with mass 1 at θ, which we

denote by δθ. By the Levy-Cramer Continuity theorem (see e.g. Varadhan 2001) this implies

that ασi → δxi as σi → 0, i.e. as the standard deviation converges to 0, the Normal distribution

converges to the degenerate distribution with all the mass centered at xi.

Consider first the limit of
∫∞
θ θdασi as σ1 → 0:

lim
σi→0

∫ ∞
θ

θdασi =

(
1− F

(
θ − θ̂∗i
σi

))
+ σif

(
θ − θ̂∗i
σi

)
=


1 if xi > θ
1
2xi if xi = θ

0 if xi < θ

Let h (θ;σj) ≡ 1{θ∈[θ,θ]}θ
(

1− F
(
x∗j−θ
σj

))
and denote by x∗,∞j the limit of x∗j as σi → 0, σj → 0

and σi
σj
→ c ∈ R. Note that h is a bounded, Borel measurable function and is continuous except

for a finite set of measure zero. Moreover,

lim
σj→0

h (θ;σj)→


θ if θ ∈

(
x∗,∞j , θ

]
1
2θ if θ = x∗,∞j
0 otherwise
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where we assumed that x∗,∞j ∈
[
θ, θ
]
.51 It follows then that

lim
σi→0
σj→0
σi
σj
→c

∫ ∞
−∞

h (θ) dασi →
∫ ∞
−∞

h (θ) dδxi =

∫ ∞
−∞

1{θ∈[x∗j ,θ]}θ
(

1− F
(
x∗j − θ
σj

))
dδxi

=


x∗i if x∗i ∈

(
x∗,∞j , θ

]
1
2x
∗
i if x∗i = x∗,∞j

0 if x∗i /∈
[
x∗,∞j , θ

]
The optimal threshold is defined as the value of a signal that makes agent i indifferent between

attacking and not attacking, i.e. it has to solve

vi
(
x∗i , x

∗
j ;σi, σj

)
= 0

Since the same is true for agent j it has to be the case (by the symmetry of the problem) that in

the limit x∗,∞i = x∗,∞j and so x∗,∞i solves

1

2
x∗,∞i − T = 0

x∗,∞i = 2T

It is easy to verify that 2T corresponds to a threshold such that if θ ≥ 2T then attacking is a

risk-dominant action and if θ < 2T not attacking is a risk-dominant function.

Above we assumed that x∗,∞j ∈
[
θ, θ
]
. Suppose that this is not the case. If x∗,∞j > θ then

following the same argument as before we would find that in the limit

x∗,∞i = θ < x∗,∞j

which contradicts optimality of x∗,∞j (if agent i follows a threshold x∗,∞i = θ then the optimal

threshold for agent j is x∗,∞j = θ). A symmetric argument establishes that it cannot be the case

that x∗,∞j < θ.

Theorem (Existence) There exists a symmetric pure-strategy Bayesian Nash Equilibrium

of the game with information acquisition.

We first prove two simple claims and two corollaries that will make the proof of existence

straightforward.

Claim 1 Bi (σi;σj) is a decreasing function of σi, that is Bi1 (σi;σj) ≤ 0.

Proof. Since u(θ, ai) has the single crossing property in (θ, ai), and that the signal xi and the

unknown parameter θ are affi liated, the claim then follows from Theorem 1 in Persico (2000).

Claim 2 The marginal benefit of increasing the precision of agent i converges to zero as the

51We argue below that only x∗,∞j ∈
[
θ, θ
]
is consistent with equilibrium.
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signal noise for agent i vanishes, i.e. limσi→0
∂
∂σi

Bi (σi;σj) = 0.

This proof is very lengthy and can be obtained from the authors by request. It requires to

show that in the limit ∂
∂σi

x∗i (σi, σj) is bounded and to verify that all the integrals in the expression

for the marginal benefit converge to zero.

From the above results we have the following immediate corollaries:

Corollary 1 The best response functions for both agents are well defined.

Proof. Since the cost function is strictly decreasing in σi and tends to infinite as σi → 0, and since

Bi(σi, σj) is positive and stays bounded for each σj , we know that for each σj there is a unique

choice of σi, holding beliefs of both players constant.

Corollary 2 In any equilibrium of the game both agents choose to acquire information

(increase the precision of their signals).

Proof. This follows from the fact that the marginal cost of acquiring information is continuous

and equal zero at σi = σ0, together with the fact that the marginal benefit of lowering σi is strictly

positive for σi > 0.52

Existence. Suppose that agent j believes that whenever he chooses a precision σj , agent i will

make the same choice. Holding agent j’s beliefs fixed, we showed above that the best response

function

σ∗i (σj) = max
σi∈[0,σ0]

Ui (σi, σj)

is well defined. Since Ui (σi, σj) is continuous in σi and σj , by the Theorem of the Maximum

we conclude that σ∗i (σj) is a continuous function. σ
∗
i (·) is also a self-map: σ∗i : [0, σ0] → [0, σ0].

Hence, by Brower’s Fixed Point Theorem, σ∗i (·) has a fixed point. This implies that there exists a
σj such that if agent j believes that agent i chooses σi = σj agent i will find it optimal to choose

such a σi, that is σ∗i (σj) = σj .

52Note that above we established that Bi1 ≤ 0 and limσi→0 Bi1 = 0. It can be shown that Bi1(si, σj) 6= Bi1(s′i, σj)
∀si 6= s′i. It follows then that Bi1(σi, σj) < 0 whenever σi > 0. That is, decreasing σi (increasing the precision)
strictly increases the gross payoff for agent i.
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