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1 Introduction

This appendix contains the proofs of all the intermediate results that have been omitted from the paper,

as well as extensions of several results reported in the paper.

The appendix is divided into 6 sections. In Section 2 we show that for any distribution of precision

choices �, there are no non-monotonic equilibria in the second stage of the game. We also establish

properties of the ex-ante utility function that we invoked in the proof of Theorem 1. In particular, we

show that the ex-ante utility function is increasing and that its derivative is uniformly bounded from

above and converges to zero. Finally, we show that there exists a precision level � 2 (� ;1) such that
players never �nd it optimal to choose a precision higher than � .

Section 3 is concerned with the results regarding the over-acquisition and under-acquisition of in-

formation. We �rst prove the technical result that we used to argue that the unique equilibrium of the

game is generically ine¢ cient. We then analyze the conditions under which agents globally over-acquire

and under-acquire information and explain why a complete characterization of these global e¤ects is

not attainable.

In Section 4 we prove intermediate results that have been invoked in the paper when analyzing

strategic complementarities in information choices and the welfare implications of an increase in trans-

parency. We also discuss what happens when we relax the assumption that T = 1
2 . In particular, we

provide an extension to Proposition 5 in the main text to the case when T 6= 1
2 . We also discuss why

it is di¢ cult to establish a full characterization of strategic complementarities and substitutabilities

between private and public information when T 6= 1
2 .

In Section 5 we consider the e¤ects of an increase in the precision of the prior on the probability of a

successful investment and on welfare. In particular, we show that for any T the probability of a successful

investment increases in �� when �� is su¢ ciently high and decreases when �� is su¢ ciently low. We also

include �gures generated using numerical simulations that decompose the fT; ��g space into regions
where the probability of successful investment is increasing or decreasing in ��. In Section 5:2; we

evaluate numerically the e¤ect of an increase in �� on the ex-ante utility of an investor for di¤erent

parameter values. These numerical results provide support to the claim that welfare is increasing in
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the precision of public information when the mean of the prior is high and decreasing when the mean

of the prior is low.

Finally, Section 6 contains the details of determining the appropriate lower bound for the possible

precision choices, � .

2 Uniqueness of Equilibrium and the Properties of the Ex-ante

Utility

2.1 Uniqueness of equilibrium

Proposition 1 For any �, suppose that inf (supp(�)) > 1
2� �

2
�. Then the coordination game has a

unique equilibrium in which all investors use threshold strategies fx�i (� i;�) ; i 2 [0; 1]g and investment
is successful if and only if � � ��.

Proof. In the appendix of the paper we show that for any � such that inf (supp(�)) > 1
2� �

2
� we have a

unique equilibrium in monotone strategies. We show here that there are no other types of equilibria.

Suppose that in the second stage of the game the distribution of precision choices among investors

is given by some distribution function � (�) with bounded support. The bounded support assumption

follows from Assumptions A1 and A2 in the text. To show uniqueness of equilibrium for any � (�) we

use the procedure of iterative deletion of dominated strategies, a standard approach in the global games

literature (see Carlsson and van Damme, 1993).

Suppose that investor i expects no one to invest, that is, he expects investment to be successful if

and only if � > �0 = 1. Then, even though no one else invests, investor i will choose to invest if his

signal is high enough, i.e. he will invest if

Pr (� > 1jx (� i)) > T

Denote by xi1 (� i) the value of the signal that makes investor i indi¤erent between investing and not

investing (xi1 (� i) solves the above equation with equality). Since the above equation is monotone in

x (� i) it follows that the investor will invest if xi � xi1 (� i) and not invest otherwise. This implies that
each investor i who receives a signal with precision � i will �nd it optimal to invest if the signal he

receives is higher than xi1 (� i) ; where

xi1 (� i) =
� i + ��
� i

�0 �
��
� i
�� +

(� i + ��)
1=2

� i
��1 (T )

Note that all investors with the same precision level will have the same xi1 (� i). Therefore, in what

follows we drop the superscript i. The fact that all investors follow a monotone strategy implies that

investment will be successful wheneverZ
Pr (xi � x1 (� i) j�) d� > 1� �
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De�ne �1 as the value of � that solves the above equation with equality. For a normal distribution this

corresponds to the following equation:Z
�
�
�
1=2
i

�
xi1 (� i)� �1

��
d� = �1 (1)

Note that
R
�
�
�
1=2
i

�
x1 (� i)� �1

��
d� > 0 when �1 = 0 and

R
�
�
�
1=2
i

�
x1 (� i)� �1

��
d� < 1 when

�1 = 1. Moreover,

@

@�1

Z
�
�
�
1=2
i

�
x1 (� i)� �1

��
d� =

�
Z
�
�
�
1=2
i

�
x1 (� i)� �1

��
�
1=2
i d�

< 0 8�1 2 [0; 1]

Since the right hand side of (1) is increasing, it follows that there is a unique �1 2 (0; 1) that solves the
above equation. Moreover, �1 < �0 = 1.

For the induction step, assume that there is a value �n�1 such that �n�1 < �n�2 < ::: < �1 < �0 = 1.

�n�1 is de�ned such that investors expect investment to be successful whenever � > �n�1. Hence,

investor i who receives a signal with precision � i will invest whenever his signal is higher than xn (� i),

where xn (� i) solves

Pr
�
� � �n�1jxn (� i)

�
= T

or

xn (� i) =
� i + ��
� i

�n�1 �
��
� i
�� +

(� i + ��)
1=2

� i
��1 (T )

Note that since �n�1 < �n�2 it follows that 8� i 2 supp (�) ; xn (� i) < xn�1 (� i). Consider again the

CM condition. The fact that each investor i invests whenever his signal is higher than xn (� i) implies

that investment will be successful for all � � �n where �n solves the following equation:Z
Pr
�
xi � xn (� i) j�n

�
d� = 1� �n

or Z
�

 
�
1=2
i

 
� i + ��
� i

�n�1 �
��
� i
�� +

(� i + ��)
1=2

� i
��1 (T )� �n

!!
d� = �n

By the previous argument we know that there exists �n that solves the above equation. Note that since

8� i 2 supp (�) xn (� i) < xn�1 (� i), we have

Pr
�
xi � xn (� i) j�n�1

�
< Pr

�
xi � xn�1 (� i) j�n�1

�
Suppose now that �n = �n�1. Then the RHS of the CM condition above is now greater than the LHS:

But note that the RHS is increasing in �n, while the LHS is decreasing in �n. Hence it must be the

case, by continuity of the LHS and RHS expressions, that �n < �n�1 and �n 2 [0; 1]. This implies a
new threshold signal for each investor, xn+1 (� i) such that xn+1 (� i) < xn (� i) < xn�1 (� i).
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By induction we obtain decreasing sequences
�
�n
	1
n=1

and fxn (� i)g1n=1 for each � i. Since
�
�n
	1
n=1

is bounded from below by 0, it follows that this sequence is convergent. This implies that fxn (� i)g1n=1
is also a convergent sequence. De�ne limn!1 �n = � and limn!1 xn (� i) = x (� i). This concludes the

iterative deletion of strictly dominated strategies.

Consider now the case when the investor expects that everyone will invest regardless of their signal

and again apply the procedure of iterative deletion of dominated strategies. Following exactly the same

argument, we obtain increasing and bounded sequences f�ng
1
n=1 and fxn (� i)g

1
n=1. De�ne limn!1 �n =

� and limn!1 xn (� i) = x (� i).

By construction
n
�; fx (� i)g� i2supp(�)

o
has to solve

Pr
�
� � �jx (� i)

�
= T ,8� i 2 supp (�)

Pr
�
xi � x (� i) j�

�
= 1� �

and
n
�; fx (� i)g� i2supp(�)

o
has to solve

Pr (� � �jx (� i)) = T ,8� i 2 supp (�)

Pr (xi � x (� i) j�) = 1� �

However, in the paper we show that the above system of equations has a unique solution. Therefore

� = � and x (� i) = x (� i) 8� i 2 supp (�) implying that there is a unique strategy pro�le that survives
the iterative deletion of dominated strategies. This strategy pro�le constitutes the unique equilibrium

in monotone strategies.

Lemma 2 Consider the bene�t function Bi(� i; �).

1. Bi(� i; �) is strictly increasing in � i,

2. @Bi

@� i
is bounded from above,

3. lim� i!1
@Bi

@� i
= 0,

4. For � i > �; @
2Bi

@�2i
< 0.

Proof. (1) Condition (1) implies that the value of information in our setting is always positive.

Recall that

Bi (� i; �) = �
Z ��

�1

Z 1

x�i

TdF (xj�) dG (�)�
Z 1

��

Z x�i

�1
(1� T ) dF (xj�) dG (�)

+

Z 1

��
(1� T ) dG (�)� C (� i)

We di¤erentiate Bi (� i; �) with respect to � i and note that

@x�i
@� i

Z ��

�1
f� i (x

�
i j�) g�� (�) d� �

@x�i
@� i

Z 1

��
(1� T ) f� i (x�i j�) g�� (�) d� = 0
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since x�i has to satisfy

Pr (� � ��jx�i ) = T

Evaluating the remaining integrals and using the properties of the truncated normal distribution we

obtain
@Bi

@� i
=
1

2

1

� i

1

� i + ��
�
1=2
i �

 
x�i � �

�

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!
> 0

for all � i <1. This proves the �rst part of the lemma.

(2) To see that the second part of the lemma is also true note that

@Bi

@� i
=

1

2

1

� i

1

� i + ��
�
1=2
i �

 
x�i � �

�

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!

� 1

2

1

� i

1

� i + ��
�
1=2
i

1p
2�
�
1=2
�

1p
2�

� 1

4�

1

�1=2

p
��

� + ��
<1

(3) To prove the third part of the above lemma note that

0 � @Bi

@� i
� 1

2

1

� i

1

� i + ��
�
1=2
i

1p
2�
�
1=2
�

1p
2�

! 0 as � i !1

(4) The last part of the lemma is less straightforward. The second derivative of the bene�t function

is given by

@2Bi

@�2i
= �1

2

1

� i

1

� i + ��
�
1=2
i �

 
x�i � �

�

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!

�
�
1

� i
+

1

� i + ��
� 1

2� i
+
1

2
(x�i � ��)

2
+ � i (x

�
i � ��)

@ (x�i � �
�)

@� i

�
Thus, if we show that the term in the square brackets is positive then the claim would hold.

De�ne

A (� i; ��) �
�
1

� i
+

1

� i + ��
� 1

2� i
+
1

2
(x�i � ��)

2
+ � i (x

�
i � ��)

@ (x�i � �
�)

@� i

�
Note that

(x�i � ��) =
��
� i
(�� � ��) +

p
� i + ��
� i

��1 (T )

@ (x�i � �
�)

@� i
= ���

�2i
(�� � ��)�

1
2� i + ��

�2i
p
� i + ��

��1 (T )
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and hence

A (� i; ��)

=
1

2� i
+

1

� i + ��
+
1

2
(x�i � ��)

2

+� i

�
��
� i
(�� � ��) +

p
� i + ��
� i

��1 (T )

��
���
�2i
(�� � ��)�

1
2� i + ��

�2i
p
� i + ��

��1 (T )

�
=

3� i + ��
2� i (� i + ��)

+
1

2
(x�i � ��)

2

�
�
��
� i
(�� � ��) +

p
� i + ��
� i

��1 (T )

��
��
� i
(�� � ��) +

1
2� i + ��

� i
p
� i + ��

��1 (T )

�
where the last term is in general negative.

Before proceeding, we further simplify the above expression further:

1

2
(x�i � ��)

2
+

�
��
� i
(�� � ��) +

p
� i + ��
� i

��1 (T )

��
��
� i
(�� � ��) +

1
2� i + ��

� i
p
� i + ��

��1 (T )

�
=

�
��
� i
(�� � ��) +

p
� i + ��
� i

��1 (T )

�
��

�1
2

��
� i
(�� � ��) +

p
� i + ��
� i

��1 (T )

�
1

2
�

1
2� i + ��

(� i + ��)

��
= �1

2

�
��
� i

�2�
�� � �� +

p
� i + ��
��

��1 (T )

��
�� � �� +

1p
� i + ��

��1 (T )

�
Therefore,

@2Bi

@�2i
= �1

4

1

�
3=2
i

�2�
� i + ��

�

 
x�i � �

�

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!

�
�
3� i + ��
�2� (� i + ��)

� 1

� i

�
�� � �� +

p
� i + ��
��

��1 (T )

��
�� � �� +

1p
� i + ��

��1 (T )

��
where we took 1

2
�2�
� i
in front of the square brackets. At this point we consider three cases: T < 1

2 , T =
1
2 ;

and T > 1
2 .

Let T < 1
2 . When T <

1
2 then

1

� i

�
�� � �� +

p
� i + ��
��

��1 (T )

��
�� � �� +

1p
� i + ��

��1 (T )

�
� 1

� i

�
1 +

����
�

���+ p� i + ��
��

��1 (T )

��
1 +

����
�

���+ 1p
� i + ��

��1 (T )

�
! 0 as � i !1

Note also that

lim
� i!1

3� i + ��
�2� (� i + ��)

=
3

�2�

Therefore, it follows that

lim
� i!1

A (� i; ��) =
3

�2�
> 0

6



We conclude that, for a �xed ��; there exists a bound for � i such that above this bound the second

derivative of investor i�s bene�t function is negative.

Next, recall that

�� 2 [��; ��] where 0 < �� < �� <1

Since A (� i; ��) is continuous and converges to zero for any �� as � i !1; and since [��; ��] is a compact
subset of R, it follows that there exists a uniform bound for � i that is �nite, and is such that if � i is

larger than this bound, then the second-order derivative of the bene�t function with respect to � i is

negative for all �� 2 [��; ��]. We assume that � is greater or equal to this bound.
The argument for the case when T � 1

2 is analogous, i.e., a similar argument establishes the existence

of a bound on � i that guarantees that the second-order derivative of the bene�t function is negative

when T � 1
2 . We assume that � is greater or equal than both of these bounds. Since each of these

bounds is �nite, it follows that � is �nite. This concludes the proof.

Lemma 3 There exists � <1 such that investor i will never �nd it optimal to choose ��i > � .

Proof. From Lemma 2 we know that @Bi

@� i
� 1

4�
1

�1=2

p
��

�+��
. Moreover, by Assumption A2 we have that

lim� i!1C
0 (� i) =1. Hence, there exists � <1 such that for all � i > �

@Bi
@� i

� C 0 (� i) < 0

Since in the neighborhood of � the following is true

@Bi
@� i

� C 0 (� i) > 0

then it follows that no investor will ever choose � i > � .

3 E¢ ciency of Information Choices

In this section we provide proofs for the results that we used in the e¢ ciency section of the paper that

were omitted in the main appendix. We also provide a partial characterization of global over and under

acquisition of information and we explain why a complete characterization of the global results is not

attainable.

We start with a technical result that we invoked when arguing that agents�equilibrium choices are

generically ine¢ cient.

Lemma 4 Denote by �� (��) the equilibrium precision choice as a function of ��. Then for each T

there exists a unique ��, call it �
E
� (T ), that solves

�� = b�� (T; �� (��) ; ��)
where

b�� (T; �� (��) ; ��) = �
 s

�� (��)

�� (��) + ��
��1 (T )

!
+

1p
�� (��) + ��

��1 (T )

Moreover, if �� > �
E
� (T ) then �� > b�� (T; �� (��) ; ��) and if �� < �E� (T ) then �� < b�� (T; �� (��) ; ��).
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Proof. We are interested in solutions to

�� = b�� (T; �� (��) ; ��)
De�ne

f (��) � �� � b�� (T; �� (��) ; ��)
To prove our claim we will show that f (��) intersects zero only once and is positive as �� ! 1 and

negative as �� ! �1.

Fix T and ��. Note that if T > 1
2 then b�� (�) is bounded from below by 0 and from above by

1 + 1p
�+��

��1 (T ), and if T < 1
2 then b�� (�) is bounded from below by 1p

�+��
��1 (T ) and from above

by 1. If follows that regardless of the value of T , the function f (��) is positive for large enough �� and

negative for small enough ��. Thus, it remains to show that f (��) intersects zero only once.

Note that since b�� (T; �� (��) ; ��) is continuous in �� it follows that there exists �E� such that
f
�
�E�
�
= �E� � b�� �T; �� ��E� � ; ��� = 0

We now show that at any such �E� the derivative of f (��) with respect to �� is positive, implying that

f (��) crosses zero only once. Taking the derivative of b�� �T; �� ��E� � ; ��� with respect to �� we get:
@b�� (T; �� (��) ; ��)

@��
=
@b�� (T; �� (��) ; ��)

@��
@��

@��

Consider �rst @��

@��
and recall that �� is a �xed point of the best response function, i.e. it satis�es:

�� = � � (��;��)

where � � denotes the investor�s best response function, implicitly de�ned by the �rst-order condition.

Hence,

@��

@��
= �

@��(��;��)
@��

1� @��(��;��)
@��

/ �
@2Ui

@�@��
(��; ��; ��)

@2Ui

@�2 (�
�; ��; ��)� C 00 (��)

Since @��(��;��)
@�� < 1.1

Suppose that �� = �
E
� and consider CM condition:2

��p
��

�
�� � �E�

�
+

r
�� + ��
��

��1 (T )� ��1 (��) = 0

Rearranging, and using the fact that �E� = b�� �T; �� ��E� � ; ��� we obtain:
��p
��
�� � ��1 (��) = ��p

��
�

�r
��

�� + ��
��1 (T )

�
�
r

��

�� + ��
��1 (T )

1The fact that
@��(��;��)

@�� < 1 is implied by the assumption that � is large enough. See Theorem 1 and its proof in

the paper.
2To economize on notation we write below �� instead of ��

�
�E�
�
.
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implying that

��
�
�E�
�
= �

�r
��

�� + ��
��1 (T )

�
= �E� �

1p
�� + ��

��1 (T )

which in turn implies that x�
�
��
�
�E�
�
; ��

�
�E�
�
; �E�

�
= �E� . But then it follows that

@2U i

@� i@��
= � 1

� i

1

� i + ��
�
1=2
i �

 
x�i � �

�

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!
�� (x

�
i � ��)

�
@��

@��
� 1
�

is zero when �� = �E� .
3 Therefore, @2Ui

@�@��

�
��
�
�E�
�
; ��

�
�E�
�
; �E�

�
= 0 and so @��

@��
j��=�E� = 0. Since

@b�� (T;��(��);��)
@�� is always �nite, it follows that @b�� (T;��(��);��)

@��
j��=�E� = 0 and so at any �E� such that

f
�
�E�
�
= 0, the derivative of f (�) with respect to �� is positive. This implies that f (�) crosses zero only

once, which completes the proof for the case when T > 1
2 . The case for T <

1
2 follows by an analogous

argument.

3.1 Global over-acquisition and under-acquisition of information

Now we consider the global over and under acquisition of information. Recall that we say that agents

globally over-acquire information if the e¢ cient choice of precision, ���, is less than the equilibrium

precision choice, ��, where

��� 2 argmax
�
U (� ; �)� C (�)

while �� is the solution to

U1 (� ; �)� C 0 (�) = 0

To study global results we need to make use of the following results, established by Szkup (2014):

Lemma 5 Let � be the precision choice of all other investors

1. If �� < b�� (T; � ; ��) then @��

@� < 0

2. If �� = b�� (T; � ; ��) then @��

@� = 0

3. If �� > b�� (T; � ; ��) then @��

@� > 0

where b�� (T; � ; ��) = ��r �

� + ��
��1 (T )

�
+

1p
� + ��

��1 (T )

Proof. This lemma then follows from Proposition 2 in Szkup (2014).

Lemma 6 Let � be the precision choice of all other investors:

1. Suppose that T > 1
2 , then

(a) If �� � T then �� is decreasing for all � > � ;
3 In Lemma 11 we establish that @��

@��
< 0.
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(b) If �� 2 (T; b�� (T; � ; ��)) then �� is initially decreasing and then increasing in � ;
(c) If �� � b�� (T; � ; ��) then �� is increasing for all � > � .

2. Suppose that T = 1
2 , then

(a) if �� <
1
2 then �

� is decreasing in � for all � > � ;

(b) if �� =
1
2 then �

� is constant in � ;

(c) if �� >
1
2 then �

� is increasing in � for all � > �:

3. Suppose that T < 1
2 , then:

(a) If �� < b�� (T; � ; ��) then �� is decreasing in � for all � > � ;
(b) If �� 2 (b�� (T; � ; ��) ; T ) then �� is initially increasing and then decreasing in � ;
(c) �� � T then �� is increasing in � for all � > � .

where b�� (T; � ; ��) = ��r �

� + ��
��1 (T )

�
+

1p
� + ��

��1 (T )

and

if T >
1

2
then for all � � � , b�� (T; � ; ��) > T

if T <
1

2
then for all � � � , b�� (T; � ; ��) < T

Proof. The result follows from Proposition 4 in Szkup (2014).

Next, we de�ne our notion of global spillover e¤ects and use Lemma 6 to establish conditions under

which there are positive or negative spillover e¤ects in information choices.

De�nition 7 Consider investor i and let � be the precision choice of all other investors.

1. If 8� > � we have @Bi

@� > 0 then we say that the game exhibits global positive spillovers

2. If 8� > � we have @Bi

@� < 0 then we say that the game exhibits global negative spillovers

Corollary 8 Let � be the precision of private information that agents are initially endowed with.

1. Suppose that T > 1
2 .

(a) If �� � T then there are global positive spillover e¤ects in information choices.

(b) If �� 2 (T; b�� (T; � ; ��)) then there exists b� (��) such that for all � < b� (��) there are pos-
itive spillovers in information choices, while if � > b� (��) there are negative spillovers in
information choices.

(c) If �� � b�� (T; � ; ��) then there are global negative spillover e¤ects in information choices.
10



2. Suppose that T = 1
2 .

(a) if �� <
1
2 then there are global positive spillover e¤ects in information choices.

(b) if �� =
1
2 then there are no spillover e¤ects in information choices.

(c) if �� >
1
2 then there are global negative spillover e¤ects in information choices.

3. Suppose that T < 1
2 .

(a) If �� < b�� (T; � ; ��) then there are global positive spillover e¤ects in information choices.;
(b) If �� 2 (b�� (T; � ; ��) ; T ) then there exists b� (��) such that for all � < b� (��) there are

negative spillovers in information choices, while if � > b� (��) there are positive spillovers in
information choices.

(c) �� � T then there are global negative spillover e¤ects in information choices.

Proof. This result follows from Lemma 6 and the observation that the sign of @U
i

@� depends only on

the e¤ect that an increase in the precision of all investors has on the threshold ��, since

@U i

@�
= �@�

�

@�

 
1� �

 
�� � x�i
�
�1=2
i

!!
�
1=2
� �

 
�� � ��
�
�1=2
�

!

Lemma 6 and Corollary 8 are key for establishing the comparison between ��, the equilibrium

choice of precision, and ���, the e¢ cient precision. In the next proposition we utilize the above lemma

to provide an almost complete characterization of global over and under acquisition of information

(except for the case when T < 1
2 and �� 2 (b�� (T; � ; ��) ; T )).

Proposition 9 nothing

1. Suppose that T > 1
2 .

(a) If �� � �E� (T ) then agents under-acquire information;

(b) If �� = �
E
� (T ) then agents acquire the e¢ cient level of information;

(c) If �� � �E� (T ) then agents over-acquire information;

where �E� (T ) is the unique solution to �� = b�� (T; �� (��) ; ��).4
2. Suppose that T = 1

2 .

(a) If �� >
1
2 then agents under-acquire information;

(b) If �� =
1
2 then agents acquire the e¢ cient level of information;

(c) If �� <
1
2 then agents over-acquire information.

4See Lemma 4 for the precise de�nition of �E� (T ).
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3. Suppose that T < 1
2 .

(a) If �� � b�� (T; � ; ��) then agents under-acquire information;
(b) If �� � T then agents over-acquire information.

Proof. We divide the proof into three separate parts. First, we provide the proof for the case when

T = 1
2 . Next, we consider the case when T >

1
2 . Finally, we consider the case when T <

1
2 .

Suppose �rst that T = 1
2 . In this case, the claim follows almost immediately from Corollary 8. To

see this, consider �rst a situation where �� >
1
2 and note that Corollary 8 implies that in this case there

are global negative externalities, i.e. for all � i > � and all � > � we have Bi2 (� i; �) < 0. Moreover, we

know that Bi1 (� i; �) is decreasing in � i (part (iv) of Lemma 2). It follows that the planner�s objective

function, which is given by Bi (� ; �) � C (�), is decreasing for all � � ��, i.e. for all � � �� we have

Bi1 (� ; �) + B
i
2 (� ; �) � C (�) < 0. It follows that the planner will choose precision level ��� � ��.

Moreover, at � = ��� we have

Bi1 (�
�; ��) +Bi2 (�

�; ��)� C (��) = Bi2 (��; ��) < 0

and, thus, the planner would choose ��� < ��. Hence, when T = 1
2 and �� >

1
2 then agents over-acquire

information. Using a similar argument one can show that agents under-acquire information when T = 1
2

and �� <
1
2 and that they acquire the e¢ cient level of information when T =

1
2 and �� =

1
2 .

Next suppose that T > 1
2 . From Corollary 8 we know that when �� � T there are global positive

externalities in information choices that are ignored by the agents at the time they choose the precision

of their signals. Hence, in this case Bi1 (� ; �)�C 0 (�) � 0 implies that Bi1 (� ; �)+Bi2 (� ; �)�C 0 (�) > 0.
It follows that ��� � ��. Moreover, since Bi2 (� ; �) is strictly positive, it follows that at �

� we have

Bi1 (�
�; ��)+Bi2 (�

�; ��)�C 0 (��) > 0, so that ��� > ��. Using an analogous argument we can establish
that if T > 1

2 then for all �� � b�� (T; � ; ��) we have ��� < ��.
It remains to consider the case where T > 1

2 and �� 2 (T; b�� (T; � ; ��)). Since T > 1
2 , from Lemma

6 we know that in this case the threshold �� is �rst decreasing and then increasing in � . Fix T , then for

each �� 2 (T; b�� (T; � ; ��)) there exists a unique precision level, call it b� (��), such that at this precision
level d�

�

d� = 0. From the proof of Lemma 4 we know that �� = b� (��) if and only if �� = �E� (T ).

From Lemma 4 we also know that �� > �E� (T ) implies �� > b�� (T; �� (��) ; ��) and �� < �E� (T )

implies �� < b�� (T; �� (��) ; ��). But then it follows that (i) if �� > �E� (T ) then d��

d�

���
�=��

< 0; (ii) if

�� = �
E
� (T ) then

d��

d�

���
�=��

= 0, and (iii) if �� < �
E
� (T ) then

d��

d�

���
�=��

> 0.

From the above discussion we conclude that if �� 2
�
�E� (T ) ; b�� (T; � ; ��)� then the equilibrium

choice of �� is such that �� is increasing in � at ��, so �� lies at the increasing portion of �� (�). This

means that for all � 2 [��;1) we have negative spillover e¤ects (Corollary 8). Thus, the optimal choice
of precision ��� must satisfy ��� < �� implying that investors over-acquire information. Similarly, if

�� 2
�
T; �E� (T )

�
then the choice of �� is such that �� is decreasing in ��, so �� lies at the decreasing

portion of �� (�). This means that for all � 2 [� ; ��] we have positive spillover e¤ects and, thus, it
has to be the case that ��� > ��. Finally, consider the case when �� = �E� (T ). We know that for
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all � < ��, �� is decreasing in � (there are positive spillover e¤ects in information choices), so that

��� � ��. Similarly, we know that for all � > ��, �� is increasing in � (there are negative spillover

e¤ects in information choices), implying that ��� � ��. Therefore, it has to be the case that ��� = ��.
We conclude that when �� = �

E
� (T ) investors choose the e¢ cient level of information.

Finally consider the case when T < 1
2 . From Corollary 8 we know that if �� < b�� (T; � ; ��) then

there are global positive externalities, hence agents under-acquire information. On the other hand, if

�� > T then there are global negative externalities and agents over-acquire information.

3.2 Discussion

Proposition 9 allows us to determine when agents globally over-acquire or under-acquire information.

The logic of the proof might be unclear and the reader might wonder why we have not used a more

direct approach based on the analysis of �rst-order and second-order necessary conditions for local and

global maxima. Therefore, in this subsection we explain why such an approach is not feasible. We

also provide detailed intuition behind our approach and explain why it does not work when T < 1
2 and

�� 2 (b�� (T; � ; ��) ; T ).
The optimal level of precision solves

max
���

Bi (� ; �)� C (�)

i.e. it has to satisfy the following �rst order condition:

Bi1 (� ; �)� C 0 (�) +Bi2 (� ; �) � 0

with equality if ��� > � . The usual brute force approach would be to verify that the objective function

is quasiconcave, so that the �rst-order condition is su¢ cient and then �nd the value of � that satis�es

this condition. Finally, we would compare the solution we found this way to the equilibrium precision

choice.

This standard approach, however, is not applicable in the model. The �rst di¢ culty stems from the

fact that the �rst-order and the second-order conditions are complex objects. In particular, we were

not able to verify that the objective function is quasiconcave or even if the solution to the �rst-order

condition, if it exists, is a local maximum. Indeed, our intuition together with numerical examples tend

to suggest that both need not be true, i.e. that the utility function, depending on parameters, can take

many di¤erent shapes and may have a local interior minimum. Moreover, it is possible that the e¢ cient

precision choice is a corner solution, but given the lack of a closed-form solution to the model we do

not have the tools to determine when this is the case.

In order to circumvent these problems we used an indirect approach. This approach is based on

investigating the local and global behavior of �� as a function of � , and builds on the comparative

statics results for global games established in Szkup (2014). This approach follows two steps. First,

we establish whether a small increase or decrease in the precision from its equilibrium level would

increase or decrease welfare. We refer to this as a local over-acquisition or local under-acquisition of

13



information. This is, of course, a much simpler task since we know that at the equilibrium precision we

have Bi1 (� ; �)�C 0 (�) = 0 and, thus, the local results are fully determined by the sign of
���@��@� ���

�=��
. In

the second step we use the global properties of @�
�

@� in order to extend this local result to the planner�s

precision choice. For example, if �� is monotone we know that this local result will automatically imply

a global result.

Unfortunately, this approach fails when T < 1
2 and �� takes on values between �

�q
�

�+��
��1T

�
+

1p
�+��

��1 (T ) and T . The issue is that when T < 1
2 then the threshold �

� is �rst increasing and

then decreasing in � (Lemma 6). While we can establish whether the equilibrium precision choice

lies on the increasing or decreasing portion of �� (when we consider �� as a function of �) and we

still can obtain our local results, these local results do not necessarily describe the e¢ cient choice of

information. In particular, when �� lies on the decreasing portion of �� the local behavior of the objective

function indicates that a small increase in precision would improve welfare compared to the equilibrium.

However, it is possible that the actual e¢ cient choice of precision is smaller than equilibrium. �� might

be initially increasing very fast, and then decreasing very gradually, in which case the planner would

choose to acquire no information. Without closed-form solutions we are unable to determine when such

cases arise. Note that this is not a problem when T > 1
2 because in this case �

�, if non-monotonic, is

�rst decreasing and then increasing.

3.3 Numerical Results

In this subsection we provide a concrete numerical example which shows why the case T < 1
2 is so prob-

lematic. Our goal is to show that the di¢ culties described above not only are a theoretical possibility

that cannot be excluded, but do actually arise for some parameter values.

The social planner�s objective function can be expressed as

U i (� ; �) = �
Z ��

�1

Z 1

x�
TdF� (xj�) dG�� (�)�

Z 1

��

Z x�

�1
(1� T ) dF� (xj�) dG�� (�)

+

Z 1

��
(1� T ) dG�� (�)� C (�) ,

i.e., social planner�s objective function is the utility of investor i given that all investors choose the same

precision level � i = � . Thus, Planner�s objective function can be decomposed into three terms: (1) the

expected cost of mistakes (the �rst two terms), (2) the expected gain from investment (the third term),

and (3) the cost of precision (the last term).

We set T = 0:25 and �� = 0:0755. The remaining parameters are � = 3, C (�) = 1
200 (� � �)

1:01,

and �� = 3.5 Figure 1 depicts, as a function of precision choice � , the welfare (the top left panel), the

expected gain from investment (the top right panel), the expected cost of mistakes (the bottom left

panel), and the cost of precision (the bottom right panel). From Figure 1 we can see that for these

parameters the welfare function is not only not concave, but also not even quasiconcave (the top left

5The welfare function is non-quasiconcave also for values of parameters in the neighborhood of the parameters consid-

ered in this example. The reason for this result is that the cost function is su¢ ciently �at and the expected gain from

investment initially decreases sharply as � increases.
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panel). This implies that the standard approach based on �rst-order and second-order conditions is not

applicable.
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Figure 1: Welfare as a function of �

The remaining panels provide explanation why the welfare function is not quasiconcave.6 In partic-

ular, we see that an initial increase in � leads to a sharp decrease in the expected gain from investment

(which is driven by a sharp increase in ��). This implies that welfare is initially decreasing as � increases

from � . However, as � increases further, the negative e¤ect of a higher � on investment decreases sharply

as �� approaches its global maximum. On the other hand, higher precision helps agent avoid costly

mistakes (the bottom left panel). As � increases, this bene�t due to lower expected cost of mistakes

dominates and the welfare function becomes increasing in � . As � increases further, the reduction in

the expected cost of mistake becomes smaller and smaller. As such, the welfare function becomes again

decreasing in � , driven by the increasing cost of higher precision (the bottom right panel).

It is important to note that for the welfare function to be non-quasiconcave it is crucial that ��

achieves a global maximum at a �nite � . Only then the rate at which �� increases falls su¢ ciently fast

that the positive e¤ect of a decrease in the expected cost of mistake becomes a dominant force for some

values of � .
6Note that, for each � , by subtracting from the value of investment the value of mistakes and the information cost, we

obtain the value of welfare corresponding to this precision level.
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4 Strategic Complementarities and Welfare

Lemma 10 As � !1 the threshold �� ! T .

Proof. Recall that �� is the unique solution to the critical mass condition

��
�1=2

(�� � ��) +
r
� + ��
�

��1 (T )� ��1 (��) = 0

or

��1 (��)� ��
�1=2

(�� � ��) =
r
� + ��
�

��1 (T )

Taking the limit as � !1 on both sides of this equation, we obtain

lim
�!1

��1 (��) = ��1 (T )

or,

lim
�!1

�� = T

Lemma 11 �� is a decreasing function of ��.

Proof. Consider the CM condition:

��
�1=2

(�� � ��) +
r
� + ��
�

��1 (T )� ��1 (��) = 0

Recall also that
�1=2

��
>

1

� (��1 (��))

for all � 2 [� ;1). Applying the Implicit Function Theorem to the CM condition we obtain

@��

@��
=

��
�1=2

��
�1=2

� 1
�(��1(��))

< 0

since ��
�1=2

>
p
2�.

Lemma 12 Let T = 1
2 and consider �

�.

1. If �� <
1
2 then �

� > 1
2 ,

@��

@��
> 0 and @��

@� < 0;

2. If �� =
1
2 then �

� = 1
2 ,

@��

@��
= 0 and @��

@� = 0;

3. If �� >
1
2 then �

� < 1
2 ,

@��

@��
< 0 and @��

@� > 0.
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Proof. When T = 1
2 the CM condition becomes

��
�1=2

(�� � ��)� ��1 (��) = 0

Since �1=2

��
> 1p

2�
, the left hand side of the above equation is decreasing in ��. Moreover, it is easy to

see that when �� =
1
2 the above equation implies that �

� = 1
2 . It then follows that when �� >

1
2 it has

to be the case that �� < 1
2 and when �� <

1
2 then �

� > 1
2 . Using the above observations and applying

the Implicit Function Theorem to the CM condition we obtain the remaining results regarding @��

@��
and

@��

@� .

Lemma 13 Let T = 1
2 and consider

@��

@��
.

1. If �� <
1
2 then

@��

@��
> 0;

2. If �� =
1
2 then

@��

@��
= 0;

3. If �� >
1
2 then

@��

@��
< 0;

Proof. Note that
d��

d��
=

1

1� @��i
@�

���
�=��

@��i
@��

����
� i=��

where ��i (� ; ��) is the optimal precision choice of investor i when the mean of the prior is equal to

�� and all other investors choose precision � . The above expression tells us that the derivative of the

equilibrium precision choice with respect to �� is equal to the change in investor i�s equilibrium precision

choice due to change in ��, captured by
@��i
@��
, times the �multiplier e¤ect�that captures the fact that ��

a¤ects equilibrium precision choices of the remaining investors, leading to a further adjustment in ��i .

Finally, since we are interested in studying a change from an initial symmetric equilibrium precision,

these e¤ects have to be evaluated at � i = �� and � = ��. As shown in the proof of Theorem 1 in the

appendix of the paper, the equilibrium multiplier e¤ect is always positive. Thus, to establish whether

an increase in �� leads to an increase or decrease in �
� we focus on the partial e¤ect of a change in ��

has on ��i , i.e.
@��i
@��

���
� i=��

.

Applying the Implicit Function Theorem to investor i�s �rst order condition we obtain

@��i
@��

= �
@2Ui

@� i@��
@2Ui

@�2i

where the denominator is always negative (see Lemma 2 above).

@2U i

@� i@��
= � 1

� i

1

� i + ��
�
1=2
i �

 
x�i � �

�

�
�1=2
i

!
�
1=2
� �

 
�� � ��
�
�1=2
�

!
�� (x

�
i � ��)

�
@��

@��
� 1
�
.

Since @��

@��
< 0, it follows that:

sgn

�
@2U i

@� i@��

�
= sgn (x�i � ��)
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Next, note that when T = 1
2 then

x�i � �� =
� + ��
�

(�� � ��)

It follows then from Lemma 12 that if �� <
1
2 then x

�
i � �� > 0, if �� =

1
2 then x

�
i � �� = 0 and if

�� >
1
2 then x

�
i � �� < 0. The results follows immediately from this observation.

Lemma 14 Let T = 1
2 and consider

@2��

@��@��
. For all �� 2 (��; �+) we have @2��

@��@��
< 0 where

�� < 1
2 < �

+ are the two solutions to the equation

(�� � ��)
2
=

� � ��
�� (�� + �)

.

Proof. The derivative of �� with respect to �� is equal to

@��

@��
=

��
�1=2

��
�1=2

� 1
�(��1(��))

Di¤erentiating again, this time with respect to ��, we get

@2��

@��@��
=

1
�1=2

h
��
�1=2

� 1
�(��1(��))

i
� ��

�1=2

h
1

�1=2
� ��1(��)

(�(��1(��)))2
@��

@��

i
h
��
�1=2

� 1
�(��1(��))

i2
=

� 1
�1=2

1
�(��1(��)) +

��
�1=2

��1(��)

(�(��1(��)))2
@��

@��h
��
�1=2

� 1
�(��1(��))

i2
Since the denominator is always positive, we focus on the numerator of the above expression.

� 1

�1=2
1

� (��1 (��))
+

��
�1=2

��1 (��)

(� (��1 (��)))
2

@��

@��

=
1

�1=2
1

� (��1 (��))

�
�1 + ��

��1 (��)

(� (��1 (��)))

@��

@��

�
When T = 1

2 , the CM condition implies that ��1 (��) = ��
�1=2

(�� � ��). Moreover,

@��

@��
=
� 1
�1=2

(�� � ��)
��
�1=2

� 1
�(��1(��))

Therefore, the numerator can be written as

1

�1=2
1

� (��1 (��))

"
�1� �2�

�1=2
(�� � ��)

2

(� (��1 (��)))

1

�1=2

�
��
�1=2

� 1

� (��1 (��))

��1#
We argue below that the term in the square brackets is always negative.

Note that �� = �� if and only if �� =
1
2 and �

� is decreasing in ��, it follows that for all �� 2 (��; �+)

(�� � ��)
2 �

�
��
�
��
�
� ��

�2
=
�
��
�
�+
�
� �+

�2
=

� � ��
�� (� + ��)
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Thus,

�1� �
2
�

�

(�� � ��)
2

(� (��1 (��)))

�
��
�1=2

� 1

� (��1 (��))

��1
< �

�
��
�1=2

� 1

� (��1 (��))

��1 "
��
�1=2

� 1

� (��1 (��))
+
�2�
�

����
��(�+��)

(� (��1 (��)))

#

= � ��
�1=2

1

� (��1 (��))

�
��
�1=2

� 1

� (��1 (��))

��1 �
�
�
��1 (��)

�
� �

1=2

��
+

1

�1=2
� � ��
(� + ��)

�
< � ��

�1=2
1

� (��1 (��))

�
��
�1=2

� 1

� (��1 (��))

��1 �
1p
2�
� �

1=2

��

�
1� ��

�

� � ��
(� + ��)

��
where the �rst inequality followed from the fact that ��

�1=2
� 1

�(��1(��)) < 0 and observation that

(�� � ��)
2
< ����

��(�+��)
. Therefore, as long as � satis�es

�1=2

��

�
1� ��

�

� � ��
(� + ��)

�
>

1p
2�

then for all �� 2 (��; �+) we have @2��

@��@��
< 0.

Lemma 15 Consider @2��

@��@��
.

1. If �� <
1
2 then

@2��

@��@��
< 0

2. If �� =
1
2 then

@2��

@��@��
= 0

3. If �� >
1
2 then

@2��

@��@��
> 0

Proof. The derivative of �� with respect to � is given by:

@��

@�
=

1
2
��
�3=2

(�� � ��)
��
�1=2

� 1
�(��1(��))

Di¤erentiating the above equation with respect to �� we get:

@2��

@�@��
=

h
1
2

1
�3=2

(�� � ��) + 1
2
��
�3=2

@��

@��

i h
��
�1=2

� 1
�(��1(��))

i
h
��
�1=2

� 1
�(��1(��))

i2
�

�
1
2
��
�3=2

(�� � ��)
� h

1
�1=2

+ ��1(��)

(�(��1(��)))2
@��

@��

i
h
��
�1=2

� 1
�(��1(��))

i2
Note that when �� =

1
2 then �

� = �� =
1
2 ,

@��

@��
= 0. It follows that @2��

@�@��
= 0.

Next, consider the case when �� <
1
2 . In that case, �

� > 1
2 > �� and

@��

@��
> 0. Since ��

�1=2
�

1
�(��1(��)) < 0 it follows that

@2��

@�@��
< 0. Similarly, when �� >

1
2 then �

� < 1
2 < �� and

@��

@��
< 0, and,

thus @2��

@�@��
> 0.

19



4.1 The trade-o¤ between public and private information when T 6= 1
2

When analyzing the e¤ect of an increase in the precision of public information on private information

acquisition we assumed that T = 1
2 . This assumption simpli�ed the analysis and allowed us to charac-

terize fully when an increase in the precision of public information encourages and when it discourages

private information acquisition. Here we consider the trade-o¤ between public and private information

when T 6= 1=2. In particular, we provide su¢ cient conditions for the private and public information

to be complements and substitutes. We complement our analytical results with results obtained from

numerical simulations. Numerical simulations con�rm our intuition that the passive information e¤ect

is the key for determining whether private and public information are complements or substitutes.

Proposition 16 There exists TL and TH , 0 < TL <
1
2 < TH < 1 such that for each T 2 (TL; TH)

there exists a non-empty interval of ��, call it I (T ), such that for all �� 2 I (T ) public and private
information are complements.

This result extends Proposition 5 in the paper that characterizes complementarity between public

and private information for the special case when T = 1
2 . The proof consists of three steps and is similar

to the proof of Proposition 5. First, we �rst �x T and show that whether private and public information

are complements depends on the relative strengths of three e¤ects: the passive information e¤ect, the

active information e¤ect and the coordination e¤ect. Next, we investigate separately when each of

these e¤ects is positive (encouraging information acquisition) and when they are negative (discouraging

information acquisition). Finally, we show that there exists an interval (TL; TH) such that for each

T 2 (TL; TH) there is an interval of values for �� where all these e¤ects are positive.

Proof. As shown in the proof of Proposition 5 in the paper, whether private and public information

are complements depends on the sign of @2Ui
@� i���

���
� i=��

which is given by

@2Ui
@� i���

����
� i=��

= �1
2

1

��
1

�� + ��
��

1=2

�

�
x� � ��

��
�1=2

�
�
1=2
� �

 
�� � ��
�
�1=2
�

!
26664 1

�� + ��
� 1

2��
+
1

2
(� � ��)

2| {z }
the passive information e¤ect

+ �� (x� � ��) @x
�
i

@��

����
� i=��| {z }

the active information e¤ect

+ �� (x
� � ��)

@��

@��

����
�=��| {z }

the coordination e¤ect

37775
We consider �rst the passive information e¤ect. Following an analogous approach as in the proof of

Proposition 5 one can show that for each T 2 (0; 1) there exists b��� (T ) and b�+� (T ), with b��� (T ) < b�+� (T )
such that for all �� 2

�b��� (T ) ; b�+� (T )� the passive information e¤ect is positive.7 The thresholds b��� (T )
7The di¤erence with the case of T = 1

2
is that now we cannot claim that for all �� =2

�b��� (T ) ; b�+� (T )� the passive
information e¤ect is negative. Instead, we can only show that there exist bb��� (T ) and bb�+� (T ), with bb��� (T ) > b��� (T ) andb�+� (T ) < bb�+� (T ), such that for all �� 2 ��1; bb��� (T )i [ hbb�+� (T ) ;1� the passive information e¤ect is negative. See
Proposition 17.
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is de�ned implicitly as the largest solution to the equation8

�� = �

 
��

� (��)
1=2

s
� (��)� ��

�� (� (��) + ��)
+

s
� (��) + ��
� (��)

��1 (T )

!
�

s
� (��)� ��

�� (� (��) + ��)

while b�+� (T ) is de�ned as the smallest solution to the equation
�� = �

 
� ��

� (��)
1=2

s
� (��)� ��

�� (� (��) + ��)
+

s
� (��) + ��
� (��)

��1 (T )

!
+

s
� (��)� ��

�� (� (��) + ��)

For each T 2 (0; 1) let IP (T ) =
�b��� (T ) ; b�+� (T )�. Thus, IP (T ) is the set of values for �� for a �xed T

such that the passive information e¤ect is positive (i.e., it encourages information acquisition).

Next, consider the active information e¤ect and note that the active information e¤ect encourages

private information acquisition if and only if

(x� � ��) @x
�
i

@��

����
� i=��

< 0

where9
@x�i
@��

����
� i=��

=
1

��
(�� � ��) +

1

2��
p
�� + ��

��1 (T ) ,

so that
@x�i
@��

����
� i=��

< 0 i¤ �� < �� �
1

2

1p
�� + ��

��1 (T ) .

Then, from the critical mass condition it follows that @x�i =@��j� i=�� < 0 i¤

�� > �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T ) .

From inspecting the left hand side and the right hand side of the above inequality we conclude that

the above inequality is satis�ed for su¢ ciently high �� while for su¢ ciently low �� the above inequality

is reversed. Moreover, since both sides are continuous in �� and the right-hand side is bounded as a

function of ��, it follows that there exists at least one value of �� such that

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

Let e�� (T ) denote the largest value of �� that satis�es the above equality when T > 1
2 and the smallest

solution when T < 1
2 . Then, for T >

1
2 whenever �� > e�� (T ) we have @x�i =@��j� i=�� < 0 while for

T < 1
2 we know that whenever �� < e�� (T ) then @x�i =@��j� i=�� > 0

8To see this solve
1

�� + ��
� 1

2��
+
1

2
(� � ��)2 = 0

for ��. This delivers two solutions for ��, one for the case when �� > �� and the other one for the case when the opposite

is true, i.e., �� < �� . Substituting the �rst solution into the critical mass condition and rearranging yields the equation

that de�nes b��� . Following the same steps for the case when �� < �� yields the equations that de�nes b�+� .
9Here, we ignore the e¤ect of a change in �� on ��. This e¤ect is captured by the coordination e¤ect.
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Next, consider equation

�� =
1

2
+

p
�� (��) + ��

��
��1 (T )

Again, it is immediate that the above equation has at least one solution. Moreover, it can be shown

that the solution to the above equation is unique. Call the unique solution of the above equation �� (T ).

Using the critical mass and payo¤ indi¤erence conditions one can establish that x� � �� > 0 if �� >

�� (T ), x
� � �� = 0 if �� = �� (T ) and x� � �� < 0 if �� < �� (T ).

We claim next that for all T > 1
2 we have �� (T ) > e�� (T ) while for all T < 1

2 we have �� (T ) < e�� (T ).
To see this �x � and note that at T = 1

2 we have�
1

2
+

p
� + ��
��

��1 (T )

�
�
"
�

 r
� + ��
�

1
2�� + �

� + ��
��1 (T )

!
� 1
2

1p
� + ��

��1 (T )

#
= 0

Moreover,

@

@T

"
1

2
+

p
� + ��
��

��1 (T )� �
 r

� + ��
�

1
2�� + �

� + ��
��1 (T )

!
� 1
2

1p
� + ��

��1 (T )

#

=

p
� + ��
��

1

� (��1 (T ))
� �

 r
� + ��
�

1
2�� + �

� + ��
��1 (T )

!r
� + ��
�

1
2�� + �

� + ��

1

� (��1 (T ))

�1
2

1p
� + ��

1

� (��1 (T ))

� 1p
� + ��

1

� (��1 (T ))

"
� + ��
��

� 1p
2�

r
� + ��
�

1
2�� + �p
� + ��

� 1
2

#

=

�
1
2�� + �

�
p
�

1p
� + ��

1

� (��1 (T ))

�p
�

��
� 1p

2�

�
> 0

since we assumed that
p
�=�� > 1=

p
2� (see Assumption 1 in the paper). It follows that, for an exoge-

nously given � , if T > 1
2 then

1

2
+

p
� + ��
��

��1 (T ) > �

 r
� + ��
�

1
2�� + �

� + ��
��1 (T )

!
+
1

2

1p
� + ��

��1 (T )

while the opposite inequality holding when T < 1
2 . Thus, if � was exogenous then �� (T ) > e�� (T ) for

T > 1
2 and �� (T ) < e�� (T ) if T < 1

2 . Next, recall that

�� =
1

2
+

p
�� (��) + ��

��
��1 (T )

has a unique solution and note that �� � 1
2 +

p
��(��)+��

��
��1 (T ) tends to �1 as T ! 0 and tends to

+1 as T ! 1. Putting together the above observations we conclude that �� (T ) is larger than e�� (T )
for T > 1

2 and smaller than e�� (T ) for T < 1
2 .
10

10More precisely, de�ne

F (��) �
1

2
+

p
�� (��) + ��

��
��1 (T )
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Above we have established that if T > 1
2 then: (1) �� (T ) > e�� (T ), (2) for all �� < �� (T ) we have

x� � �� < 0; and (3) for all �� > e�� (T ) we have @x�i =@��j� i=�� > 0. Thus, if T > 1
2 then for all

�� 2 (e�� (T ) ; �� (T )) we have (x� � ��) @x�i =@��j� i=�� < 0 and, hence, the active information e¤ect is
positive. Similarly, if T < 1

2 then for all �� 2 (�� (T ) ; e�� (T )) we have (x� � ��) @x�i =@��j� i=�� < 0

and, hence, the active information e¤ect is positive. Finally, if T = 1
2 then �� (T ) = e�� (T ) and the

active information e¤ect is always non-positive (as argued in the proof of Proposition 5 in the paper).

For each T 6= 1
2 , let IA (T ) denote the interval of �� such that the active information e¤ect is positive.

Finally consider the coordination e¤ect. The sign of the coordination e¤ect is determined by the

sign of (x� � ��) @�
�

@��
. In particular, the coordination e¤ect encourages information if and only if

(x� � ��)
@��

@��
< 0.

First consider @��=@��. From Szkup (2014) we know that @��=@�� > 0 whenever

�� > �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

As above, let e�� (T ) be the largest solution to
�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

when T > 1
2 , and the smallest solution when T <

1
2 .
11 Given this de�nition of e�� (T ) it follows that if

T > 1=2 and �� > e�� (T ) then @��=@�� > 0 while if T < 1=2 and �� < e�� (T ) then @��=@�� < 0.
Next, consider x� � ��. Using the Payo¤ Indi¤erence condition we have

x� � �� > 0 i¤ �� > �� �

s
�� (��) + ��
�� (��)

��1 (T )

x� � �� = 0 i¤ �� = �� �

s
�� (��) + ��
�� (��)

��1 (T )

x� � �� < 0 i¤ �� < �� �

s
�� (��) + ��
�� (��)

��1 (T )

and

G (��) � �
 s

�� (��) + ��
�� (��)

1
2
�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

and suppose that T > 1
2
. Then, for any � we have:

�� � F (��) < �� �G (��) .

Thus, at e�� (T ) we have e�� (T )� F (e�� (T )) < e�� (T )�G (e�� (T )) = 0:
Since �� = F (��) has a unique �xed point and since �� � F (��) < 0 for su¢ ciently small �� and �� � F (��) > 0 for

su¢ ciently large �� , it follows that the unique �xed point of equation �� = F (��), that we denote by �� (T ), is larger

then e�� (T ). An analogous argument establishes that for T < 1
2
we have �� (T ) < e�� (T ).

11Note that e�� (T ) is continuous in T since at T = 1
2
the above equation has unique solution, e�� (T ) = 1

2
.
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Using the Critical Mass condition it can be shown that �� > �� �
q

��(��)+��
��(��)

��1 (T ) if and only if

�� < �

 s
�� (��)

�� (��) + ��
��1 (T )

!
+

1p
�� (��) + ��

��1 (T )

and �� = �� �
q

��(��)+��
��(��)

��1 (T ) if and only if

�� = �

 s
�� (��)

�� (��) + ��
��1 (T )

!
+

1p
�� (��) + ��

��1 (T )

In Lemma A.2 in the paper we showed that the above equation has a unique solution, which we call

�E� (T ), such that if �� > �
E
� (T ) then

�� > �

 s
�� (��)

�� (��) + ��
��1 (T )

!
+

1p
�� (��) + ��

��1 (T )

while the opposite is true if �� < �
E
� (T ). Therefore, it follows that if �� < �

E
� (T ) then x

� � �� > 0, if
�� = �

E
� (T ) then x

� � �� = 0, and if �� > �E� (T ) then x� � �� < 0.
Next, following analogous steps as in the case of the active information e¤ect one can show that

if T > 1
2 then �

E
� (T ) > e�� (T ), if T = 1

2 then �
E
� (T ) = e�� (T ) and if T < 1

2 then �
E
� (T ) < e�� (T ).

Thus, we have established that if T > 1
2 then: (i) �

E
� (T ) > e�� (T ), (ii) for all �� > e�� (T ) we have

@��=@��j�=�� < 0, and (iii) for all �� < �E� (T ) we have x� � �� > 0. Thus, if T > 1
2 then for all �� 2�e�� (T ) ; �E� (T )� we have (x� � ��) @��=@��j�=�� < 0 and, hence, the coordination e¤ect if positive.

Similarly, if T < 1
2 then: (i) �

E
� (T ) < e�� (T ), (ii) for all �� < e�� (T ) we have @��=@��j�=�� > 0, and (iii)

for all �� > �
E
� (T ) we have x

� � �� < 0. It follows that if T < 1
2 then for all �� 2

�e�� (T ) ; �E� (T )� we
have (x� � ��) @��=@��j�=�� < 0 and, hence, the coordination e¤ect is positive. Finally, if T = 1

2 then

�E� (T ) = e�� (T ) and the coordination e¤ect is always non-positive (as argued in the proof of Proposition
5 in the paper). For each T 6= 1

2 denote by IC (T ) the interval of �� such that the coordination e¤ect

is positive.

The �nal step of the proof requires us to show that there exists an interval (TL; TH) such that for each

T 2 (TL; TH), the set I (T ) � IP (T )\IA (T )\IC (T ) has a non-empty interior. First note that for T > 1
2

we have
�e�� (T ) ; �E� (T )� � IA (T )\IC (T ) and for T < 1

2 we have
�
�E� (T ) ; e�� (T )� � IA (T )\IC (T ).12

Thus, it remains to consider the intersection of IP (T ) with
�e�� (T ) ; �E� (T )�. More precisely, we need

to compare b��� (T ) and b�+� (T ) with e�� (T ) and �E� (T ).
First, consider the case when T = 1=2. When T = 1=2 then e�� (T ) = �E� (T ) = 1=2 while b��� (T ) <

1=2 < b�+� (T ). Thus, at T = 1=2 we have b��� (T ) < e�� (T ) = �E� (T ) < b�+� (T ). Consider now the

case when T < 1=2. Let T�L be the largest T < 1=2 such that b��� (T ) = e�� (T ). Such T�L exists since

at T = 1=2 we have b��� (T ) < e�� (T ) and limT!0 b��� (T ) > limT!0 e�� (T ) = �1. Thus, we know
that for all T 2

�
T�L ; 1=2

�
we have b��� (T ) < e�� (T ). Next, de�ne T+L as the largest T < 1=2 such

12This requires establishing that for each T > 1
2
we have �E� (T ) < � (T ) while for each T <

1
2
we have �E� (T ) > � (T ).

This can be established in exactly the same way as previous inequalities in this proof.
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that b�+� (T ) = �E� (T ). If there is no such T , i.e., if for all T < 1=2 we have b�+� (T ) > �E� (T ) (note

that at T = 1=2 we have �E� (T ) < b�+� (T )) then set T+L = 0. Thus, for all T 2
�
T+L ; 1=2

�
we haveb�+� (T ) > �E� (T ). Finally, de�ne TL � max

�
T�L ; T

+
L

	
. We claim that for all T 2 (TL; 1=2) we have

IP (T ) \
�
�E� (T ) ; e�� (T )� = ?.

To see this suppose that TL = T�L , so that T
�
L > T+L , and consider any T > T�L . By de�nition

of T�L it has to be the case that at T > T�L we have e�� (T ) > b��� (T ). Since b�+� (T ) > b��� (T ) it
follows that

�
�E� (T ) ; e�� (T )� \ �b��� (T ) ; b�+� (T )� = ?. It follows that implying that for all T > T�L

we have IP (T ) \
�
�E� (T ) ; e�� (T )� = ? and by de�nition of these intervals we know that for all �� 2

IP (T )\
�
�E� (T ) ; e�� (T )� private and public information are complements. Next, consider the case when

TL = T
+
L . This implies that T

+
L > T�L and hence there exists 0 < T < 1=2 such that �E� (T ) = b�+� (T ).

Recall that by de�nition of T+L we know that for all T > T+L , b�+� (T ) > �E� (T ). Since T
+
L > T�L , we

know that for all T > T+L we have e�� (T ) > b��� (T ). Thus, �b��� (T ) ; b�+� (T )� \ ��E� (T ) ; e�� (T )� 6= ?.
This established the above claim.

In a similar fashion we de�ne TH > 1=2. This completes the proof as we establish existence of TL
and TH , where TL < 1=2 < TH such that for all T 2 (TL; TH) we have I (T ) 6= ?.

Above we showed that for all T 2 (TL; TH) � (0; 1) there are values of �� such that private and

public information are complements. One may wonder whether we can extend the above result to show

that for each T 2 (0; 1) there is a set of values for �� such that private and public information are
complements. Unfortunately, the argument used above does not allow us to prove this more general

result. In particular, our argument relies on the fact that for all T 2 (TL; TH) we have IP (T ) \
IA (T ) \ IC (T ) 6= ?. However, for T close enough to 1 (or close enough to 0) we necessarily have

IP (T ) \ IA (T ) \ IC (T ) = ?. In other words, for extreme values of T there are no values of �� such
that all the e¤ects of an increase in the precision in public information are positive. To see this, note

that

lim
T!1

e�� (T ) = 1

lim
T!1

�E� (T ) = 1

while

lim
T!1

b�+� (T ) = 1 +

s
�� � ��

�� (�� + ��)

lim
T!1

b��� (T ) = 1�
s

�� � ��
�� (�� + ��)

where for notational convenience we wrote �� instead of limT!1 �
� �b�+� (T ) ; T �. It follows that for T

close enough to 1 we have �E� (T ) > e�� (T ) > b�+� (T ) > b��� (T ). Therefore, when the cost of investment,
T , is very high or very low one would need to compare the magnitude of each of the e¤ects. Given the

complexity of the model, this, however, is infeasible.
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Above we investigated conditions under which public and private information are complements for

the case T 6= 1
2 . In the next proposition, we provide su¢ cient conditions under which private and public

information are substitute. In particular, below we characterize regions in which passive, active and

coordination e¤ects are negative. As such, the next proof will utilize several results established in the

proof of Proposition 16.

Before we state our result we need to de�ne several important thresholds for ��. These thresholds

also played a crucial role in the proof of Proposition 16 where we also addressed the issue of their

existence. Let bb�� (T ) be the smallest solution to equation:
�� = �
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!
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s
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,

while bb�+ (T ) be the largest solution to equation:
�� = �
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+

s
� (��) + ��
� (��)

��1 (T )

!
+

s
� (��)� ��

�� (� (��) + ��)
.

Similarly, let ee��� be the smallest, if T > 1
2 , or the largest, if T <

1
2 , solution to equation

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

and � (T ) be the unique solution to

�� =
1

2
+

p
�� (��) + ��

��
��1 (T )

With the above de�nitions, we can state our most general result that provides su¢ cient conditions

for the substitutability between private and public information.

Proposition 17 Consider an investor�s incentives to acquire information.

1. Suppose that T > 1
2 . If �� =2

�
min

nee��� ; bb�� (T )o ;maxn� (T ) ; bb�+ (T )o� then private and public
information are substitutes.

2. Suppose that T = 1
2 . If �� =2

�bb�� (T ) ; bb�+ (T )� then private and public information are substitutes.
3. Suppose that T < 1

2 . If �� =2
�
min

n
� (T ) ; bb�� (T )o ;maxnee��� (T ) ; bb�+ (T )o� then private and

public information are substitutes.

Proof. To prove this result we use the same approach as we used to establish Proposition 16 with the

di¤erence that now we focus on the regions in which the passive information e¤ect, the active information

e¤ect and the coordination e¤ect are negative. Note, also that part (2) of the above proposition follows

immediately from Proposition 5 in the paper. Therefore, we only need to prove part (1) and part (3).

Below, we consider the case when T > 1
2 . The proof for the case when T <

1
2 is analogous.
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Fix T > 1
2 and consider �rst the passive information e¤ect. The passive information e¤ect discour-

ages information acquisition if and only if

1

�� + ��
� 1

2��
+
1

2
(� � ��)

2
> 0

Note that 1
��+��

> 1
2��

and �� is increasing in ��. Moreover, lim��!�1 �
� = 0 while lim��!+1 �

� =

1. It follows that there exists bb�� (T ) and bb�+ (T ), with bb�� (T ) < bb�+ (T ), such that for all �� =2�bb�� (T ) ; bb�+ (T )� we have 1
��+��

� 1
2��

+ 1
2 (� � ��)

2
> 0, and if �� = bb�� (T ) or �� = bb�+ (T ) then

1

�� + ��
� 1

2��
+
1

2
(� � ��)

2
= 0

Following an analogous argument as in Proposition 5 in the paper it can be shown, using the Critical

Mass condition and the above observations, that bb�� (T ) is the smallest solution to the equation
�� = �

 
��

� (��)
1=2

s
� (��)� ��

�� (� (��) + ��)
+

s
� (��) + ��
� (��)

��1 (T )

!
�

s
� (��)� ��

�� (� (��) + ��)

while bb�+ (T ) is the largest solution to the equation
�� = �

 
� ��

� (��)
1=2

s
� (��)� ��

�� (� (��) + ��)
+

s
� (��) + ��
� (��)

��1 (T )

!
+

s
� (��)� ��

�� (� (��) + ��)

Thus, we conclude that whenever �� =2
�bb�� (T ) ; bb�+ (T )� then the passive information e¤ect is nega-

tive.13

Consider now the active information e¤ect and note that the active information e¤ect discourages

information acquisition if and only if

�� (x� � ��) @x
�
i

@��

����
� i=��

> 0.

As we showed in the proof of Proposition 16, for a given T , we have x� > �� if and only if �� < �� (T ),

x� = �� if and only if �� = �� (T ) and x
� < �� if and only if �� > �� (T ) where �� (T ) is the unique

solution to

�� =
1

2
+

p
�� (�) + ��
��

,

where �� (T ) depends on T through the impact the cost of investment has on equilibrium precision

choice, ��. Next, note that a change in x� holding �� constant is given by

@x�

@��
=
1

��
(�� � ��) +

1

2

1

��
p
�� + ��

.

13 In Proposition 16 we found bounds b�� (T ) and b�+ (T ) such that for all �� 2 �b�� (T ) ; b�+ (T )� the passive information
e¤ect encourages private information acquisition. Unless the equation de�ning b�� (T ) and bb�� (T ) has a unique solution,
we have bb�� (T ) < b�� (T ). Similarly, unless the equation de�ning b�+ (T ) and bb�+ (T ) has a unique solution, we haveb�+ (T ) < bb�+ (T ). In general, it is unclear whether these conditions have a unique solution or not and, hence, it is not
necessarily true that the passive information e¤ect is positive for �� 2

�bb�� (T ) ; bb�+ (T )�.
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As argued in the above Proposition, @x�=@�� < 0 if and only

�� < �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T ) ,

and @x�=@�� > 0 if and only if

�� > �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T ) .

Finally, @x�=@�� = 0 if and only if �� is a solution to the following equation:

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T ) ,

Let ee�� (T ) be the smallest solution to the above equation. Since for a �xed T the right hand side of the
above equation is bounded and �� 2 (�1;1) it follows that such ee�� (T ) exists.
Recall that in the proof of Proposition 16 we showed that any solution to the equation

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

has to be smaller than �� (T ) (see Footnote 9, page 19 of the Online Appendix). Therefore, ee�� (T ) <
�� (T ).

From the above discussion it follows that if �� > �� (T ) then x
� < �� and @x�=@�� < 0, while if �� <ee�� (T ) then x� > �� and @x�=@�� > 0. Hence, we conclude that for all �� 2 ��1; ee�� (T )�[(�� (T ) ;1)

the active information e¤ect discourages private information acquisition.

Finally, we consider the coordination e¤ect. The coordination e¤ect discourages information acqui-

sition if and only if

�� (x
� � ��)

@��

@��

����
�=��

> 0

In the proof of the Proposition 16 we showed that x���� > 0 if �� < �E� (T ), x���� = 0 if �� = �E� (T )
and x���� < 0 if �� > �E� (T ). Next, consider @�

�=@��j�=�� and recall that while analyzing the active
information e¤ect we de�ned ee�� (T ) as the smallest solution to

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

As shown in Szkup (2014), whenever

�� < �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

then @��=@��j�=�� > 0 while if the direction of the above inequality is reversed then @�
�=@��j�=�� < 0.

Therefore, from de�nition of ee�� (T ) it follows that for all �� < ee�� (T ) we have @��=@��j�=�� > 0.
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Moreover, in the proof of Proposition 16, we argued that, for T > 1=2, �E� (T ) is larger than any

solution to

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T ) .

It follows that: (1) �E� (T ) >
ee�� (T ) ; and (2) for all �� > �E� (T ) we have @��=@��j�=�� < 0. Thus, we

have established that for all �� =2
�ee�� (T ) ; �E� (T )� the coordination e¤ect is negative.

Above we have established that for each T > 1
2 the passive information e¤ect is negative if �� =2�bb�� (T ) ; bb�+ (T )�, the active information e¤ect is negative if �� 2 ��1; ee�� (T )� [ (�� (T ) ;1) and

the coordination e¤ect is negative if �� 2
�
�1; ee�� (T )� [ ��E� (T ) ;+1�. Since for T > 1

2 we have

�� (T ) > �
E
� (T ) (see the proof of Proposition 16) part (1) of the Proposition follows immediately.

The proof of part (3), i.e., the case when T < 1
2 is analogous. The main di¤erences, compared to

the case when T > 1
2 , is that when T <

1
2 then �

E
� (T ) > �� (T ). Moreover, for T <

1
2 we need to de�neee�� (T ) as the largest solution to

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T ) ,

where it can be shown that for T < 1
2 we have

ee�� (T ) > �E� (T ).
4.2 The trade-o¤ between public and private information when T 6= 1

2
: Nu-

merical Results

In Propositions 16 and 17 we established the su¢ cient conditions under which private and public infor-

mation are complements (Proposition 16) and substitutes (Proposition 17). We complement the above

analytical results with numerical simulations. In particular, Figure 2 provide a complete characteri-

zation of the regions where a marginal increase in �� leads to an increase in investors� incentives to

acquire information (the dark shaded region in each panel) when �� = 1 (left panel) and when �� = 2

(the right panel).

Figure 2 shows that complementarity between public and private information is a pervasive phe-

nomenon not limited only to the case when T = 1
2 . Moreover, unless T takes extreme values, the

region where private and public information are complements falls inside the region where the passive

information e¤ect is positive which suggests that even when T 6= 1=2 the passive information e¤ect

plays an important role in driving this result.14 Note that as �� increases the region in which the two

types of information are complements shrinks. The main reason is that as �� increases, the region where

passive information e¤ect is positive shrinks (this can be deduced from the expression for the passive

information e¤ect, see proof of Proposition 17). This further underscores the importance of the passive

information e¤ect.
14 In Figure 2 the region between the two dashed lines corresponds to the region where the passive information e¤ect is

positive.
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Figure 2: Relation between private and public information: passive information e¤ect

Recall that when T 6= 1=2, it is possible that the active information e¤ect is positive. In order to

investigate the role played by the active information e¤ect, in Figure 3 we plot the region where the

active information e¤ect is positive (the region between the dash-dot lines) against the region where

the passive information e¤ect is positive (the region between the dashed lines).
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Figure 3: Relation between private and public information: passive and active informations e¤ects

We see that the region where the active information e¤ect is positive, with exception for the case

when T is extreme, di¤ers substantially from the region where the public and private information are

complements. Thus, Figure 3 provides additional support for the importance of the passive information

e¤ect in explaining the complementarity between public and private information.

5 Change in Investment and Welfare: Robustness

In this section we consider the e¤ect of an increase in �� on the probability of successful investment

and welfare when T 6= 1=2.
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5.1 Change in the Probability of Successful Investment

In section 6:2 of the paper we analyzed how a change in the precision of the prior a¤ects the probability

of successful investment when T = 1=2. Here, we investigate the case when T 6= 1=2. We state �rst

intermediate technical results and then address the above question.

5.1.1 Intermediate Results

Lemma 18 Suppose that � is exogenously given.

1. If �� > �
�q

�+��
� ��1 (T )

�
then �� < ��.

2. If �� = �
�q

�+��
� ��1 (T )

�
then �� = ��.

3. If �� < �
�q

�+��
� ��1 (T )

�
then �� > ��.

Proof. Recall that �� is de�ned as the solution to the Critical Mass condition:

��
�1=2

(�� � ��) +
r
� + ��
�

��1 (T )� ��1 (��) = 0

The above lemma follows from the observation that the left hand side of the above equation is decreasing

in ��.

Next, consider the following equation

�� = �

 s
�� (��) + ��
�� (��)

��1 (T )

!
.

De�ne �M� (T ) as the largest solution to the above equation when T > 1=2 and the smallest solution

when T < 1=2. Note that �M� (T ) is well de�ned since the right hand side can takes only values between

0 and 1. Next, recall from Section 4:1 that we de�ned ee��� (T ) as the smallest, if T > 1
2 , or the largest,

if T < 1
2 , solution to equation

�� = �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

Lemma 19 Consider �M� (T ).

1. If T > 1=2 then �M� (T ) <
ee��� (T );

2. If T = 1=2 then �M� (T ) =
ee��� (T );

3. If T < 1=2 then �M� (T ) >
ee��� (T ).
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Proof. First, note that if T = 1=2 then �M� (T ) = ee��� (T ) = 1=2. Next, holding � constant, take the
derivative of �M� (T )� ee��� (T ) with respect to T to obtain:

@

@T

h
�M� (T )� ee��� (T )i =

r
� + ��
�

1

� (��1 (T ))
�

 r
� + ��
�

��1 (T )

!

� 1

� (��1 (T ))
�

 r
� + ��
�

� + 1
2��

� + ��
��1 (T )

!r
� + ��
�

1
2� + ��

� + ��

�1
2

1p
� + ��

1

� (��1 (T ))

�
"
1p
2�

r
� + ��
�

1
2��

� + ��
� 1
2

1p
� + ��

#
1

� (��1 (T ))

=
1

2

1p
� (� + ��)

�
1p
2�
�� �

p
�

�
1

� (��1 (T ))
< 0

Hence, it follows that if T > 1=2 then, for a given � , we have

�

 r
� + ��
�

��1 (T )

!
< �

 r
� + ��
�

1
2�� + �

� + ��
��1 (T )

!
+
1

2

1p
� + ��

��1 (T )

In particular, it at �M� (T ) we have

�M� (T ) = �

 s
��
�
�M� (T )

�
+ ��

��
�
�M� (T )

� ��1 (T )

!

< �

 s
��
�
�M� (T )

�
+ ��

��
�
�M� (T )

� 1
2�� + �

� ��M� (T )�
��
�
�M� (T )

�
+ ��

��1 (T )

!
+
1

2

1q
��
�
�M� (T )

�
+ ��

��1 (T )

Recall from Section 4:1 that, for T > 1=2, ee��� (T ) is de�ned as the value of �� such that for all
�� � ee�� (T ) we have

�� > �

 s
��
�
�M� (T )

�
+ ��

��
�
�M� (T )

� 1
2�� + �

� ��M� (T )�
��
�
�M� (T )

�
+ ��

��1 (T )

!
+
1

2

1q
��
�
�M� (T )

�
+ ��

��1 (T )

Thus, if T > 1=2 then, �M� (T ) <
ee��� (T ). The proof for the case T < 1=2 is analogous.

Finally, de�ne �Inv+ (T ) as

�Inv+ (T ) � max
n
�� (T ) ;

bb�+� (T )o if T > 1=2

�Inv+ (T ) � max
n
�M� (T ) ;

bb��� (T )o if T < 1=2

and �Inv� (T ) as

�Inv� (T ) � min
n
�M� (T ) ;

bb�+� (T )o if T > 1=2

�Inv� (T ) � min
n
�� (T ) ;

bb��� (T )o if T < 1=2

It follows from the de�nitions of bb�+� (T ), ; bb�+� (T ), �M� (T ) and �� (T ) that both �Inv+ (T ) and �Inv� (T )
are continuous and �Inv+ (T ) = �Inv� (T ) = 1=2 when T = 1=2: Below, we use �Inv+ (T ) and �Inv� (T )

to state our main result of this section.
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5.1.2 Change in the Probability of Successful Investment: Main Results

In Section 6:2 we identi�ed three channels through which a change in �� a¤ects the probability of

successful investment. First, it a¤ects the ex-ante distribution of �. Second, it a¤ects directly the value

of the threshold �� through an adjustment in investors�investment strategies (holding their precision

choices constant). Third, it leads indirectly to a change in �� by a¤ecting investors�precision choices,

and through this channel it further a¤ects their investment behavior. We then proved that when

T = 1=2 then a change in �� increases probability of successful investment when �� > 1=2, has no e¤ect

if �� = 1=2, and decreases it when �� < 1=2.

When T 6= 1=2 such characterization is not feasible. The main issue here is that it is di¢ cult to

establish both the sign and the magnitude of the second and third channels once T 6= 1=2. Intuitively,
however, we should expect that the ex-ante probability of successful investment increases when �� is

high and decreases when �� is low. This is because, the direct e¤ect of a change in �� on �
� (the second

channel identi�ed above) tends to dominate the other two channels and it is positive for high values of

the prior mean and is negative otherwise. Proposition 20 shows that this intuition is correct when ��
is su¢ ciently high or low.

De�ne �Inv+ (T ) as

�Inv+ (T ) � max
n
�� (T ) ;

bb�+� (T )o if T > 1=2

�Inv+ (T ) � max
n
�M� (T ) ;

bb��� (T )o if T < 1=2

and �Inv� (T ) as

�Inv� (T ) � min
n
�M� (T ) ;

bb�+� (T )o if T > 1=2

�Inv� (T ) � min
n
�� (T ) ;

bb��� (T )o if T < 1=2

Proposition 20 Suppose that the precision of the prior, ��, increases.

1. Let T > 1=2 :

(a) If �� > �
Inv+ (T ) then the ex-ante probability of successful investment increases;

(b) if �� < �
Inv� (T ) then the ex-ante probability of successful investment decreases;

2. Let T < 1=2

(a) If �� > �
Inv+ (T ) then the ex-ante probability of successful investment increases;

(b) If �� < �
Inv� (T ) then the ex-ante probability of successful investment decreases.

Proof. Recall from the proof of Proposition 6 in the paper that the total e¤ect of a change in �� on

the probability of successful investment is given by

dPr (� > ��)

d��
=

d

d��

"
1� �

 
�� � ��
�
�1=2
�

!#

= ��1=2� �

 
�� � ��
�
�1=2
�

!�
d��

d��
+

1

2��
(�� � ��)

�
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where
d��

d��
=
@��

@��
+
@��

@��
� d�

�

d��
.

We consider case when T > 1=2 since the case of T < 1=2 is analogous. From Proposition 17 stated

above, we know that if T > 1=2 and �� =2
�
min

nee��� ; bb�� (T )o ;maxn� (T ) ; bb�+ (T )o� then
d��

d��
< 0.

Moreover, from Szkup (2014) we know that if precision choices are exogenous then for all �� such that

�� < �

 r
� + ��
�

1
2�� + �

� + ��
��1 (T )

!
+
1

2

1p
� + ��

��1 (T )

we have
@��

@��
> 0 and

@��

@��
< 0.

Recall that by de�nition of ee��� (T ), we know that
�� <

ee��� =) �� < �

 s
�� (��) + ��
�� (��)

1
2�� + �

� (��)

�� (��) + ��
��1 (T )

!
+
1

2

1p
�� (��) + ��

��1 (T )

and, thus, it follows that for all �� < ee��� (T ) we have
d��

d��
> 0.

Moreover, if �� < �
M
� (T ) then

�� < ��

By Lemma 19, �M� (T ) <
ee��� (T ) for all T > 1=2. It follows that if �� < �Inv� (T ) � minn�M� (T ) ; bb�� (T )o

we have
dPr (� > ��)

d��
< 0.

Similarly, when �� > �
Inv+ (T ) � max

n
� (T ) ; bb�+ (T )o then d��=d�� < 0, � < �� and so
dPr (� > ��)

d��
< 0.

The above proposition establishes conditions under which the ex-ante probability of investment

increases or decreases when T 6= 1=2. The proof of this result is substantially simpler than the proof of
Proposition 6 in the main text. This simpli�cation comes from the fact that here we dealt only with the

case where an increase in the precision of prior crowds out private information acquisition. In contrast,

in Proposition 6 we �xed T = 1=2 but consider all possible values of ��: As explained above, however,

such result is not feasible in the case when T 6= 1=2.
To check how the ex-ante probability of successful investment vary with a change in �� for any pair

fT; ��g we resorted to numerical simulations. Figure 4 presents two numerical examples that suggest
that the �nding of Proposition 6 extends to the case when T 6= 1=2.
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Figure 4: Change in the probability of successful investment

Each panel of Figure 4 depicts the regions where a change in �� leads to an increase and decrease

in the probability of investment. The left panel corresponds to the situation where we consider a small

increase in the precision of the prior from �� = 0:5 while the right panel corresponds to the case where

the initial precision of the prior is �� = 1:5. We see that, as suggested above, for a �xed T , the

probability of successful investment is positive for high enough �� and negative otherwise.

The above �gures indicate that the threshold for �� above which probability of successful investment

increases with a change in �� is itself increasing in T . To understand this, recall from Section 6:2 of

the paper, that an increase in �� leads to an increase in the probability of successful investment only if

x� < ��, and leads to a decrease in the probability of successful investment if x
� > ��. An increase in

T decreases the bene�t from successful investment and increases the cost of unsuccessful investment.

Therefore, investors become less willing to invest and set higher threshold x�. It follows that the region

where the probability of successful investment is increasing in the precision of the prior shifts up as T

increases.

5.2 Welfare consequences of higher � �

In this section we investigate numerically how an increase in the precision of public information (i.e.,

precision of the prior), ��, a¤ects investors�ex-ante utility.

5.2.1 Change in Welfare:

We �rst investigate for which values of T and �� welfare is increasing or decreasing in �� and how does

this depend on the initial precision of the prior. In Section 6:3 of the paper, we argued that one should

expect welfare is increasing in �� when �� is su¢ ciently high and decreasing when �� is low. Figure 5

support this intuition. In particular, we see that, for a �xed T , welfare is increasing in the precision of

public information when �� is su¢ ciently high and is decreasing in �� when �� is su¢ ciently low.
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Figure 5: Welfare consequences of a higher ��

Figure 5 suggests that the values of �� for which welfare in increasing in �� vary with T . This result

is driven by the behavior of the probability of successful investment. In particular, as we explained

in Section 5:1 the threshold for �� above which probability of successful investment increases with a

change in �� is increasing in T . Since, as argued below, the change in the probability of successful

investment is typically the main driver of the change in welfare a similar pattern in observed when we

consider investors�welfare.

5.2.2 Change in Welfare: Decomposition

Next, we investigate what the main drivers of changes in welfare are. In particular, we check how

much of the change in welfare is due to a change in the expected gain from successful investment15

(labelled below as Investment), the change in the expected cost of mistakes (labeled as Mistake) and

the change in the cost of acquiring information (labeled as Cost).16 That is, we are interested in the

following decomposition

�U

U
=
�Investment

U
+
�Mistakes

U
+
�Cost

U

where U denotes investors�ex-ante utility. In order to compute the above decomposition we �x fT; ��g
and compute the change in welfare implied by a gradual increase in �� gradually from 0:5 to 1:5. We

then decompose the implied change into the three e¤ects mentioned above. We expect to �nd that,

unless a small change in precision has little e¤ect on the investment threshold (which happens only when

fT; ��g lies near the line dividing region Investment " and Investment # in Figure 4), the investment
e¤ect will be the driving force behind the changes in welfare.

15The expected gain from investment is de�ned as the payo¤ from a successful investment times the probability of

successful investment. It corresponds to the third term in investors�ex-ante utility, equation (4) in the main text.
16While a marginal change in the precision of public information has no e¤ect on investor i�s expected utility (by the

Envelope Theorem), this is not the case when we consider discrete changes in the informativeness of the prior.
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To test the above hypothesis we pick three values of T , T 2 f0:25; 0:5; 0:75g, and three values of
��, �� 2 f0; 0:5; 1g. The point fT = 0:5; �� = 0:5g plays a special role since we know that for these

parameter values a change in the precision of prior has no e¤ect on ��.

We �rst consider the case where T = 0:5 (Figure 6). We see that both in the case when the mean

of the prior is low (�� = 0, Panel A) or high (�� = 1, Panel C) the investment e¤ect is the dominant

force driving the change in welfare. Panel B depicts the case where the change in welfare is driven by

the change in the expected cost of mistakes and the change in the cost of precision. When T = 0:5

and �� = 0:5 the investment e¤ect is zero since a change in precision of the prior has no e¤ect on the

probability of successful investment (Proposition 6 in the paper).
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Figure 6: Welfare Decomposition when T = 0:5

These results are consistent with our hypothesis stated above. To provide further evidence that

support our hypothesis, for the case of T = 0:5 we also computed this decomposition for less extreme

values of �� = 0:25 and �� = 0:75. Since these values of the mean of the prior are close to the critical

point of 0:5 the e¤ect of a change in �� has a smaller e¤ect on the probability of successful investment.

However, if our hypothesis is true, the �investment e¤ect� should continue to be dominant force also

at these values. Figure 7 shows that indeed, for these values of parameters, the investment e¤ect

contributes more than 50% to the change in welfare.
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Figure 7: Additional Results when T = 0:5
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We next consider the case where T = 0:25. Figure 8 shows that for �� 2 f0; 0:5; 1g the investment
e¤ect is the dominant force. Note that compared to the case when T = 0:5, now the change in the

expected gain from successful investment contributes even more to the changes in welfare. This is

because when T is low then the payo¤ from successful investment is high and hence a small change

in the probability of successful investment has a large impact of the expected gain from successful

investment and, thus, on investors�welfare.
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Figure 8: Welfare Decomposition when T = 0:25

Finally, we consider the case when T = 0:75. Note that when T is high then payo¤ from successful

investment is low and hence changes in �� lead to relatively small adjustments in the expected gain from

investment (even though they can result in large changes in the probability of successful investment).

This is re�ected in Figure 9 which shows that when T is high the contribution of the investment e¤ect

is smaller than at in the cases considered above. Nevertheless, the investment e¤ect still remains a

signi�cant factor driving changes in welfare. Finally, as Panel A of Figure 9 suggest, when �� takes

extreme values (i.e., values far from the critical value of �� at which @W=@�� = 0) then investment

e¤ect is the main force driving changes in welfare.
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Figure 9: Welfare Decomposition when T = 0:75

Given the above numerical results, we conclude that investment e¤ect tends to be dominant force

driving changes in welfare though its importance varies with T . As T gets higher changes in the expected

gain from successful investment become smaller. As a consequence, the relative importance of the other
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two channels grows.

6 The Lower Bound for Precision Choices �

In this section we discuss in detail the choice of the lower bound for precision choices, � . There are

several technical results where the choice of � matters. First, as is standard in global games with public

information, in order to ensure uniqueness of equilibrium in the coordination game we need to have

� > 1
2� �� (see e.g. Hellwig, 2002, or Morris and Shin, 2004). That is, the lowest precision that can be

chosen by agents needs to be su¢ ciently large compared to the highest precision of public signal that we

consider. If this assumption is not satis�ed, then it is possible that there are multiple equilibria in the

second stage of the game. While interesting, the occurrence of multiple equilibria would substantially

complicate the analysis of the information acquisition stage, which is why we do not consider this

possibility in the paper.

The next restriction of � comes from requiring that the ex-ante utility function is concave. It is well

known that the value of information may be non-concave, especially when the informativeness of signals

available to the decision-maker is low (see Radner and Stiglitz, 1984, and Chade and Schlee, 2002). In

order to ensure that the ex-ante utility is concave we have to require that � is high enough. We do not

provide a closed-form lower bound on � . Instead, we simply assume that � satis�es this condition.

Another restriction on � comes from the technical results regarding the behavior of @2��

@��@��
. In order

for @2��

@��@��
< 0 in the required range of �� we need to impose the assumption that

�1=2

��

�
1� ��

�

� � ��
(� + ��)

�
>

1p
2�

where �� and �� are the lower and upper bounds, respectively, for the precision of the prior that we

consider in the paper. This is the condition reported in Assumption A1.

The �nal restriction comes from the analysis of a change in the probability of investment resulting

from a change in ��. In order to determine the change of this probability we have to ensure that the

best-response function is not too steep. The proof suggests that the slope of the best response function,

��i (�), at the equilibrium precision level has to be less than 5=6 in order for our result to go through.

In the proof of Theorem 1 we show that the slope of the best response function converges to zero as

� !1. It follows that choosing a su¢ ciently high � will ensure that the above restriction on the slope
of the best response function is satis�ed. Again, rather than providing an implicit bound for the value

of � we simply assume that � satis�es this condition.

To sum up, one should think of � as being high enough so that the ex-ante utility function is concave,

the slope of the best response function is less than 5=6 and that

�1=2

��

�
1� ��

�

� � ��
(� + ��)

�
>

1p
2�
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