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Abstract 

The report makes a number of short and long term recommendations on possible 
methodological improvements that could be made to the UK’s consumer prices statistics 
by the Office for National Statistics (ONS). The report also reviews several aspects of 
index number theory summarized in the Consumer Price Index Manual, which appeared 
in 2004 but since then, there have been several important methodological improvements. 
This new methodology is reviewed and based on this, some additional recommendation 
are applied to the UK’s consumer price statistics. The most important recommendation 
for improvement is (i) The Retail Price Index (RPI) should drop its use of the Carli index 
as an elementary index and replace it by either the Jevons or the Carruthers Sellwood 
Ward and Dalen elementary index. 
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1. Introduction 

A main purpose of this report is to assess the suitability of the Retail Prices Index (RPI) 
and the Consumer Prices Index (CPI) in meeting various purposes for which measures of 
consumer price inflation are generally used. The Office for National Statistics (ONS) in 
the UK produces both the RPI and the CPI on a monthly frequency.2 Another main 
purpose of this report will be to identify any weaknesses in either of these indexes and to 
make suggestions as to how these weaknesses might be addressed, both in the short run 
as well as in the longer run. A brief outline of this report follows. 

In section 2 below, some important uses of measures of household price inflation will be 
discussed. The suitability of the RPI and the CPI will be discussed in the light of these 
uses after their methodologies have been explained. 

At the outset, it should be recognized that no consumer price index will be conceptually 
perfect: data limitations and cost considerations will prevent the “perfect” index from 
being produced. However, it will be useful to introduce the various idealized types of 
index that have been suggested in the literature on index number theory over the past 200 
years. These idealized indexes are called target indexes. There are four main approaches 
to the determination of the functional form for a target price index that compares the 
prices (and associated quantities) between two periods: 

 Fixed basket and averages of fixed basket approaches; 
 The test or axiomatic approach; 
 The stochastic approach and  
 The economic approach. 

These four approaches will be explained in section 3 below.3 

Practical consumer price indexes are constructed in two stages: 

 A first stage at the lowest level of aggregation where price information is 
available but associated expenditure or quantity information is not available and 

 A second stage of aggregation where expenditure information is available at a 
higher level of aggregation. 

The aggregates that pertain to the first stage of aggregation are called elementary 
aggregates. Again, theories for “ideal” or “best” target indexes can be developed in this 

2 Since the UK belongs to the European Union, the ONS is legally obligated to produce the European 
Union’s standard measure of household inflation, the Harmonized Index of Consumer Prices or HICP. The 
CPI that is produced by the ONS is actually the HICP and so there will be some discussion about the 
methodology used for the HICP in this report. However, since the ONS has little influence on the 
construction of the HICP, our focus will be on the RPI. 
3 The material in this section largely parallels the material on index number theory that is laid out in the 
Consumer Price Index Manual; see the ILO/IMF/OECD/UNECE/Eurostat/The World Bank (2004; 263­
327). For brevity, in the future, we will refer to the CPI Manual as ILO (2004). 
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situation where price information is available but not quantity or expenditure information. 
The two approaches that have been developed in this context are: 

 The test approach and 
 The stochastic approach. 

Thus the theories for the target index in the elementary aggregate context parallel the 
theories developed when both price and quantity information is available, except that the 
fixed basket and economic approaches cannot be applied in the elementary index context. 
The remaining two approaches to the construction of elementary indexes (the test and 
stochastic approaches) will be discussed in section 4 below.4 

All of the above theories for target indexes apply to situations where only the prices of 
two months are being compared and the comparison formulae do not depend on the 
prices and quantities of any other month. This is termed bilateral index number theory 
since only two situations are being compared. Unfortunately, practical index number 
theory is more complicated: in practical indexes like the RPI and the CPI, an annual 
expenditure basket pertaining to a past year is used at higher levels of aggregation and at 
the elementary level of aggregation; the prices of twelve consecutive months are 
compared with the corresponding prices in December or January. The resulting price 
index is known as a Lowe index in the literature and in section 5, we will give an 
overview of this methodology. 

In section 6, the problem of strongly seasonal commodities is addressed in the context of 
the Lowe index methodology. A strongly seasonal commodity is one that is available for 
only certain months of the year; e.g., Christmas trees, winter clothing and summer 
clothing.5 The Consumer Price Index Manual recommended the use of maximum overlap 
superlative indexes in the context of producing useful month to month consumer price 
indexes with seasonal commodities. But the evidence in Feenstra and Shapiro (2003), 
Ivancic, Diewert and Fox (2011) and de Haan and van der Grient (2011) shows that these 
maximum overlap indexes can be subject to a tremendous chain drift problem. Thus in 
section 7, a newer methodological approach to the production of month to month indexes 
is suggested that avoids the chain drift problem. 

The new method for constructing month to month indexes that avoid the chain drift 
problem is due to Balk (1981), Ivancic, Diewert and Fox (2011) and de Haan and van der 
Grient (2011) and is known as the Rolling Year GEKS method. It is described in section 
7 along with a useful approximation to this method. 

In section 8, a new method for constructing elementary indexes is suggested: the Rolling 
Year Time Product Dummy method (RYTPD method). This is a stochastic approach to 

4 Most of the material in section 4 is also presented in the ILO (2004; 355-371). However, sections 4.5, 4.7 
and 4.8 present some new material. 
5 Much of the material in this section is also presented in the ILO (2004; 393-417). However, since this 
Consumer Price Index Manual material was written, some new evidence on seasonal indexes has become 
available due to Diewert, Finkel and Artsev (2009) and this new material is reviewed in section 6. 
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elementary indexes that is an adaptation of a method suggested by Summers (1973). It is 
similar in spirit to the Rolling Year GEKS method, except that the Rolling Year TPD 
method uses only price information instead of both price and quantity information. 

In section 9, clothing and other fashion goods are discussed. 

Finally, section 10 concludes with some recommendations for improving the RPI and 
CPI in the UK. 
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2. The Scope and Purpose of Consumer Price Indexes 

There are three main purposes for which it is desirable to measure the average rate of 
change in consumer prices going from a base period 0 to a comparison period 1 for a well 
defined household or group of households that pertains to a well specified value 
aggregate (that defines which commodity transactions are in scope or to be included in 
the value aggregate): 

	 As a summary measure of the overall rate of price change that the specified group 
faces over the two periods being compared for the value aggregate under 
consideration. Households in the specified group will generally be interested in 
this summary number as will governments and central bankers. 

	 As a deflator for the value aggregate under consideration. Deflating the value 
ratio by the price index gives us the rate of growth of the corresponding quantity 
aggregate and this rate of growth can often be given a welfare change 
interpretation. Taking the household sector as a whole, the System of National 
Accounts requires a deflator for household expenditures. 

	 As a compensation or indexation measure. Governments or private employers 
may want to index benefit or salary levels to ensure that the indexed entitlement 
or salary level in the current period is “equivalent” in some sense to the base level 
of entitlement or salary. The relevant value aggregates for this purpose should be 
based on the expenditures of the recipients of entitlements or of the employees in 
the indexation group. 

It can be seen that the first two uses are really complimentary aspects of the same 
problem, which is to decompose a ratio of value aggregates for two periods into a price 
change component times a quantity change component. However, constructing an index 
for the third purpose is more difficult, since a proportion of an entitlement or a salary can 
be saved rather than spent on consumer goods and services and so the determination of 
the relevant value aggregate is not so easy. Another significant problem is that alternative 
treatments of purchases of consumer durables can lead to very different entitlement 
indexes. 

Restricting attention to uses 1 and 2 above, it can be seen that the index number problem 
in dealing with demographic groups (e.g., pensioners) or with a restricted commodity 
classification (e.g., expenditures are restricted to an agreed on universe of “essential” 
commodities) is more or less the same as dealing with the entire household sector but the 
practical problem facing index number producers is the lack of data (or more accurately, 
the higher costs of collecting detailed expenditure and price data for demographic groups 
of households). 

In practice, the problems facing statistical agencies producing consumer price indexes are 
more complicated than indicated above. With respect to the first two uses listed above, 
the theoretical approaches to index number theory that will be explained in section 3 
apply to situations where complete price and quantity information on the same N goods 
and services in the household aggregate is available for the two periods being compared. 
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Unfortunately, this idealized situation does not apply to the real world for a number of 
reasons: 

	 The existence of strongly seasonal commodities; i.e., these are commodities such 
as Christmas trees and swim suits that are available for only certain months of the 
year. 

	 The introduction of new products and the disappearance of older products that 
have been rendered obsolete by technical progress. This means that the list of 
comparable commodities changes from month to month. 

	 Product churn and temporary shortages of stock. Many retailers rotate their 
choice of brands that they will stock on their shelves for various reasons. Again, 
this leads to a lack of comparability of products in the aggregate across months. 

	 The existence of durable goods. Thus a particular household may purchase a 
consumer durable (such as a motor vehicle or a house) in the base period but not 
purchase it in the following period. However, the household will still enjoy the 
services of the previously purchased consumer durable in the comparison period. 

All of the above problems lead to a lack of matching of purchases of products across the 
two periods being compared and this creates problems for all approaches to index number 
theory. We will attempt to deal with the above problems in subsequent sections. 

Problems associated with the HICP and the RPI and recommendations for improving 
these indexes will be deferred until section 10; i.e., it is first necessary to review possible 
techniques that have been suggested in the index number literature to improve price 
measurement.  

We turn now to the problem of choosing an explicit index number formula. In the 
following section, we outline the four main approaches that are in use today to justify 
various functional forms for the price index when complete price and quantity data for 
the value aggregate are available for a number of periods. When the comparison of price 
changes is restricted to two periods, the price index that constructs an average measure of 
price change is called a bilateral index number formula. In the following section, 
attention is restricted to two period comparisons but of course, if one period is held fixed 
(called the base period), then a bilateral price index formula can be used to make a 
sequence of price comparisons over a number of subsequent periods.  
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3. Alternative Approaches to Bilateral Index Number Theory 

3.1 Setting the Stage 

It will be useful to set the stage for the subsequent discussion of alternative approaches 
by defining more precisely what the index number problem is. 

We specify two accounting periods, t = 0,1 for which we have micro price and quantity 
data for N commodities pertaining to transactions by a consumer (or a well defined group 
of consumers). Denote the price and quantity of commodity n in period t by pn

t and qn
t 

respectively for n = 1,2,…,N and t = 0,1. Before proceeding further, we need to discuss 
the exact meaning of the microeconomic prices and quantities if there are multiple 
transactions for say commodity n within period t. In this case, it is natural to interpret qn

t 

as the total amount of commodity n transacted within period t. In order to conserve the 
value of transactions, it is necessary that pn

t be defined as a unit value 6; i.e., pn
t must be 

equal to the value of transactions for commodity n during period t divided by the total 
quantity transacted, qn

t. For t = 0,1, define the value of transactions in period t as: 

(1) Vt  n=1 
N pn

t qn
t  ptqt 

where pt (p1
t,…, pN

t) is the period t price vector, qt (q1
t,…, qN

t) is the period t quantity 
vector and ptqt denotes the inner product of these two vectors. 

Using the above notation, we can now state the following levels version of the index 
number problem using the test or axiomatic approach: for t = 0,1, find scalar numbers Pt 

and Qt such that 

(2) Vt = PtQt. 

The number Pt is interpreted as an aggregate period t price level while the number Qt is 
interpreted as an aggregate period t quantity level. The aggregate price level Pt is allowed 
to be a function of the period t price vector, pt while the aggregate period t quantity level 
Qt is allowed to be a function of the period t quantity vector, qt; i.e., we have 

(3) Pt = c(pt) and Qt = f(qt) ; t = 0,1. 

However, from the viewpoint of the test approach to index number theory, the levels 
approach to finding aggregate quantities and prices comes to an abrupt halt: Eichhorn 
(1978; 144) showed that if the number of commodities N in the aggregate is equal to or 
greater than 2 and we restrict c(pt) and f(qt) to be positive if the micro prices and 

6 The early index number theorists Walsh (1901; 96), Fisher (1922; 318) and Davies (1924; 96) all 
suggested  unit values as the prices that should be inserted into an index number formula. This advice is 
followed in the Consumer Price Index Manual: Theory and Practice with the proviso that the unit value be 
a narrowly defined one; see the ILO (2004; 356). 
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quantities pn
t and qn

t are positive, then there do not exist any functions c and f such that 
c(pt)f(qt) = ptqt for all pt >> 0N and qt >> 0N.7 

This negative result can be reversed if we take the economic approach to index number 
theory. In this approach, we assume that the economic agent has a linearly homogeneous 
utility function, f(q), and when facing the prices pt chooses qt to solve the following cost 
minimization problem: 

(4) min q {ptq : ptq = Yt ; q  0N}; t = 0,1 

where period t “income” Yt is defined as ptqt. In this setup, it turns out that c(p) is the 
unit cost function that is dual8 to the linearly homogeneous utility function f(q) and we 
can define Pt and Qt as in (3) with PtQt = c(pt)f(qt) = ptqt for t = 0,1. Why does the 
economic approach work in the levels version of the index number problem whereas the 
test approach does not? In the test approach, both pt and qt are regarded as completely 
independent variables, whereas in the economic approach, pt can vary independently but 
qt cannot vary independently; it is a solution to the period t cost minimization problem (4). 

Even though the economic approach to the index number problem as formulated above 
“works”, it is not a practical solution that statistical agencies can implement and provide 
suitable aggregates to the public. In order to implement this solution, the statistical 
agency would have to hire hundreds of econometricians in order to estimate cost 
functions for all relevant macroeconomic aggregates and it is simply not feasible to do 
this. Thus we turn to our second formulation of the index number problem and it is this 
formulation that was initiated by Fisher (1911) (1922) in his two books on index number 
theory. 

In the second approach to index number theory, instead of trying to decompose the value 
of the aggregate into price and quantity components for a single period, we instead 
attempt to decompose a value ratio for the two periods under consideration into a price 
change component P times a quantity change component Q.9 Thus we now look for two 
functions of 4N variables, P(p0,p1,q0,q1) and Q(p0,p1,q0,q1) such that:10 

(5) p1q1/p0q0 = P(p0,p1,q0,q1)Q(p0,p1,q0,q1). 

If we take the test approach, then we want equation (5) to hold for all positive price and 
quantity vectors pertaining to the two periods under consideration, p0,p1,q0,q1. If we take 

7 Notation: p >> 0N means all components of p are positive; p   0N means all components of p are

nonnegative and p > 0N means p  0N but p  0N. Finally, pq  n=1 

N pnqn. 

8 See Diewert (1974) for materials and references to the literature on duality theory.

9 Looking ahead to the economic approach, P will be interpreted to be the ratio of unit cost functions,

c(p1)/c(p0), and Q will be interpreted to be the utility ratio, f(q1)/f(q0). Note that the linear homogeneity

assumption on the utility function f effectively cardinalizes utility. 

10 If N = 1, then we define P(p1

0,p1
1,q1

0,q1
1)   p1

1/p1
0 and Q(p1

0,p1
1,q1

0,q1
1)   q1

1/q1
0, the single price ratio


and the single quantity ratio respectively. In the case of a general N, we think of P(p1
0,p1

1,q1
0,q1

1) as being a

weighted average of the price ratios p1

1/p1
0, p2

1/p2
0, ..., pN

1/pN
0. Thus we interpret P(p1

0,p1
1,q1

0,q1
1) as an 


aggregate price ratio, P1/P0, where Pt is the aggregate price level for period t for t = 0,1.  
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the economic approach, then only the price vectors p0 and p1 are regarded as independent 
variables while the quantity vectors, q0 and q1, are regarded as dependent variables. 

In this second approach to index number theory, the price index P(p0,p1,q0,q1) and the 
quantity index Q(p0,p1,q0,q1) cannot be determined independently; i.e., if either one of 
these two functions is determined, then the remaining function is implicitly determined 
using equation (5). Historically, the focus has been on the determination of the price 
index but Fisher (1911; 388) was the first to realize that once the price index was 
determined, then equation (5) could be used to determine the companion quantity index.11 

This value ratio decomposition approach to index number is called bilateral index 
number theory and its focus is the determination of “reasonable” functional forms for P 
and Q. Fisher’s 1911 and 1922 books address this functional form issue using the test 
approach. 

We turn now to a discussion of the various approaches that have been used to determine 
the functional form for the bilateral price index, P(p0,p1,q0,q1). 

3.2 Fixed Basket Approaches to Bilateral Index Number Theory 

A very simple approach to the determination of a price index over a group of 
commodities is the fixed basket approach. In this approach, we are given a basket of 
commodities that is represented by the positive quantity vector q. Given the price vectors 
for periods 0 and 1, p0 and p1 respectively, we can calculate the cost of purchasing this 
same basket in the two periods, p0q and p1q. Then the ratio of these costs is a very 
reasonable indicator of pure price change over the two periods under consideration, 
provided that the basket vector q is “representative”. Thus define the Lowe (1823) price 
index, PLo, as follows: 

(6) PLo(p
0,p1,q)  p1q/p0q . 

As time passed, economists and price statisticians demanded a bit more precision with 
respect to the specification of the basket vector q. There are two natural choices for the 
reference basket: the period 0 commodity vector q0 or the period 1 commodity vector q1. 
These two choices lead to the Laspeyres (1871) price index PL defined by (7) and the 
Paasche (1874) price index PP defined by (8):12 

(7) PL(p0,p1,q0,q1)  p1q0/p0q0 = n=1 
N sn

0(pn
1/pn

0) ; 

(8) PP(p0,p1,q0,q1)  p1q1/p0q1 = [n=1 
N sn

1(pn
1/pn

0)1]1 

11 This approach to index number theory is due to Fisher (1911; 418) who called the implicitly determined 

Q, the correlative formula. Frisch (1930; 399) later called (5) the product test. 

12 Note that PL(p0,p1,q0,q1) does not actually depend on q1 and PP(p0,p1,q0,q1) does not actually depend on q0. 

However, it does no harm to include these vectors and the notation indicates that we are in the realm of

bilateral index number theory. 
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where the period t expenditure share on commodity n, sn
t, is defined as pn

tqn
t/ptqt for n = 

1,…,N and t = 0,1. Thus the Laspeyres price index PL can be written as a base period 
expenditure share weighted average of the N price ratios (or price relatives), pn

1/pn
0.13 

The last equation in (8) shows that the Paasche price index PP can be written as a period 1 
(or current period) expenditure share weighted harmonic average of the N price ratios.14 

The problem with these index number formulae is that they are equally plausible but in 
general, they will give different answers. This suggests that if we require a single 
estimate for the price change between the two periods, then we should take some sort of 
evenly weighted average of the two indexes as our final estimate of price change between 
periods 0 and 1. Examples of such symmetric averages are the arithmetic mean, which 
leads to the Drobisch (1871) Sidgwick (1883; 68) Bowley (1901; 227)15 index, (1/2)PL + 
(1/2)PP, and the geometric mean, which leads to the Fisher (1922) ideal index, PF, 
defined as 

(9) PF(p0,p1,q0,q1)  [PL(p0,p1,q0,q1) PP(p0,p1,q0,q1)]1/2 . 

At this point, the fixed basket approach to index number theory has to draw on the test 
approach to index number theory; i.e., in order to determine which of these fixed basket 
indexes or which averages of them might be “best”, we need criteria or tests or 
properties that we would like our indexes to satisfy. 

What is the “best” symmetric average of PL and PP to use as a point estimate for the 
theoretical cost of living index? It is very desirable for a price index formula that depends 
on the price and quantity vectors pertaining to the two periods under consideration to 
satisfy the time reversal test. 16 We say that the index number formula P(p0,p1,q0,q1) 
satisfies this test if 

(10) P(p1,p0,q1,q0) = 1/P(p0,p1,q0,q1) ; 

i.e., if we interchange the period 0 and period 1 price and quantity data and evaluate the 
index, then this new index P(p1,p0,q1,q0) is equal to the reciprocal of the original index 
P(p0,p1,q0,q1). 

Diewert (1997; 138) showed that the Fisher ideal price index defined by (9) above is the 
only index that is a homogeneous symmetric mean of the Laspeyres and Paasche price 
indexes, PL and PP, and satisfies the time reversal test (10) above. Thus our first 

13 This result is due to Walsh (1901; 428 and 539). 

14 This expenditure share and price ratio representation of the Paasche index is described by Walsh (1901;

428) and derived explicitly by Fisher (1911; 365). 

15 See Diewert (1992) (1993) and Balk (2008) for additional references to the early history of index number

theory. 

16 The concept of this test is due to Pierson (1896; 128), who was so upset with the fact that many of the 

commonly used index number formulae did not satisfy this test (and the commensurability test to be

discussed later) that he proposed that the entire concept of an index number should be abandoned. More

formal statements of the test were made by Walsh (1901; 324) and Fisher (1922; 64).
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symmetric basket approach to bilateral index number theory leads to the Fisher index (9) 
as being “best” from the perspective of this approach.17 

Instead of looking for a “best” average of the two fixed basket indexes that correspond to 
the baskets chosen in either of the two periods being compared, we could instead look for 
a “best” average basket of the two baskets represented by the vectors q0 and q1 and then 
use this average basket to compare the price levels of periods 0 and 1.18 Thus we ask that 
the nth quantity weight, qn, be an average or mean of the base period quantity qn

0 and the 
period 1 quantity for commodity n qn

1, say m(qn
0,qn

1), for n = 1,2,…,N. 19  Price 
statisticians refer to this type of index as a pure price index and it corresponds to Knibbs’ 
(1924; 43) unequivocal price index. Under these assumptions, the pure price index can be 
defined as a member of the following class of index numbers: 

(11) PK(p0,p1,q0,q1)  n=1 
N pn

1m(qn
0,qn

1) / j=1 
N pj

0m(qj
0,qj

1). 

In order to determine the functional form for the mean function m, it is necessary to 
impose some tests or axioms on the pure price index defined by (11). Suppose that we 
impose the time reversal test (10) and the following invariance to proportional changes 
in current quantities test: 

(12) P(p0,p1,q0,q1) = P(p0,p1,q0,q1) for all   > 0. 

Diewert (2001; 207) showed that these two tests determine the precise functional form 
for the pure price index PK defined by (11) above: the pure price index PK must be the 
Walsh (1901; 398) (1921a; 97) price index, PW

20 defined by (13): 

(13) PW(p0,p1,q0,q1)  n=1
N pn

1(qn
0qn

1)1/2/j=1 
N pj

0(qj
0qj

1)1/2 . 

Thus the fixed basket approach to bilateral index number theory starts out with the 
Laspeyres and Paasche price indexes. Some form of averaging of these two indexes is 
called for since both indexes are equally plausible. Averaging these two indexes directly 

17 Bowley was an early advocate of taking a symmetric average of the Paasche and Laspeyres indexes: “If 
[the Paasche index] and [the Laspeyres index] lie close together there is no further difficulty; if they differ 
by much they may be regarded as inferior and superior limits of the index number, which may be estimated 
as their arithmetic mean … as a first approximation.” Arthur L. Bowley (1901; 227). Fisher (1911; 418­
419) (1922) considered taking the arithmetic, geometric and harmonic averages of the Paasche and 
Laspeyres indexes. 
18 Walsh (1901) (1921a) and Fisher (1922) considered both averaging strategies in their classic studies on 
index numbers. 
19 Note that we have chosen the mean function m(qn

0,qn
1) to be the same for each commodity n. 

20 Walsh endorsed PW as being the best index number formula: “We have seen reason to believe formula 6 
better than formula 7. Perhaps formula 9 is the best of the rest, but between it and Nos. 6 and 8 it would be 
difficult to decide with assurance.” C.M. Walsh (1921a; 103). His formula 6 is PW defined by (13) and his 9 
is the Fisher ideal defined by (9) above. His formula 8 is the formula p1q1/p0q0QW(p0,p1,q0,q1), which is 
known as the implicit Walsh price index where QW(p0,p1,q0,q1) is the Walsh quantity index defined by (13) 
except the role of prices and quantities is interchanged. Thus although Walsh thought that his Walsh price 
index was the best functional form, his implicit Walsh price index and the “Fisher” formula were not far 
behind. 
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leads to the Fisher ideal index PF defined by (9) as being “best” while a direct averaging 
of the two quantity baskets q0 and q1 leads to the Walsh price index PW defined by (13) as 
being “best”. 

We turn now to another early approach to the index number problem. 

3.3. Stochastic and Descriptive Statistics Approaches to Index Number Theory 

The (unweighted) stochastic approach to the determination of the price index can be 
traced back to the work of Jevons (1865) (1884) and Edgeworth (1888) (1896) (1901) 
over a hundred years ago21. 

The basic idea behind the stochastic approach is that each price relative, pn
1/pn

0 for n = 
1,2,…,N, can be regarded as an estimate of a common inflation rate  between periods 0 
and 1; i.e., Jevons and Edgeworth essentially assumed that 

(14) pn
1/pn

0 =  + n  ; n = 1,2,…,N 

where  is the common inflation rate and the n are random variables with mean 0 and 
variance 2. The least squares estimator for  is the Carli (1804) price index PC defined 
as 

(15) PC(p0,p1)  n=1
N (1/N)(pn

1/pn
0). 

Unfortunately, PC does not satisfy the time reversal test, i.e., PC(p1,p0)  1/PC(p0,p1)22. 

Now assume that the logarithm of each price relative, ln(pn
1/pn

0), is an independent 
unbiased estimate of the logarithm of the inflation rate between periods 0 and 1,  say. 
Thus we have: 

(16) ln(pn
1/pn

0) =  + n ;  n = 1,2,…,N 

where   ln and the n are independently distributed random variables with mean 0 and 
variance 2. The least squares or maximum likelihood estimator for  is the logarithm of 
the geometric mean of the price relatives. Hence the corresponding estimate for the 
common inflation rate  is the Jevons (1865) price index PJ defined as: 

21 For additional references to the early literature, see Diewert (1993; 37-38) (1995b) and Balk (2008; 32­
36).
22 In fact Fisher (1922; 66) noted that PC(p0,p1)PC(p1,p0)  1 unless the period 1 price vector p1 is 
proportional to the period 0 price vector p0; i.e., Fisher showed that the Carli index has a definite upward 
bias. Walsh (1901; 327) established this inequality for the case N = 2. Fisher urged users to abandon the use 
of the Carli index but his advice was generally ignored by statistical agencies until recently: “In fields other 
than index numbers it is often the best form of average to use. But we shall see that the simple arithmetic 
average produces one of the very worst of index numbers. And if this book has no other effect than to lead 
to the total abandonment of the simple arithmetic type of index number, it will have served a useful 
purpose.”  Irving Fisher (1922; 29-30).  
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(17) PJ(p
0,p1)  n=1

N (pn
1/pn

0)1/N. 

The Jevons price index PJ does satisfy the time reversal test and hence is much more 
satisfactory than the Carli index PC. However, both the Jevons and Carli price indexes 
suffer from a fatal flaw: each price relative pn

1/pn
0 is regarded as being equally important 

and is given an equal weight in the index number formulae (15) and (17).23 Keynes 
(1930; 76-81) also criticized the unweighted stochastic approach to index number theory 
on two other grounds: (i) price relatives are not distributed independently and (ii) there is 
no single inflation rate that can be applied to all parts of an economy; e.g., Keynes 
demonstrated empirically that wage rates, wholesale prices and final consumption prices 
all had different rates of inflation. In order to overcome the Keynesian criticisms of the 
unweighted stochastic approach to index numbers, it is necessary to: 

 have a definite domain of definition for the index number and 
 weight the price relatives by their economic importance. 

Theil (1967; 136-137) proposed a solution to the lack of weighting in (15). He argued as 
follows. Suppose we draw price relatives at random in such a way that each dollar of 
expenditure in the base period has an equal chance of being selected. Then the probability 
that we will draw the nth price relative is equal to sn

0   pn
0qn

0/p0q0, the period 0 
expenditure share for commodity n. Then the overall mean (period 0 weighted) 
logarithmic price change is n=1 

N sn
0ln(pn

1/pn
0). Now repeat the above mental experiment 

and draw price relatives at random in such a way that each dollar of expenditure in period 
1 has an equal probability of being selected. This leads to the overall mean (period 1 
weighted) logarithmic price change of n=1

N  sn
1ln(pn

1/pn
0). Each of these measures of 

overall logarithmic price change seems equally valid so we could argue for taking a 
symmetric average of the two measures in order to obtain a final single measure of 
overall logarithmic price change. Theil (1967; 137) argued that a nice symmetric index 
number formula can be obtained if we make the probability of selection for the nth price 
relative equal to the arithmetic average of the period 0 and 1 expenditure shares for 
commodity n. Using these probabilities of selection, Theil's final measure of overall 
logarithmic price change is 

(18) lnPT(p0,p1,q0,q1)  n=1 
N (1/2)(sn

0+sn
1)ln(pn

1/pn
0). 

It is possible to give a descriptive statistics interpretation of the right hand side of (18). 
Define the nth logarithmic price ratio rn by: 

(19)  rn  ln(pn
1/pn

0)  for n = 1,…,N. 

Now define the discrete random variable, R say, as the random variable which can take 
on the values rn with probabilities n  (1/2)(sn

0+sn
1) for n = 1,…,N. Note that since each 

set of expenditure shares, sn
0 and sn

1, sums to one, the probabilities n will also sum to 

23 Walsh (1901) (1921a; 82-83), Fisher (1922; 43) and Keynes (1930; 76-77) all objected to the lack of 
weighting in the unweighted stochastic approach to index number theory. 
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one. It can be seen that the expected value of the discrete random variable R is 
lnPT(p0,p1,q0,q1) as defined by the right hand side of (18). Thus the logarithm of the index 
PT can be interpreted as the expected value of the distribution of the logarithmic price 
ratios in the domain of definition under consideration, where the N discrete price ratios in 
this domain of definition are weighted according to Theil’s probability weights, n. 

Taking antilogs of both sides of (18), we obtain the Theil price index; PT.24 This index 
number formula has a number of good properties. In particular, PT satisfies the time 
reversal test (10) and the linear homogeneity test (12).25 

Additional material on stochastic approaches to index number theory and references to 
the literature can be found in Selvanathan and Rao (1994), Diewert (1995), Wynne 
(1997), Clements, Izan and Selvanathan (2006) and Balk (2008; 32-36) 

3.4. Test Approaches to Index Number Theory 26 

Recall equation (5) above, which set the value ratio, V1/V0, equal to the product of the 
price index, P(p0,p1,q0,q1), and the quantity index, Q(p0,p1,q0,q1). This is called the 
Product Test and we assume that it is satisfied. This equation means that as soon as the 
functional form for the price index P is determined, then (5) can be used to determine the 
functional form for the quantity index Q. However, a further advantage of assuming that 
the product test holds is that we can assume that the quantity index Q satisfies a 
“reasonable” property and then use (5) to translate this test on the quantity index into a 
corresponding test on the price index P.27 

If N = 1, so that there is only one price and quantity to be aggregated, then a natural 
candidate for P is p1

1/p1
0 , the single price ratio, and a natural candidate for Q is q1

1/q1
0 , 

the single quantity ratio. When the number of commodities or items to be aggregated is 
greater than 1, then what index number theorists have done over the years is propose 
properties or tests that the price index P should satisfy. These properties are generally 
multi-dimensional analogues to the one good price index formula, p1

1/p1
0. Below, we list 

twenty-one tests that turn out to characterize the Fisher ideal price index. 

We shall assume that every component of each price and quantity vector is positive; i.e., 
pt  > > 0N  and qt  > > 0N  for t = 0,1. If we want to set q0 = q1, we call the common 
quantity vector q; if we want to set p0 = p1, we call the common price vector p. 

Our first two tests are not very controversial and so we will not discuss them. 

24 This index first appeared explicitly as formula 123 in Fisher (1922; 473). PT is generally attributed to

Törnqvist (1936) but this article did not have an explicit definition for PT; it was defined explicitly in

Törnqvist and Törnqvist (1937); see Balk (2008; 26). 

25 For a listing of some of the tests that PT, PF, and PW satisfy, see Diewert (1992; 223). In Fisher (1922), 

these indexes were listed as numbers 123, 353 and 1153 respectively.

26 The material in this section is based on Diewert (1992) where more detailed references to the literature

on the origins of the various tests can be found.  

27 This observation was first made by Fisher (1911; 400-406). Vogt (1980) also pursued this idea. 
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T1: Positivity: P(p0,p1,q0,q1) > 0. 

T2: Continuity: P(p0,p1,q0,q1) is a continuous function of its arguments. 

Our next two tests are somewhat more controversial. 

T3: Identity or Constant Prices Test: P(p,p,q0,q1) = 1. 

That is, if the price of every good is identical during the two periods, then the price index 
should equal unity, no matter what the quantity vectors are. The controversial part of this 
test is that the two quantity vectors are allowed to be different in the above test.28 

T4:  Fixed Basket or Constant Quantities Test: P(p0,p1,q,q) = i=1
N pi

1qi /i=1
N pi

0qi. 

That is, if quantities are constant during the two periods so that q0 = q1  q, then the price 
index should equal the expenditure on the constant basket in period 1, i=1

N pi
1qi, divided 

by the expenditure on the basket in period 0, i=1 
N pi

0qi. 

The following four tests are homogeneity tests and they restrict the behavior of the price 
index P as the scale of any one of the four vectors p0,p1,q0,q1 changes. 

T5:  Proportionality in Current Prices: P(p0,p1,q0,q1) = P(p0,p1,q0,q1) for   > 0. 

That is, if all period 1 prices are multiplied by the positive number , then the new price 
index is  times the old price index. Put another way, the price index function 
P(p0,p1,q0,q1) is (positively) homogeneous of degree one in the components of the period 
1 price vector p1. Most index number theorists regard this property as a very fundamental 
one that the index number formula should satisfy. 

Walsh (1901) and Fisher (1911; 418) (1922; 420) proposed the related proportionality 
test P(p,p,q0,q1) = . This last test is a combination of T3 and T5; in fact Walsh (1901, 
385) noted that this last test implies the identity test, T3. 

In our next test, instead of multiplying all period 1 prices by the same number, we 
multiply all period 0 prices by the number . 

T6: Inverse Proportionality in Base Period  Prices: P(p0,p1,q0,q1) = 1P(p0,p1,q0,q1) for  
  > 0. 

That is, if all period 0 prices are multiplied by the positive number , then the new price 
index is 1/ times the old price index. Put another way, the price index function 

28 Usually, economists assume that given a price vector p, the corresponding quantity vector q is uniquely 
determined. Here, we have the same price vector but the corresponding quantity vectors are allowed to be 
different. 
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P(p0,p1,q0,q1) is (positively) homogeneous of degree minus one in the components of the 
period 0 price vector p0. 

The following two homogeneity tests can also be regarded as invariance tests. 

T7:  Invariance to Proportional Changes in Current Quantities: P(p0,p1,q0,q1) = 
P(p0,p1,q0,q1) for all  > 0. 

That is, if current period quantities are all multiplied by the number , then the price 
index remains unchanged. Put another way, the price index function P(p0,p1,q0,q1) is 
(positively) homogeneous of degree zero in the components of the period 1 quantity 
vector q1. Vogt (1980, 70) was the first to propose this test and his derivation of the test is 
of some interest. Suppose the quantity index Q satisfies the quantity analogue to the price 
test T5; i.e., suppose Q satisfies Q(p0,p1,q0,q1) = Q(p0,p1,q0,q1) for    > 0. Then using 
the product test (5), we see that P must satisfy T7. 

T8:  Invariance to Proportional Changes in Base Quantities: P(p0,p1,q0,q1) = 
P(p0,p1,q0,q1) for all  > 0. 

That is, if base period quantities are all multiplied by the number , then the price index 
remains unchanged. Put another way, the price index function P(p0,p1,q0,q1) is 
(positively) homogeneous of degree zero in the components of the period 0 quantity 
vector q0. If the quantity index Q satisfies the following counterpart to T8: 
Q(p0,p1,q0,q1) = 1Q(p0,p1,q0,q1) for all  > 0, then using (5), the corresponding price 
index P must satisfy T8. This argument provides some additional justification for 
assuming the validity of T8 for the price index function P. 

T7 and T8 together impose the property that the price index P does not depend on the 
absolute magnitudes of the quantity vectors q0 and q1. 

The next five tests are invariance or symmetry tests. Fisher (1922; 62-63, 458-460) and 
Walsh (1921b; 542) seem to have been the first researchers to appreciate the significance 
of these kinds of tests. Fisher (1922, 62-63) spoke of fairness but it is clear that he had 
symmetry properties in mind. It is perhaps unfortunate that he did not realize that there 
were more symmetry and invariance properties than the ones he proposed; if he had 
realized this, it is likely that he would have been able to provide an axiomatic 
characterization for his ideal price index. Our first invariance test is that the price index 
should remain unchanged if the ordering of the commodities is changed: 

T9:  Commodity Reversal Test (or invariance to changes in the ordering of commodities):  
P(p0*,p1*,q0*,q1*) = P(p0,p1,q0,q1) 

where pt* denotes a permutation of the components of the vector pt and qt* denotes the 
same permutation of the components of qt for t = 0,1. This test is due to Irving Fisher 
(1922), and it is one of his three famous reversal tests. The other two are the time reversal 
test and the factor reversal test which will be considered below. 
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T10:  	Invariance to Changes in the Units of Measurement (commensurability test):
 P(1p1

0,...,NpN
0; 1p1

1,...,NpN
1; 1 

1q1
0,...,N 

1qN
0; 1 

1q1
1,...,N 

1qN
1) = 

P(p1
0,...,pN

0; p1
1,...,pN

1; q1
0,...,qN

0; q1
1,...,qN

1) for all 1 > 0, …, N > 0. 

That is, the price index does not change if the units of measurement for each commodity 
are changed. The concept of this test was due to Jevons (1884; 23) and the Dutch 
economist Pierson (1896; 131), who criticized several index number formula for not 
satisfying this fundamental test. Fisher (1911; 411) first called this test the change of 
units test and later, Fisher (1922; 420) called it the commensurability test. 

T11:  	Time Reversal Test: P(p0,p1,q0,q1) = 1/P(p1,p0,q1,q0). 

That is, if the data for periods 0 and 1 are interchanged, then the resulting price index 
should equal the reciprocal of the original price index. Obviously, in the one good case 
when the price index is simply the single price ratio; this test is satisfied (as are all of the 
other tests listed in this section). When the number of goods is greater than one, many 
commonly used price indexes fail this test; e.g., the Laspeyres (1871) price index, PL 

defined earlier by (7), and the Paasche (1874) price index, PP defined earlier by (8), both 
fail this fundamental test. The concept of the test was due to Pierson (1896; 128), who 
was so upset with the fact that many of the commonly used index number formulae did 
not satisfy this test, that he proposed that the entire concept of an index number should be 
abandoned. More formal statements of the test were made by Walsh (1901; 368) (1921b; 
541) and Fisher (1911; 534) (1922; 64). 

Our next two tests are more controversial, since they are not necessarily consistent with 
the economic approach to index number theory. However, these tests are quite consistent 
with the weighted stochastic approach to index number theory discussed earlier in section 
3.3. 

T12:  	Quantity Reversal Test (quantity weights symmetry test):
 P(p0,p1,q0,q1) = P(p0,p1,q1,q0). 

That is, if the quantity vectors for the two periods are interchanged, then the price index 
remains invariant. This property means that if quantities are used to weight the prices in 
the index number formula, then the period 0 quantities q0 and the period 1 quantities q1 

must enter the formula in a symmetric or even handed manner. Funke and Voeller (1978; 
3) introduced this test; they called it the weight property. 

The next test is the analogue to T12 applied to quantity indexes: 

T13:  	Price Reversal Test (price weights symmetry test): 

{i=1 
N pi

1 qi
1/ i=1

N pi
0 qi

0}/P(p0,p1,q0,q1) = {i=1
N pi

0 qi
1/ i=1 

N pi
1 qi

0}/P(p1,p0,q0,q1). 
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Thus if we use (5) to define the quantity index Q in terms of the price index P, then it can 
be seen that T13 is equivalent to the following property for the associated quantity index 
Q: Q(p0,p1,q0,q1) = Q(p1,p0,q0,q1). That is, if the price vectors for the two periods are 
interchanged, then the quantity index remains invariant. Thus if prices for the same good 
in the two periods are used to weight quantities in the construction of the quantity index, 
then property T13 implies that these prices enter the quantity index in a symmetric 
manner. 

The next three tests are mean value tests. 

T14:  	Mean Value Test for Prices: 
  mini (pi

1/pi
0 : i=1,...,N)  P(p0,p1,q0,q1)  maxi (pi

1/pi
0 : i = 1,...,N). 

That is, the price index lies between the minimum price ratio and the maximum price 
ratio. Since the price index is supposed to be some sort of an average of the N price ratios, 
pi

1/pi
0, it seems essential that the price index P satisfy this test. 

The next test is the analogue to T14 applied to quantity indexes: 

T15:  	Mean Value Test for Quantities: 
  mini (qi

1/qi
0 : i=1,...,n)  {V1/V0}/ P(p0,p1,q0,q1)  maxi (qi

1/qi
0 : i = 1,...,n) 

where Vt is the period t value aggregate Vt  n=1 
N pn

tqn
t for t = 0,1. Using (5) to define 

the quantity index Q in terms of the price index P, we see that T15 is equivalent to the 
following property for the associated quantity index Q: 

(20) mini (qi
1/qi

0 : i=1,...,N)  Q(p0,p1,q0,q1)  maxi (qi
1/qi

0 : i = 1,...,N). 

That is, the implicit quantity index Q defined by P lies between the minimum and 
maximum rates of growth qi

1/qi
0 of the individual quantities. 

In section 3.2, we argued that it was very reasonable to take an average of the Laspeyres 
and Paasche price indexes as a single “best” measure of overall price change. This point 
of view can be turned into a test: 

T16:  Paasche and Laspeyres Bounding Test:  The price index P lies between the 
Laspeyres and Paasche indices, PL and PP, defined earlier by (7) and (8) above. 

The final four tests are monotonicity tests; i.e., how should the price index P(p0,p1,q0,q1) 
change as any component of the two price vectors p0 and p1 increases or as any 
component of the two quantity vectors q0 and q1 increases. 

T17:  	Monotonicity in Current Prices: P(p0,p1,q0,q1) < P(p0,p2,q0,q1) if p1 < p2. 

That is, if some period 1 price increases, then the price index must increase, so that 
P(p0,p1,q0,q1) is increasing in the components of p1. This property was proposed by 
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Eichhorn and Voeller (1976; 23) and it is a very reasonable property for a price index to 
satisfy. 

T18:  	Monotonicity in Base Prices: P(p0,p1,q0,q1) > P(p2,p1,q0,q1) if p0 < p2. 

That is, if any period 0 price increases, then the price index must decrease, so that 
P(p0,p1,q0,q1) is decreasing in the components of p0 . This very reasonable property was 
also proposed by Eichhorn and Voeller (1976; 23). 

T19:  	Monotonicity in Current Quantities: if q1 < q2, then 
{i=1 

N pi
1 qi

1/ i=1
N pi

0 qi
0}/P(p0,p1,q0,q1) < {i=1 

N pi
1 qi

2/ i=1
N pi

0 qi
0}/P(p0,p1,q0,q2). 

T20:  	Monotonicity in Base Quantities: if  q0 < q2, then 
{i=1 

N pi
1 qi

1/ i=1
N pi

0 qi
0}/P(p0,p1,q0,q1) > {i=1 

N pi
1 qi

1/ i=1
N pi

0 qi
2}/P(p0,p1,q2,q1). 

If we define the implicit quantity index Q that corresponds to P using (5), we find that 
T19 translates into the following inequality involving Q: 

(21) Q(p0,p1,q0,q1) < Q(p0,p1,q0,q2) if q1 < q2. 

That is, if any period 1 quantity increases, then the implicit quantity index Q that 
corresponds to the price index P must increase. Similarly, we find that T20 translates 
into: 

(22) Q(p0,p1,q0,q1) > Q(p0,p1,q2,q1) if q0 < q2. 

That is, if any period 0 quantity increases, then the implicit quantity index Q must 
decrease. Tests T19 and T20 are due to Vogt (1980, 70). 

The final test is Irving Fisher’s (1921; 534) (1922; 72-81) third reversal test (the other 
two being T9 and T11): 

T21:  	Factor Reversal Test (functional form symmetry test):
 P(p0,p1,q0,q1) P(q0,q1,p0,p1) = i=1 

N pi
1qi

1/ i=1
N pi

0qi
0 = V1/V0. 

A justification for this test is the following one: if P(p0,p1,q0,q1) is a good functional form 
for the price index, then if we reverse the roles of prices and quantities, P(q0,q1,p0,p1) 
ought to be a good functional form for a quantity index (which seems to be a correct 
argument) and thus the product of the price index P(p0,p1,q0,q1) and the quantity index 
Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) ought to equal the value ratio, V1/V0 . The second part of 
this argument does not seem to be valid and thus many researchers over the years have 
objected to the factor reversal test. 

It is straightforward to show that the Fisher ideal price index PF defined earlier by (9) 
satisfies all 21 tests. Is this the only index number formula that satisfies all of these tests? 
The answer is yes: Funke and Voeller (1978; 180) showed that the only index number 
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function P(p0,p1,q0,q1) which satisfies T1 (positivity), T11 (time reversal test), T12 
(quantity reversal test) and T21 (factor reversal test) is the Fisher ideal index PF defined 
by (9). Diewert (1992; 221) proved a similar result: namely that if P satisfied T1 and the 
three reversal tests T11-T13, then P must equal PF. 

Thus it seems that from the perspective of the above test approach to index number 
theory, the Fisher ideal index satisfies more “reasonable” tests than competing indexes 
and hence can be regarded as “best” from the viewpoint of this perspective. 

There is another perspective to the test approach to index number theory. The above 
approach looked at axioms or tests that pertained to situations where the price index was 
a function of the two price vectors, p0 and p1, and the two matching quantity vectors, q0 

and q1. In this framework, the two quantity vectors essentially act as weights for the 
prices. However, there is an alternative framework where the price index, say 
P*(p0,p1,e0,e1), is regarded as a function of the two price vectors, p0 and p1, and the two 
matching expenditure vectors, e0 and e1.29 An axiomatic approach to the determination of 
the functional form for indexes of this type is developed in the ILO (2004; 307-309) and 
the Törnqvist index defined earlier by (18) emerges as “best” from the perspective of this 
second test approach to index number theory. Thus both the Fisher and Törnqvist indexes 
can be given strong axiomatic justifications.  

There is one final important test that should be added to the above list of tests and that is 
the following circularity test 30 which involves looking at the prices and quantities that 
pertain to three periods: 

T22:  Circularity Test: P(p0,p1,q0,q1) P(p1,p2,q1,q2) = P(p0,p2,q0,q2). 

If this test is satisfied, then the rate of price change going from period 0 to 1, 
P(p0,p1,q0,q1), times the rate of price change going from period 1 to 2, P(p1,p2,q1,q2), is 
equal to the rate of price change going from period 0 to 2 directly, P(p0,p2,q0,q2). If there 
is only one commodity in the aggregate, then the price index P(p0,p1,q0,q1) just becomes 
the single price ratio, p1

1/p1
0, and the circularity test T22 becomes the equation 

[p1
1/p1

0][p1
2/p1

1] = [p1
2/p1

0], which is obviously satisfied. The equation in the circularity 
test illustrates the difference between chained index numbers and fixed base index 
numbers. The left hand side of T22 uses the chain principle to construct the overall 
inflation between periods 0 and 2 whereas the right hand side uses the fixed base 
principle to construct an estimate of the overall price change between periods 0 and 1.31 

29 Component n of the period t expenditure vector et is defined as en
t  pn

tqn
t for n = 1,...,N and t = 0,1. Thus 

if the price components pn
t are known, then a knowledge of either the quantity components qn

t or the 
expenditure components en

t will determine prices, quantities and expenditures in both periods.  
30 The test name is due to Fisher (1922; 413) and the concept was originally due to Westergaard (1890; 
218-219).
31 Thus when the chain principle is used, the price index P(pt,pt+1,qt,qt+1) is used to update the period t index 
level to construct the period t+1 index level, whereas the fixed base system constructs the period t+1 index 
level relative to period 0 directly as P(p0,pt+1,q0,qt+1), where the period 0 level is set equal to 1. Fisher 
(1911; 203) introduced this fixed base and chain terminology. The concept of chaining is due to Lehr 
(1885) and Marshall (1887; 373). 
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It would be good if our preferred index number formulae, the Fisher, Walsh and 
Törnqvist indexes (PF, PW and PT), satisfied the circularity test but unfortunately, none of 
these indexes satisfy T22. Thus if any of these indexes are used by a statistical agency, 
then the question arises: should the sequence of index values be computed using fixed 
base indexes or chained indexes? The remainder of this section will attempt to address 
this question. 

The first point to note is that fixed base indexes cannot be used for long periods of time in 
today’s dynamic economy where new commodities appear and older ones become 
obsolete. Under these conditions, it becomes increasingly difficult to match commodity 
prices over long periods of time and index number theory is dependent on a high degree 
of matching of the prices between the two periods being compared. However, this 
possible lack of matching does not rule out using fixed base indexes for shorter periods of 
time, say over a year or two. 

The main advantage of using chained indexes is that if prices and quantities are trending 
relatively smoothly, chaining will reduce the spread between the Paasche and Laspeyres 
indexes.32  These two indexes each provide an asymmetric perspective on the amount of 
price change that has occurred between the two periods under consideration and it could 
be expected that a single point estimate of the aggregate price change should lie between 
these two estimates. Thus the use of either a chained Paasche or Laspeyres index will 
usually lead to a smaller difference between the two and hence to estimates that are closer 
to the “truth”. Since annual data generally has smooth trends, the use of chained indexes 
is generally appropriate at this level of aggregation; see Hill (1993; 136-137).  

However, the story is different at subannual levels; i.e., if the index is to be produced at 
monthly or quarterly frequencies. Hill (1993; 388), drawing on the earlier research of 
Szulc (1983) and Hill (1988; 136-137), noted that it is not appropriate to use the chain 
system when prices oscillate or “bounce” to use Szulc’s (1983; 548) term. This 
phenomenon can occur in the context of regular seasonal fluctuations or in the context of 
sales. The price bouncing problem or the problem of chain drift can be illustrated if we 
make use of the following test due to Walsh (1901; 389), (1921b; 540) (1924; 506):33 

T23: Multiperiod Identity Test: P(p0,p1,q0,q1)P(p1,p2,q1,q2)P(p2,p0,q2,q0) = 1. 

Thus price change is calculated over consecutive periods but an artificial final period is 
introduced where the prices and quantities revert back to the prices and quantities in the 
very first period. The Walsh test T23 asks that the product of all of these price changes 
should equal unity. If prices have no definite trends but are simply bouncing up and down 
in a range, then the above test can be used to evaluate the amount of chain drift that 

32 See Diewert (1978; 895) and Hill (1988) (1993; 387-388). Chaining under these conditions will also 
reduce the spread between fixed base and chained indexes using PF, PW or PT as the basic bilateral formula. 
33 This is Diewert’s (1993; 40) term for the test. Walsh did not limit himself to just three periods as in T23; 
he considered an indefinite number of periods. If tests T3 and T22 are satisfied, then T23 will also be 
satisfied.  
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occurs if chained indexes are used under these conditions. Chain drift occurs when an 
index does not return to unity when prices in the current period return to their levels in 
the base period; see the ILO (2004; 445). Fixed base indexes operating under these 
conditions will not be subject to chain drift. 

It is possible to be a bit more precise under what conditions one should chain or not chain. 
Basically, one should chain if the prices and quantities pertaining to adjacent periods are 
more similar than the prices and quantities of more distant periods, since this strategy 
will lead to a narrowing of the spread between the Paasche and Laspeyres indexes at each 
link. Of course, one needs a measure of how similar are the prices and quantities 
pertaining to two periods. A practical problem with this similarity linking approach is: 
exactly how should the measure of price or quantity similarity be measured?34 For annual 
time series data, it turns out that for various “reasonable” similarity measures, chained 
indexes are generally consistent with the similarity approach to linking observations. 
However, for subannual data, it is generally better to use fixed base indexes in order to 
eliminate the problem of chain drift.  

We conclude this subsection with a discussion on how well our best indexes, PF, PW and 
PT defined by (9), (13) and (18) above, satisfy the circularity test, T22. Fisher (1922; 277) 
found that for his annual data set, the Fisher ideal index PF satisfied circularity to a 
reasonably high degree of approximation. It turns out that this result generally holds 
using annual data for PW and PT as well. It is possible to give a theoretical explanation for 
the approximate satisfaction of the circularity test for these three indexes. Alterman, 
Diewert and Feenstra (1999; 61) showed that if the logarithmic price ratios ln (pn

t/pn
t-1) 

trend linearly with time t and the expenditure shares si
t also trend linearly with time, then 

the Törnqvist index PT will satisfy the circularity test exactly.35  Since many economic 
time series on prices and quantities satisfy these assumptions approximately, the above 
exactness result will imply that the Törnqvist index PT will satisfy the circularity test 
approximately. But Diewert (1978; 888) showed that PT, PF and PW numerically 
approximate each other to the second order around an equal price and quantity point and 
so these three indexes will generally be very close to each other using annual time series 
data. Hence since PT will generally satisfy the circularity test to some degree of 
approximation, PF and PW will also satisfy circularity approximately in the time series 
context using annual data. Thus for annual economic time series, PF, PT and PW will 
generally satisfy the circularity test to a high enough degree of approximation so that it 
will not matter whether we use the fixed base or chain principle. However, this same 
conclusion does not hold for subannual data that has substantial period to period 
fluctuations in prices. For fluctuating subannual data, chained indexes can give very 
unsatisfactory results; i.e., Walsh’s multiperiod identity test will be far from being 

34 This similarity approach to linking bilateral comparisons into a complete set of comparisons across all

observations has been pioneered by Robert Hill (1999a) (1999b) (2001) (2004) (2009). For an axiomatic

approach to similarity measures, see Diewert (2009b).

35 This exactness result can be extended to cover the case when there are monthly proportional variations in

prices and the expenditure shares have constant seasonal effects in addition to linear trends; see Alterman, 

Diewert and Feenstra (1999; 65). 
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satisfied. Under these conditions, fixed base indexes or multilateral methods should be 
used.36 

3.5. The Economic Approach to Consumer Price Indexes 

In this subsection, we will outline the theory of the cost of living index for a single 
consumer (or household) that was first developed by the Russian economist, A. A. Konüs 
(1924).37 This theory relies on the assumption of optimizing behavior on the part of the 
consumer. Thus given a vector of commodity or input prices pt that the consumer faces in 
a given time period t, it is assumed that the corresponding observed quantity vector qt is 
the solution to a cost minimization problem that involves the consumer’s preference or 
utility function f. 

The economic approach assumes that “the” consumer has well defined preferences over 
different combinations of the N consumer commodities or items. The consumer’s 
preferences over alternative possible consumption vectors q are assumed to be 
representable by a nonnegative, continuous, increasing, and quasiconcave utility function 
f, which is defined over the nonnegative orthant. It is further assumed that the consumer 
minimizes the cost of achieving the period t utility level ut  f(qt) for periods t = 0,1. Thus 
the observed period t consumption vector qt solves the following period t cost 
minimization problem: 

(23) C(ut,pt)  min q {ptq : f(q) = ut} = ptqt ;   t = 0,1. 

The period t price vector for the N commodities under consideration that the consumer 
faces is pt. The Konüs (1939) family of true cost of living indexes  PK(p0,p1,q) between 
periods 0 and 1 is defined as the ratio of the minimum costs of achieving the same utility 
level u  f(q) where q is a positive reference quantity vector: 

(24) PK(p0,p1,q)  C[f(q),p1]/C[f(q),p0]. 

We say that definition (24) defines a family of price indexes because there is one such 
index for each reference quantity vector q chosen. However, if we place an additional 
restriction on the utility function f, then it turns out that the Konüs price index, 
PK(p0,p1,q), will no longer depend on the reference q. 

The extra assumption on f is that f be (positively) linearly homogeneous so that f(q) = 
f(q) for all  > 0 and all q   0N. In the economics literature, this extra assumption is 
known as the assumption of homothetic preferences. 38 Under this assumption, the 
consumer’s cost function, C(u,p) decomposes into uc(p) where c(p) is the consumer’s 

36 See Szulc (1983), Hill (1988) and Ivancic, Diewert and Fox (2011). 

37 For extensions to the case of many households, see Diewert (2001). 

38 More precisely, Shephard (1953) defined a homothetic function to be a monotonic transformation of a 

linearly homogeneous function. However, if a consumer’s utility function is homothetic, we can always

rescale it to be linearly homogeneous without changing consumer behavior. Hence, we simply identify the

homothetic preferences assumption with the linear homogeneity assumption. 
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unit cost function, c(p)  C(1,p), which corresponds to f. Under the assumption of cost 
minimizing behavior in both periods, it can be shown that the homotheticity assumption 
implies that equations (23) simplify to the following equations: 

(25) ptqt = c(pt)f(qt) for t = 0,1. 

Thus under the linear homogeneity assumption on the utility function f, observed period t 
expenditure on the n commodities is equal to the period t unit cost c(pt) of achieving one 
unit of utility times the period t utility level, f(qt). Obviously, we can identify the period t 
unit cost, c(pt), as the period t price level Pt and the period t level of utility, f(qt), as the 
period t quantity level Qt (as in section 3.1 above). 

The linear homogeneity assumption on the consumer’s preference function f leads to a 
simplification for the family of Konüs true cost of living indexes, PK(p0,p1,q), defined by 
(24) above. Using this definition for an arbitrary reference quantity vector q and the 
decomposition C(f(q),pt) = c(pt)f(q) for t = 0,1, we have: 

(26) PK(p0,p1,q)  C[f(q),p1]/C[f(q),p0] = c(p1)f(q)/c(p0)f(q) = c(p1)/c(p0). 

Thus under the homothetic preferences assumption, the entire family of Konüs true cost 
of living indexes collapses to a single index, c(p1)/c(p0), which is the ratio of the 
minimum costs of achieving a unit utility level when the consumer faces period 1 and 0 
prices respectively. 

If we use the Konüs true cost of living index defined by the right hand side of (26) as our 
price index concept, then the corresponding implicit quantity index can be defined as the 
value ratio divided by the Konüs price index: 

(27) Q(p0,p1,q0,q1,q)  p1q1/[p0q0 PK(p0,p1,q)] = f(q1)/f(q0). 

Thus under the homothetic preferences assumption, the implicit quantity index that 
corresponds to the true cost of living price index c(p1)/c(p0) is the utility ratio f(q1)/f(q0). 
Since the utility function is assumed to be homogeneous of degree one, this is the natural 
definition for a quantity index.39 

Recall that the Fisher price index, PF(p0,p1,q0,q1), was defined by (9). The companion 
Fisher quantity index, QF(p0,p1,q0,q1), can be defined using (5). Now suppose that the 
consumer’s preferences can be represented by the homothetic utility function f defined as 

(28) f(q)  [qTAq]1/2 

where  A  [aij] is an N by N symmetric matrix that has one positive eigenvalue (that has 
a strictly positive eigenvector) and the remaining N1 eigenvalues are zero or negative. 
Under these conditions, there will be a region of regularity where the function f is 

39 Samuelson and Swamy (1974) used this homothetic approach to index number theory. 
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positive, concave and increasing and hence f can provide a valid representation of 
preferences over this region. Using these preferences and the assumption of cost 
minimizing behavior in periods 0 and 1, it can be shown that 

(29) QF(p0,p1,q0,q1) = f(q1)/f(q0). 

Thus under the assumption that the consumer engages in cost minimizing behavior during 
periods 0 and 1 and has preferences over the N commodities that correspond to the utility 
function f defined by (28), the Fisher ideal quantity index QF is exactly equal to the true 
quantity index, f(q1)/f(q0).40 

Let c(p) be the unit cost function that corresponds to the homogeneous quadratic utility 
function f defined by (28). Then using (5), (9), (25) and (29), it can be shown that  

(30) PF(p0,p1,q0,q1) = c(p1)/c(p0). 

Thus under the assumption that the consumer engages in cost minimizing behavior during 
periods 0 and 1 and has preferences over the N commodities that correspond to the utility 
function f(q) = (qTAq)1/2, the Fisher ideal price index PF is exactly equal to the true price 
index, c(p1)/c(p0). The significance of (29) and (30) is that we can calculate the 
consumer’s true rate of utility growth and his or her true rate of price inflation without 
having to undertake any econometric estimation; i.e., the left hand sides of (29) and (30) 
can be calculated exactly using observable price and quantity data for the consumer for 
the two periods under consideration. Thus the present economic approach to index 
number theory using a ratio approach leads to practical solutions to the index number 
problem whereas the earlier levels approach explained in section 3.1 did not lead to 
practical solutions.  

A twice continuously differentiable function f(q) of N variables q can provide a second 
order approximation to another such function f*(q) around the point q* if the level and all 
of the first and second order partial derivatives of the two functions coincide at q*. It can 
be shown 41 that the homogeneous quadratic function f can provide a second order 
approximation to an arbitrary f* around any point q* in the class of twice continuously 
differentiable linearly homogeneous functions. Thus the homogeneous quadratic 
functional form defined by (28) is a flexible functional form.42  Diewert (1976; 117) 
termed an index number formula QF(p0,p1,q0,q1) that was exactly equal to the true 
quantity index f(q1)/f(q0) (where f is a flexible functional form) a superlative index 
number formula.43  Equation (29), and the fact that the homogeneous quadratic function f 
defined by (28) is a flexible functional form, shows that the Fisher ideal quantity index 
QF is a superlative index number formula. Since the Fisher ideal price index PF also 

40 This result was first derived by Konüs and Byushgens (1926). For an alternative derivation and the early

history of this result, see Diewert (1976; 116).   

41 See Diewert (1976; 130) and let the parameter r equal 2.

42 Diewert (1974; 133) introduced this term to the economics literature. 

43 As we have seen earlier, Fisher (1922; 247) used the term superlative to describe the Fisher ideal price

index. Thus Diewert adopted Fisher’s terminology but attempted to give more precision to Fisher’s 

definition of superlativeness.
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satisfies (30) where c(p) is the dual unit cost function that is generated by the 
homogeneous quadratic utility function, PF is also a superlative index number formula. 

It turns out that there are many other superlative index number formulae; i.e., there exist 
many quantity indexes Q(p0,p1,q0,q1) that are exactly equal to f(q1)/f(q0) and many price 
indexes P(p0,p1,q0,q1) that are exactly equal to c(p1)/c(p0) where the aggregator function f 
or the unit cost function c is a flexible functional form. We will define a family of 
superlative indexes below. 

Suppose that the consumer has the following quadratic mean of order r utility function:44 

(31) f r(q1,…,qN)  [i=1 
Nk=1

N aik qi
r/2 qk

r/2 ]1/r 

where the parameters aik satisfy the symmetry conditions  aik = aki for all i and k and the 
parameter r satisfies the restriction r  0. Diewert (1976; 130) showed that the utility 
function fr defined by (49) is a flexible functional form; i.e., it can approximate an 
arbitrary twice continuously differentiable linearly homogeneous functional form to the 
second order.45  Note that when r = 2, fr equals the homogeneous quadratic function 
defined by (28) above. 

Define the quadratic mean of order r quantity index Qr by: 

(32) Qr(p0,p1,q0,q1)  {i=1
N si

0 (qi
1/qi

0)r/2}1/r {i=1
N si

1 (qi
1/qi

0)r/2}1/r 

where si
t   pi

tqi
t/k=1 

Npk
tqk

t is the period t expenditure share for commodity i. It can be 
verified that when r = 2, Qr simplifies to QF, the Fisher ideal quantity index. It can be 
shown that Qr is exact for the aggregator function fr defined by (31); i.e., we have 

(33) Qr(p0,p1,q0,q1) = fr(q1)/fr(q0). 

Thus under the assumption that the consumer engages in cost minimizing behavior during 
periods 0 and 1 and has preferences over the N commodities that correspond to the utility 
function defined by (31), the quadratic mean of order r quantity index QF is exactly equal 
to the true quantity index, fr(q1)/fr(q0).46 Since Qr is exact for fr and fr is a flexible 
functional form, we see that the quadratic mean of order r quantity index Qr is a 
superlative index for each r  0. Thus there are an infinite number of superlative quantity 
indexes. 

For each quantity index Qr, we can use (5) in order to define the corresponding implicit 
quadratic mean of order r price index Pr: 

44 This terminology is due to Diewert (1976; 129). 

45 This result holds for any predetermined r  0; i.e., we require only the N(N+1)/2 independent aik


parameters in order to establish the flexibility of fr in the class of linearly homogeneous aggregator

functions.

46 See Diewert (1976; 130). 
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(34) Pr(p0,p1,q0,q1)  p1q1/[p0q0Qr(p0,p1,q0,q1)] = cr(p1)/cr(p0) 

where cr is the unit cost function that is dual to the aggregator function fr defined by (31) 
above. For each r  0, the implicit quadratic mean of order r price index Pr is also a 
superlative index. 

When r = 2, Qr defined by (50) simplifies to QF, the Fisher ideal quantity index and Pr 

defined by (52) simplifies to PF, the Fisher ideal price index. When r = 1, Qr defined by 
(32) simplifies to 

(35) Q1(p0,p1,q0,q1) = [p1q1/p0q0]/PW(p0,p1,q0,q1) 

where PW is the Walsh (1901; 398) (1921a; 97) price index defined earlier by (13). Thus 
the Walsh price index is also a superlative price index. 

The above results provide reasonably strong justifications for the Fisher and Walsh price 
indexes from the viewpoint of the economic approach. An even stronger justification47 

can be provided for the Törnqvist Theil index PT defined by (18) as we will show below. 

Suppose that the consumer’s cost function, C(u,p), has the following translog functional 
form:48 

(36) lnC(u,p)  a0 + i=1 
N ai lnpi + (1/2) i=1

N k=1
N aik lnpi lnpk

 + b0 lnu + i=1 
N bi lnpi lnu + (1/2) b00 [lnu]2 

where ln is the natural logarithm function and the parameters ai, aik, and bi satisfy the 
following restrictions: (i) aik = aki for i,k = 1,…,N; (ii) i=1

N ai = 1; (iii) i=1
N bi = 0; (iv) 

k=1
N  aik = 0  for i = 1,…,N. These restrictions ensure that C(u,p) defined by (36) is 

linearly homogeneous in p. It can be shown that this translog cost function can provide a 
second order Taylor series approximation to an arbitrary cost function.49 

We assume that the consumer engages in cost minimizing behavior during periods 0 and 
1 and has the preferences that are dual to the translog cost function defined by (36). 
Define the geometric average of the period 0 and 1 utility levels as u*  [u0u1]1/2. Then it 
can be shown that the log of PT defined by (19) is exactly equal to the log of the Konüs 
true cost of living index that corresponds to the reference indifference surface that is 
indexed by the intermediate utility level u*; i.e., we have the following exact identity:50 

47 The exact index number formula (55) is stronger than the above results because we no longer have to

assume homothetic preferences. 

48 Christensen, Jorgenson and Lau (1975) and Diewert (1976) introduced this function into the economics

and index number literature. 

49 It can also be shown that if b0 = 1 and all of the bi = 0 for i = 1,...,N and b00 = 0, then C(u,p) = uC(1,p) 

uc(p); i.e., with these additional restrictions on the parameters of the general translog cost function, we

have homothetic preferences. 

50 This result is due to Diewert (1976; 122).
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(37) C(u*,p1)/C(u*,p0) = PT(p0,p1,q0,q1). 

Since the translog cost function is a flexible functional form, the Törnqvist-Theil price 
index PT is also a superlative index.51  The importance of (37) as compared to the earlier 
exact index number results is that it is no longer necessary to assume that preferences are 
homothetic. However, it is necessary to choose the reference utility level on the left hand 
side of (37) to be the geometric mean of u0 and u1 in order to obtain the new exact index 
number result.52 

It is somewhat mysterious how a ratio of unobservable cost functions of the form 
appearing on the left hand side of the above equation can be exactly estimated by an 
observable index number formula but the key to this mystery is the assumption of cost 
minimizing behavior and the quadratic nature of the underlying preferences. In fact, all of 
the exact index number results derived in this section can be derived using 
transformations of a quadratic identity.53 

The important message to take home from this subsection is that the Fisher, Walsh and 
Theil indexes, PF, PW and PT, can all be given strong justifications from the viewpoint of 
the economic approach to index number theory. Note that these same formulae also 
emerged as being “best” from the viewpoints of the basket, stochastic and test approaches 
to index number theory. Thus the four major approaches to bilateral index number theory 
lead to the same three formulae as being best. Which formula should then be used by a 
statistical agency as their target index? It turns out that for “typical” time series data, it 
will not matter much, since the three indexes will generally numerically approximate 
each other very closely.54 

We now turn our attention to test and stochastic approaches to the determination of “best” 
functional forms for elementary indexes. 

51 Diewert (1978; 888) showed that PT(p0,p1,q0,q1) approximates the other superlative indexes Pr and Pr* to 
the second order around an equal price and quantity point.
52 For exact index number results in the context of quantity indexes and nonhomothetic preferences that are 
analogous to (37), see Diewert (1976; 123-124) and Diewert (2009a; 241) where the first paper uses 
Malmquist (1953) quantity indexes and the second one uses Allen (1949) quantity indexes. It is also 
possible to generalize the result (37) to situations where the consumer changes his or her tastes going from 
period 0 to period 1. Again, under the assumption that the consumer has (possibly different) translog 
preferences in each period, it can be shown that the Törnqvist price index PT is exactly equal to the 
geometric mean of two separate price indexes where the tastes for one period are used in one true cost of 
living index and the tastes for the other period are used in the other true cost of living index. There are 
some restrictions on the degree of difference in the preferences over the two periods; see Caves, 
Christensen and Diewert (1982; 1409-1411). On index number theory under changing preferences, see also 
Balk (1989). 
53 See Diewert (2002). 
54 As mentioned earlier, Diewert (1978; 888) showed that all known (at that time) superlative indexes 
numerically approximated each other to the second order around a point where p0 = p1 and q0 = q1. Thus if 
prices and quantities do not change “too much” between the two periods being compared, PF, PW and PT 

will generate very similar indexes. It is interesting to note that Edgeworth (1901; 411-412) used the same 
methodology to show that the Marshall (1887) Edgeworth (1925) index PME(p0,p1,q0,q1)   p1(q0+q1) 
/p0(q0+q1) approximated the Walsh index PW to the second order around an equal price and quantity point. 
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4. Alternative Approaches to the Specification of Elementary Indexes 

4.1. Introduction 

In all countries, the calculation of a Consumer Price Index proceeds in two (or more) 
stages.  In the first stage of calculation, elementary price indexes are estimated for the 
elementary expenditure aggregates of a CPI. In the second and higher stages of 
aggregation, these elementary price indexes are combined to obtain higher level indexes 
using information on the expenditures on each elementary aggregate as weights. An 
elementary aggregate consists of the expenditures on a small and relatively homogeneous 
set of products defined within the consumption classification used in the CPI. Samples of 
prices are collected within each elementary aggregate, so that elementary aggregates 
serve as strata for sampling purposes. 

Data on the expenditures, or quantities, of the different goods and services are typically 
not available within an elementary aggregate. As there are no quantity or expenditure 
weights, most of the index number theory outlined in the previous sections is not directly 
applicable. An elementary price index is a more primitive concept that relies on price 
data only. 

The question of what is the most appropriate formula to use to estimate an elementary 
price index is considered in this section.55 The quality of a CPI depends heavily on the 
quality of the elementary indexes, which are the basic building blocks from which CPIs 
are constructed. 

CPI compilers have to select representative products within an elementary aggregate and 
then collect a sample of prices for each of the representative products, usually from a 
sample of different outlets. The individual products whose prices are actually collected 
are described as the sampled products. Their prices are collected over a succession of 
time periods. An elementary price index is therefore typically calculated from two sets of 
matched price observations. It is assumed initially that there are no missing observations 
and no changes in the quality of the products sampled so that the two sets of prices are 
perfectly matched. 

4.2. Elementary Indexes used in Practice 

Suppose that there are M lowest level items or specific commodities in a chosen 
elementary category. Denote the period t price of item m by pm

t for t = 0,1 and for items 
m = 1,2,...,M. Define the period t price vector as pt  [p1

t,p2
t,...,pM

t] for t = 0,1. 

The first widely used elementary index number formula is due to the French economist 
Dutot (1738): 

(38) PD(p0,p1)  [m=1 
M (1/M) pm

1]/[m=1 
M (1/M) pm

0] = [m=1 
M pm

1]/[m=1 
M pm

0]. 

55 The material in this section draws heavily on the contributions of Dalén (1992), Balk (1994) (1998) 
(2002) and Diewert (1995a) (2002) which are reflected in the ILO (2004; 355-371). 
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Thus the Dutot elementary price index is equal to the arithmetic average of the M period 
1 prices divided by the arithmetic average of the M period 0 prices. 

The second widely used elementary index number formula is due to the Italian economist 
Carli (1764): 

(39) PC(p0,p1)  m=1 
M (1/M)(pm

1/pm
0). 

Thus the Carli elementary price index is equal to the arithmetic average of the M item 
price ratios or price relatives, pm

1/pm
0. This formula was already encountered in our study 

of the unweighted stochastic approach to index numbers; recall (15) above. 

The third widely used elementary index number formula is due to the English economist 
Jevons (1865): 

(40) PJ(p
0,p1)  m=1 

M (pm
1/pm

0)1/M. 

Thus the Jevons elementary price index is equal to the geometric average of the M item 
price ratios or price relatives, pm

1/pm
0. Again, this formula was introduced as formula (17) 

in our discussion of the unweighted stochastic approach to index number theory. 

The fourth elementary index number formula PH is the harmonic average of the M item 
price relatives and it was first suggested in passing as an index number formula by Jevons 
(1865; 121) and Coggeshall (1887): 

(41) PH(p0,p1)  [m=1 
M (1/M)(pm

1/pm
0)1]1. 

Finally, the fifth elementary index number formula is the geometric average of the Carli 
and harmonic formulae; i.e., it is the geometric mean of the arithmetic and harmonic 
means of the M price relatives: 

(42) PCSWD(p0,p1)  [PC(p0,p1) PH(p0,p1)]1/2. 

This index number formula was first suggested by Fisher (1922; 472) as his formula 101. 
Fisher also observed that, empirically for his data set, PCSWD was very close to the Jevons 
index, PJ, and these two indexes were his “best’ unweighted index number formulae. In 
more recent times, Carruthers, Sellwood and Ward (1980; 25) and Dalén (1992; 140) also 
proposed PCSWD as an elementary index number formula. 

Having defined the most commonly used elementary formulae, the question now arises: 
which formula is “best”? Obviously, this question cannot be answered until desirable 
properties for elementary indexes are developed. This will be done in a systematic 
manner in section 4.4 below (using the test approach) but in the present section, one 
desirable property for an elementary index will be noted. This is the time reversal test, 
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which was noted earlier. In the present context, this test for the elementary index P(p0,p1) 
becomes: 

(43) P(p0,p1)P(p1,p0) = 1. 

This test says that if the prices in period 2 revert to the initial prices of period 0, then the 
product of the price change going from period 0 to 1, P(p0,p1), times the price change 
going from period 1 to 2, P(p1,p0), should equal unity; i.e., under the stated conditions, we 
should end up where we started.56 It can be verified that the Dutot, Jevons and Carruthers, 
Sellwood, Ward and Dalén indexes, PD, PJ and PCSWD, all satisfy the time reversal test but 
that the Carli and Harmonic indexes, PC and PH, fail this test. In fact, these last two 
indexes fail the test in the following biased manner: 

(44) PC(p0,p1) PC(p1,p0)  1 ; 
(45) PH(p0,p1) PH(p1,p0)  1 

with strict inequalities holding in (44) and (45) provided that the period 1 price vector p1 

is not proportional to the period 0 price vector p0.57 Thus the Carli index will generally 
have an upward bias while the Harmonic index will generally have a downward bias. As 
noted earlier, Fisher (1922; 66 and 383) was quite definite in his condemnation of the 
Carli index due to its upward bias58 and perhaps as a result, the use of the Carli index was 
not permitted in compiling elementary price indexes for the Harmonized Index of 
Consumer Prices (HICP) that is the official Eurostat index used to compare consumer 
prices across European Union countries. 

In the following section, some numerical relationships between the five elementary 
indexes defined in this section will be established. Then in the subsequent section, a more 
comprehensive list of desirable properties for elementary indexes will be developed and 
the five elementary formulae will be evaluated in the light of these properties or tests. 

4.3. Numerical Relationships between the Frequently Used Elementary Indexes 

It can be shown59 that the Carli, Jevons and Harmonic elementary price indexes satisfy 
the following inequalities: 

(46) PH(p0,p1)  PJ(p
0,p1)  PC(p0,p1) ; 

i.e., the Harmonic index is always equal to or less than the Jevons index which in turn is 
always equal to or less than the Carli index. In fact, the strict inequalities in (46) will hold 

56 This test can also be viewed as a special case of Walsh’s Multiperiod Identity Test, T23. 

57 These inequalities follow from the fact that a harmonic mean of M positive numbers is always equal to or

less than the corresponding arithmetic mean; see Walsh (1901;517) or Fisher (1922; 383-384). This 

inequality is a special case of Schlömilch’s Inequality; see Hardy, Littlewood and Polya (1934; 26).

58 See also Szulc (1987; 12) and Dalén (1992; 139). Dalén (1994; 150-151) provides some nice intuitive 

explanations for the upward bias of the Carli index. 

59 Each of the three indexes PH, PJ and PC is a mean of order r where r equals 1, 0 and 1 respectively and

so the inequalities follow from Schlömilch’s inequality; see Hardy, Littlewood and Polya (1934; 26).
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provided that the period 0 vector of prices, p0, is not proportional to the period 1 vector of 
prices, p1. 

The inequalities (46) do not tell us by how much the Carli index will exceed the Jevons 
index and by how much the Jevons index will exceed the Harmonic index. Hence, in the 
remainder of this section, some approximate relationships between the five indexes 
defined in the previous section will be developed that will provide some practical 
guidance on the relative magnitudes of each of the indexes. 

The first approximate relationship that will be derived is between the Jevons index PJ and 
the Dutot index PD. For each period t, define the arithmetic mean of the M prices 
pertaining to that period as follows: 

(47) pt*  m=1 
M (1/M) pm

t ; t = 0,1. 

Now define the multiplicative deviation of the mth price in period t relative to the mean 
price in that period, em

t, as follows: 

(48) pm
t = pt*(1+em

t) ; m = 1,...,M ; t = 0,1. 

Note that (47) and (48) imply that the deviations em
t sum to zero in each period; i.e., we 

have: 

(49) m=1 
M em

t = 0 ; t = 0,1. 

Note that the Dutot index can be written as the ratio of the mean prices, p1*/p0*; i.e., we 
have: 

(50) PD(p0,p1) = p1*/p0*. 


Now substitute equations (48) into the definition of the Jevons index, (40):


(51) PJ(p
0,p1) = m=1 

M [p1*(1+em
1)/p0*(1+em

0)]1/M

  = [p1*/p0*] m=1 
M [(1+em

1)/(1+em
0)]1/M

  = PD(p0,p1) f(e0,e1) using definition (38) 

where et  [e1
t,...,eM

t] for t = 0 and 1, and the function f is defined as follows: 

(52) f(e0,e1)  m=1 
M [(1+em

1)/(1+em
0)]1/M. 

Expand f(e0,e1) by a second order Taylor series approximation around e0 = 0M and e1 = 
0M. Using (49), it can be verified60 that we obtain the following second order approximate 
relationship between PJ and PD: 

60 This approximate relationship was first obtained by Carruthers, Sellwood and Ward (1980; 25). 
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(53) PJ(p
0,p1)  PD(p0,p1)[1 + (1/2M)e0e0   (1/2M)e1e1] 

  = PD(p0,p1)[1 + (1/2)var(e0)  (1/2)var(e1)] 

where var(et) is the variance of the period t multiplicative deviations; i.e., for t = 0,1: 

(54) var(et)  (1/M)m=1 
M(em

t  et*)2

  = (1/M)m=1 
M(em

t )2 since et* = 0 using (49)
  = (1/M) etet . 

Under normal conditions61, the variance of the deviations of the prices from their means 
in each period is likely to be approximately constant and so under these conditions, the 
Jevons price index will approximate the Dutot price index to the second order. 

Note that with the exception of the Dutot formula, the remaining four elementary indexes 
defined in subsection 4.2 are functions of the relative prices of the M items being 
aggregated. This fact is used in order to derive some approximate relationships between 
these four elementary indexes. Thus define the mth price relative as 

(55) rm  pm
1/pm

0 ; m = 1,...,M. 

Define the arithmetic mean of the m price relatives as 

(56) r*  (1/M) m=1 
M rm = PC(p0,p1) 

where the last equality follows from the definition (39) of the Carli index. Finally, define 
the deviation  em of the mth price relative rm from the arithmetic average of the M price 
relatives r* as follows: 

(57) rm = r *(1+em) ;   m = 1,...,M.  

Note that (56) and (57) imply that the deviations em sum to zero; i.e., we have: 

(58) m=1 
M em = 0. 

Now substitute equations (57) into the definitions of PC, PJ, PH and PCSWD, (39)-(42) 
above, in order to obtain the following representations for these indexes in terms of the 
vector of deviations, e  [e1,...,eM]: 

(59) PC(p0,p1) = m=1 
M (1/M)rm = r*1  r*fC(e) ; 

(60) PJ(p
0,p1) = m=1 

M rm
1/M = r*m=1 

M (1+em)1/M  r*fJ(e) ; 
(61) PH(p0,p1) = [m=1 

M (1/M)(rm)1]1  = r*[m=1 
M (1/M)(1+em)1]1  r*fH(e) ; 

61 If there are significant changes in the overall inflation rate, some studies indicate that the variance of 
deviations of prices from their means can also change. Also if M is small, then there will be sampling 
fluctuations in the variances of the prices from period to period, leading to random differences between the 
Dutot and Jevons indexes. 
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(62) PCSWD(p0,p1) = [PC(p0,p1)PH(p0,p1)]1/2 = r *[fC(e)fH(e)]1/2  r*fCSWD(e) 

where the last equation in (59)-(62) serves to define the deviation functions, fC(e), fJ(e), 
fH(e) and fCSWD(e). The second order Taylor series approximations to each of these 
functions62 around the point e = 0M are: 

(63) fC(e)  1 ; 
(64) fJ(e)  1  (1/2M)ee = 1  (1/2)var(e) ; 
(65) fH(e)  1  (1/M)ee   = 1  var(e) ; 
(66) fCSWD(e)  1  (1/2M)ee = 1  (1/2)var(e) 

where we have made repeated use of (58) in deriving the above approximations.63 Thus 
to the second order, the Carli index PC will exceed the Jevons and Carruthers Sellwood 
Ward Dalén indexes, PJ and PCSWD, by (1/2)r*var(e), which is r* times one half the 
variance of the M price relatives pm

1/pm
0. Similarly, to the second order, the Harmonic 

index PH will lie below the Jevons and Carruthers Sellwood Ward Dalén indexes, PJ and 
PCSWD, by r* times one half the variance of the M price relatives pm

1/pm
0. 

Thus empirically, it is expected that the Jevons and Carruthers Sellwood Ward and Dalén 
indexes will be very close to each other. Using the previous approximation result (53), it 
is expected that the Dutot index PD will also be fairly close to PJ and PCSWD, with some 
fluctuations over time due to changing variances of the period 0 and 1 deviation vectors, 
e0 and e1. Thus it is expected that these three elementary indexes will give much the same 
numerical answers in empirical applications. On the other hand, the Carli index can be 
expected to be substantially above these three indexes, with the degree of divergence 
growing as the variance of the M price relatives grows. Similarly, the Harmonic index 
can be expected to be substantially below the three middle indexes, with the degree of 
divergence growing as the variance of the M price relatives grows. 

4.4. The Test Approach to Elementary Indexes 

Recall that in subsection 3.4, the axiomatic approach to bilateral price indexes 
P(p0,p1,q0,q1) was developed. In the present subsection, the elementary price index 
P(p0,p1) depends only on the period 0 and 1 price vectors, p0 and p1 respectively so that 
the elementary price index does not depend on the period 0 and 1 quantity vectors, q0 and 
q1. One approach to obtaining new tests or axioms for an elementary index is to look at 
the twenty or so axioms that were listed in subsection 3.4 for bilateral price indexes 
P(p0,p1,q0,q1) and adapt those axioms to the present context; i.e., use the old bilateral tests 
for P(p0,p1,q0,q1) that do not depend on the quantity vectors q0 and q1 as tests for an 
elementary index P(p0,p1).64 This approach will be utilized in the present subsection. 

62 From (59), it can be seen that fC(e) is identically equal to 1 so that (63) will be an exact equality rather

than an approximation. 

63 These second order approximations are due to Dalén (1992; 143) for the case r* = 1 and to Diewert 

(1995; 29) for the case of a general r*. 

64 This was the approach used by Diewert (1995a; 5-17), who drew on the earlier work of Eichhorn (1978;

152-160) and Dalén (1992).
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The first eight tests or axioms are reasonably straightforward and uncontroversial: 

T1: Continuity: P(p0,p1) is a continuous function of the M positive period 0 prices p0  
[p1

0,...,pM
0] and the M positive period 1 prices p1  [p1

1,...,pM
1]. 

T2: Identity: P(p,p) = 1; i.e., the period 0 price vector equals the period 1 price vector, 
then the index is equal to unity. 

T3: Monotonicity in Current Period Prices: P(p0,p1) < P(p0,p) if p1 < p; i.e., if any period 
1 price increases, then the price index increases. 

T4: Monotonicity in Base Period Prices: P(p0,p1) > P(p,p1) if p0 < p; i.e., if any period 0 
price increases, then the price index decreases. 

T5: Proportionality in Current Period Prices: P(p0,p1) = P(p0,p1) if  > 0; i.e., if all 
period 1 prices are multiplied by the positive number , then the initial price index is also 
multiplied by . 

T6: Inverse Proportionality in Base Period Prices: P(p0,p1) = 1 P(p0,p1) if  > 0; i.e., 
if all period 0 prices are multiplied by the positive number , then the initial price index 
is multiplied by 1/. 

T7: Mean Value Test: min m{pm
1/pm

0 : m = 1,...,M}  P(p0,p1)  max m{pm
1/pm

0 : m = 
1,...,M}; i.e., the price index lies between the smallest and largest price relatives. 

T8: Symmetric Treatment of Outlets: P(p0,p1) = P(p0*,p1*) where p0* and p1* denote the 
same permutation of the components of p0 and p1; i.e., if we change the ordering of the 
outlets (or households) from which we obtain the price quotations for the two periods, 
then the elementary index remains unchanged. 

Eichhorn (1978; 155) showed that Tests 1, 2, 3 and 5 imply Test 7, so that not all of the 
above tests are logically independent. 

The following tests are more controversial and are not necessarily accepted by all price 
statisticians. 

T9: The Price Bouncing Test: P(p0,p1) = P(p0*,p1**) where p0* and p1** denote possibly 
different permutations of the components of p0 and p1; i.e., if the ordering of the price 
quotes for both periods is changed in possibly different ways, then the elementary index 
remains unchanged. 

Obviously, T8 is a special case of T9 where the two permutations of the initial ordering 
of the prices are restricted to be the same. Thus T9 implies T8. Test T9 is due to Dalén 
(1992; 138). He justified this test by suggesting that the price index should remain 
unchanged if outlet prices “bounce” in such a manner that the outlets are just exchanging 
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prices with each other over the two periods. While this test has some intuitive appeal, it is 
not consistent with the idea that outlet prices should be matched to each other in a one to 
one manner across the two periods.65 

The following test was also proposed by Dalén (1992) in the elementary index context: 

T10: Time Reversal: P(p1,p0) = 1/P(p0,p1); i.e., if the data for periods 0 and 1 are 
interchanged, then the resulting price index should equal the reciprocal of the original 
price index. 

It is difficult to accept an index that gives a different answer if the ordering of time is 
reversed. 

T11: Circularity: P(p0,p1)P(p1,p2) = P(p0,p2); i.e., the price index going from period 0 to 1 
times the price index going from period 1 to 2 equals the price index going from period 0 
to 2 directly. 

The circularity and identity tests imply the time reversal test; (just set p2 = p0). The 
circularity property would seem to be a very desirable property: it is a generalization of a 
property that holds for a single price relative. 

T12: Commensurability: P(1p1
0,..., MpM

0; 1p1
1,..., MpM

1) = P(p1
0,...,pM

0; p1
1,...,pM

1) = 
P(p0,p1) for all 1 > 0, ... , M > 0; i.e., if we change the units of measurement for each 
commodity in each outlet, then the elementary index remains unchanged. 

In the bilateral index context, virtually every price statistician accepts the validity of this 
test. However, in the elementary context, this test is more controversial. If the M items in 
the elementary aggregate are all very homogeneous, then it makes sense to measure all of 
the items in the same units. Hence, if we change the unit of measurement in this 
homogeneous case, then test T12 should restrict all of the m to be the same number (say 
) and test T12 becomes the following test: 

(67) P(p0,p1) = P(p0,p1) ;   > 0. 

Note that (67) will be satisfied if tests T5 and T6 are satisfied. 

However, in actual practice, elementary strata will not be very homogeneous: there will 
usually be thousands of individual items in each elementary aggregate and the hypothesis 
of item homogeneity is not warranted. Under these circumstances, it is important that the 
elementary index satisfy the commensurability test, since the units of measurement of the 

65 Since a typical official Consumer Price Index consists of approximately 600 to 1000 separate strata 
where an elementary index needs to be constructed for each stratum, it can be seen that many strata will 
consist of quite heterogeneous items. Thus for a fruit category, some of the M items whose prices are used 
in the elementary index will correspond to quite different types of fruit with quite different prices. 
Randomly permuting these prices in periods 0 and 1 will lead to very odd price relatives in many cases, 
which may cause the overall index to behave badly unless the Jevons or Dutot formula is used. 
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heterogeneous items in the elementary aggregate are arbitrary and hence the price 
statistician can change the index simply by changing the units of measurement for some 
of the items. 

This completes the listing of the tests for an elementary index. There remains the task of 
evaluating how many tests are passed by each of the five elementary indexes defined in 
subsection 4.2 above. 

It is straightforward to show the following results hold: 

 The Jevons elementary index PJ satisfies all of the above tests. 
 The Dutot index PD satisfies all of the tests with the important exception of the 

Commensurability Test T12, which it fails. 
 The Carli and Harmonic elementary indexes, PC and PH, fail the price bouncing 

test T9, the time reversal test T10 and the circularity test T11 but pass the other 
tests. 

 The geometric mean of the Carli and Harmonic elementary indexes, PCSWD, fails 
only the (suspect) price bouncing test T9 and the circularity test T11. 

Thus the Jevons elementary index PJ satisfies all of the tests and hence emerges as being 
“best” from the viewpoint of the axiomatic approach to elementary indexes. 

The Dutot index PD satisfies all of the tests with the important exception of the 
Commensurability Test T12, which it fails. If there are heterogeneous items in the 
elementary aggregate, this is a rather serious failure and hence price statisticians should 
be careful in using this index under these conditions. 

The geometric mean of the Carli and Harmonic elementary indexes fail only the (suspect) 
price bouncing test T9 and the circularity test T11. The failure of these two tests is 
probably not a fatal failure and so this index could be used by price statisticians (who 
used the test approach for guidance in choosing an index formula), if for some reason, it 
was decided not to use the Jevons formula. As was noted in subsection 4.3 above, 
numerically, PCSWD should be very close to PJ. 

The Carli and Harmonic elementary indices, PC and PH, fail the (suspect) price bouncing 
test T9, the time reversal test T10 and the circularity test T11 and pass the other tests. The 
failure of T9 and T11 is again not a fatal failure but the failure of the time reversal test 
T10 (with an upward bias for the Carli and a downward bias for the Harmonic) is a rather 
serious failure and so price statisticians should avoid using these indexes. 

In the following section, we present an argument due originally to Irving Fisher on why it 
is desirable for an index number formula to satisfy the time reversal test. 
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4.5 An Index Number Formula Should be Invariant to the Choice of the Base Period 

There is a problem with the Carli and Harmonic indexes which was first pointed out by 
Irving Fisher:66 the rate of price change measured by the index number formula between 
two periods is dependent on which period is regarded as the base period. Thus the Carli 
index, PC(p0,p1) as defined by (39), takes period 0 as the base period and calculates (one 
plus) the rate of price change between periods 0 and 1.67 Instead of choosing period 0 to 
be the base period, we could equally choose period 1 to be the base period and measure a 
reciprocal inflation rate going backwards from period 1 to period 0 and this backwards 
measured inflation rate would be m=1 

M (1/M)(pm
0/pm

1). In order to make this backwards 
inflation rate comparable to the forward inflation rate, we then take the reciprocal of 
m=1 

M (1/M)(pm
0/pm

1) and thus the overall inflation rate going from period 0 to 1 using 
period 1 as the base period is the following Backwards Carli index PBC:68 

(68) PBC(p0,p1)  [n=1
N (1/M)(pn

1/pn
0)1]1  = PH(p0,p1) ; 

i.e., the Backwards Carli index turns out to equal the Harmonic index PH(p0,p1) defined 
earlier by (41). 

If the forward and backwards methods of computing price change between periods 0 and 
1 using the Carli formula were equal, then we would have the following equality: 

(69) PC(p0,p1) = PH(p0,p1). 

Fisher argued that a good index number formula should satisfy (69) since the end result 
of using the formula should not depend on which period was chosen as the base period.69 

This seems to be a persuasive argument: if for whatever reason, a particular formula is 
favoured, where the base period 0 is chosen to the period which appears before the 
comparison period 1, then the same arguments which justify the forward looking version 
of the index number formula can be used to justify the backward looking version. If the 
forward and backward versions of the index agree with one another, then it does not 

66 “Just as the very idea of an index number implies a set of commodities, so it implies two (and only two) 
times (or places). Either one of the two times may be taken as the ‘base’. Will it make a difference which is 
chosen? Certainly it ought not and our Test 1 demands that it shall not. More fully expressed, the test is that 
the formula for calculating an index number should be such that it will give the same ratio between one 
point of comparison and the other point, no matter which of the two is taken as the base.” Irving Fisher 
(1922; 64).
67 Instead of calculating price inflation between periods 0 and 1, period 1 can be replaced by any period t 
that follows period 1; i.e., p1 in the Carli formula PC(p0,p1) can be replaced by pt and then the index 
PC(p0,pt) measures price change between periods 0 and t. The arguments concerning PC(p0,p1) which follow 
apply equally well to PC(p0,pt).
68 Fisher (1922; 118) termed the backward looking counterpart to the usual forward looking index the time 
antithesis of the original index number formula. Thus PH is the time antithesis to PC. The Harmonic index 
defined by (68) is also known as the Coggeshall (1887) index.  
69 “The justification for making this rule is twofold: (1) no reason can be assigned for choosing to reckon in 
one direction which does not also apply to the opposite, and (2) such reversibility does apply to any 
individual commodity. If sugar costs twice as much in 1918 as in 1913, then necessarily it costs half as 
much in 1913 as in 1918.” Irving Fisher (1922; 64).  
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matter which version is used and this equality provides a powerful argument in favour of 
using the formula. If the two versions do not agree, then rather than picking the forward 
version over the backward version, a more symmetric procedure would be to take an 
average of the forward and backward looking versions of the index formula. 

Fisher provided an alternative way for justifying the equality of the two indexes in 
equation (69). He argued that the forward looking inflation rate using the Carli formula is 
PC(p0,p1) = m=1 

M (1/M)(pm
1/pm

0). As noted above, the backwards looking inflation rate 
using the Carli formula is m=1 

M (1/M)(pm
0/pm

1) = PC(p1,p0). Fisher70 argued that the 
product of the forward looking and backward looking indexes should equal unity; i.e., a 
good formula should satisfy the following equality (which is equivalent to (69)): 

(70) PC(p0,p1)PC(p1,p0) = 1. 

But (70) is the usual time reversal test that was listed in the previous section. Thus Fisher 
provided a reasonably compelling case for the satisfaction of this test. 

As we have seen in section 4.3 above,71 the problem with the Carli formula is that it not 
only does not satisfy the equalities (69) or (70) but it fails (70) with the following definite 
inequality: 

(71) PC(p0,p1)PC(p1,p0) > 1  

unless the price vector p1 is proportional to p0 (so that p1 = p0 for some scalar  > 0), in 
which case, (70) will hold. The main implication of the inequality (71) is that the use of 
the Carli index will tend to give higher measured rates of inflation than a formula which 
satisfies the time reversal test (using the same data set and the same weighting). We will 
provide a numerical example in section 4.8 below which confirms that this result holds. 

Fisher showed how the downward bias in the backwards looking Carli index PH and the 
upward bias in the forward looking Carli index PC could be cured. The Fisher time 
rectification procedure72 as a general procedure for obtaining a bilateral index number 
formula which satisfies the time reversal test works as follows. Given a bilateral price 
index P, Fisher (1922; 119) defined the time antithesis P for P as follows: 

(72) P(p0,p1,q0,q1)  1/P(p1,p0,q1,q0). 

Thus P is equal to the reciprocal of the price index which has reversed the role of time, 
P(p1,p0,q1,q0). Fisher (1922; 140) then showed that the geometric mean of P and P, say 
P*  [PP]1/2, satisfies the time reversal test, P*(p0,p1,q0,q1)P*(p1,p0,q1,q0) = 1. 

70 “Putting it in still another way, more useful for practical purposes, the forward and backward index

number multiplied together should give unity.” Irving Fisher (1922; 64). 

71 Recall the inequalities in (46). 

72 Actually, Walsh (1921b; 542) showed Fisher how to rectify a formula so it would satisfy the factor

reversal test and Fisher simply adapted the methodology of Walsh to the problem of rectifying a formula so 

that it would satisfy the time reversal test. 
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In the present context, PC is only a function of p0 and p1, but the same rectification 
procedure works and the time antithesis of PC is the harmonic index PH. Applying the 
Fisher rectification procedure to the Carli index, the resulting rectified Carli formula, PRC, 
turns out to equal the Carruthers, Sellwood and Ward (1980) and Dalén elementary index 
PCSWD defined earlier by (42): 

(73) PRC(p0,p1)  [PC(p0,p1)PBC(p0,p1)]1/2 = [PC(p0,p1)PH(p0,p1)]1/2 = PCSWD(p0,p1). 

Thus PCSWD is the geometric mean of the forward looking Carli index PC and its 
backward looking counterpart PBC = PH, and of course, PCSWD will satisfy the time 
reversal test. 

4.6 A Simple Stochastic Approach to Elementary Indexes 

In this section, the Jevons elementary index will be derived using an adaptation of the 
Country Product Dummy model 73 from the context of comparing prices across two 
countries to the time series context where the comparison of prices is made between two 
periods. Suppose that the prices of the M items being priced for an elementary aggregate 
for periods 0 and 1 are approximately equal to the right hand sides of (74) and (75) 
below: 

(74) pm
0  m ; m = 1,...,M; 

(75) pm
1  m ; m = 1,...,M 

where  is a parameter that can be interpreted as the overall level of prices in period 1 
relative to a price level of 1 in period 0 and the m are positive parameters that can be 
interpreted as item specific quality adjustment factors. Note that there are 2M prices on 
the left hand sides of equations (74) and (75) but only M + 1 parameters on the right hand 
sides of these equations. The basic hypothesis in (74) and (75) is that the two price 
vectors p0 and p1 are proportional (with p1 = p0 so that  is the factor of proportionality) 
except for random multiplicative errors and hence  represents the underlying elementary 
price aggregate. If we take logarithms of both sides of (74) and (75) and add some 
random errors em

0 and em
1 to the right hand sides of the resulting equations, we obtain the 

following linear regression model: 

(76) ln pm
0 = m + em

0;    m = 1,...,M; 
(77) ln pm

1 =  + m + em
1;    m = 1,...,M 

where   ln and m  lnm for m = 1,...,M. 

73 See Summers (1973) who introduced the CPD model. Balk (1980c) was the first to adapt the CPD 
method to the time series context. 
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Note that (76) and (77) can be interpreted as a highly simplified hedonic regression 
model where the m can be interpreted as quality adjustment factors for each item m.74 

The only characteristic of each commodity is the commodity itself. This model is also a 
special case of the Country Product Dummy method for making international 
comparisons between the prices of different countries. A major advantage of this 
regression method for constructing an elementary price index is that standard errors for 
the index number  can be obtained. This advantage of the stochastic approach to index 
number theory was stressed by Selvanathan and Rao (1994). 

The least squares estimators for the parameters which appear in (76) and (77) are 
obtained by solving the following unweighted least squares minimization problem: 

(78) min , ’s m=1 
M [ln pm

0  m]2  + m=1 
M [ln pm

1    m]2. 

It can be verified that the least squares estimator for  is 

(79) *  m=1 
M (1/M)ln(pm

1/pm
0). 

If * is exponentiated, then the following estimator for the elementary index  is 
obtained: 

(80) *  m=1 
M [pm

1/pm
0]1/M  PJ(p

0,p1) 

where PJ(p
0,p1) is the Jevons elementary price index defined in section 3.3 above. Thus 

we have obtained a regression model based justification for the use of the Jevons 
elementary index. 

Although the stochastic model defined by (76) and (77) has not led to a new elementary 
index number formula (since we just ended up deriving the Jevons index which was 
already introduced in section 3.3), a generalization of the CPD method adapted to the 
time series context will be introduced in section 8 below and the present section will 
serve to introduce the reader to the methods used there. 

The following section briefly considers the economic approach to elementary indexes. 

4.7. The Economic Approach to Elementary Indexes 

The Consumer Price Index Manual has a section in it which describes an economic 
approach to elementary indexes; see the ILO (2004; 364-369). This section has 
sometimes been used to justify the use of the Jevons index over the use of the Carli index 
or vice versa depending on how much substitutability exists between items within an 
elementary stratum. If it is thought that there is a great deal of substitutability between 
items, then it is suggested that the Jevons index is the appropriate index to use. If it is 

74 For an introduction to hedonic regression models, see Griliches (1971) and Diewert, Heravi and Silver 
(2009). For an extension of the unweighted CPD model to a situation where information on weights is 
available, see Balk (1980c), de Haan (2004) and Diewert (2004) (2005) (2006).  
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thought that there is very little substitutability between items, then it is suggested that the 
Carli or the Dutot index is the appropriate index to use. This is a misinterpretation of the 
analysis that is presented in this section of the Manual. What the analysis there shows 
that if appropriate sampling of prices can be accomplished over one of the two periods in 
the comparison, then an appropriately probability weighted Carli or Dutot index can 
approximate a Laspeyres index (which is consistent with preferences that exhibit no 
substitutability) and an appropriately probability weighted Jevons index can approximate 
a Cobb-Douglas price index (which is consistent with a Cobb-Douglas subutility function 
defined over the items in the elementary stratum which has unitary elasticities of 
substitution). But the appropriate probability weights can only be known if knowledge 
about item quantities purchased is available or if information on item expenditures in one 
period is available. Such information is typically not available, which is exactly the 
reason elementary indexes are used rather than the far superior indexes PF, PW or PT, 
which require price and quantity information on purchases within the elementary stratum 
for both periods. Thus the economic approach cannot be applied at the elementary level 
unless price and quantity information are both available. 

In the following two sections, two numerical examples are provided which illustrate how 
the various elementary indexes might perform in practice. 

4.8 Elementary Indexes: A Numerical Example 

In this section, we analyze a small data set consisting of 8 periods of price data for six 
items. The price of item m in period t is pm

t for t = 1,...,8 and m = 1,...,6. The data are 
displayed in Table 1 and Chart 1 below. 

Table 1: Price Data for Six Items for Eight Periods 

Period t p1 
t p2 

t p3 
t p4 

t p5 
t p6 

t 

1 10.0 0.20 1.0 1.5 0.5 1.0 
2 9.5 0.22 1.5 1.0 1.0 0.5 
3 9.3 0.24 1.1 1.6 0.6 1.3 
4 9.0 0.27 1.7 1.1 1.4 0.7 
5 8.6 0.30 1.3 1.8 0.5 1.5 
6 8.2 0.34 1.8 1.0 1.5 0.8 
7 8.0 0.40 1.3 2.0 0.7 1.7 
8 7.5 0.50 2.0 1.5 1.8 0.9 
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Chart 1: Prices for Six Items for Eight Periods 
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Frequently, an elementary category of goods and services can contain a large number of 
diverse items. For example, the category “musical instruments” could contain grand 
pianos, electric guitars and flutes so that some items could have very large prices and 
some items could have rather small prices. The data in Table 1 reflects such a diverse 
category: item 1 has very large prices (which trend down smoothly), item 2 has very 
small prices (which trend up smoothly) while items 3-6 have “average” prices (which 
bounce around from period to period, reflecting periodic sales of the items). All of the 
prices have an upward trend, with the exception of item 1.  

The ONS computes its Retail Prices Index using item prices over a year relative to the 
January price of the item. These relative prices are called long term price relatives (as 
opposed to short term month over month price relatives). For our sample data set, the 
long term relative prices, rn

t  pn
t/pn

1 for n = 1,...,6 and t = 1,...,8, are plotted in Chart 2. 
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Chart 2: Long Term Relative Prices for Six Items 
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The downward trend in the relative prices for item 1 and the upward trend in the relative 
prices for item 2 are readily visible in Chart 2 and the price bouncing nature of the long 
term price relatives for items 3-6 is also visible. 

The data in Table 1 are used to calculate the Harmonic, Jevons, Carruthers, Sellwood, 
Ward and Dalen (CSWD), Dutot and Carli indexes using long term price relatives and the 
results are listed in Table 2 and plotted in Chart 3 below.75 

Table 2: Harmonic, Jevons, CSWD, Dutot and Carli Price Indexes Using Long 
Term Price Relatives for the Artificial Data Set 

Period  PH PJ PCSWD PD PC 

1 1.00000 1.00000 1.00000 1.00000 1.00000 
2 0.90520 1.00736 1.00664 0.96620 1.11944 
3 1.11987 1.12642 1.12631 0.99577 1.13278 
4 1.07345 1.19885 1.20999 0.99789 1.36389 
5 1.17677 1.20217 1.20146 0.98592 1.22667 
6 1.10160 1.26069 1.27013 0.96056 1.46444 
7 1.31241 1.36961 1.36621 0.99296 1.42222 
8 1.29808 1.51622 1.52503 1.00000 1.79167 

Average 2-8 1.14110 1.24020 1.24370 0.98561 1.36020 

75 The index formulae are given by (41), (40), (42), (38) and (39) respectively, except instead of computing 
P(p0,p1), we computed P(p1,pt) for the five formulae for t = 1,2,...,8. 
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Chart 3: Harmonic, Jevons, CSWD, Dutot and Carli 
Indexes 
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As expected, PJ and PCWSD are very close to each other; the two series cannot be 
distinguished on Chart 3. Also as expected, the Carli index PC is considerably above  the 
corresponding Jevons and CWSD indexes (for periods 2-8, PC averages about 12.0 
percentage points above the corresponding Jevons index PJ) and the Harmonic index is 
considerably below the Jevons index (for periods 2-8, PH averages about 9.9 percentage 
points below the corresponding Jevons index PJ). Somewhat surprisingly, the Dutot index 
is far below the other indexes for the later periods (for periods 2-8, PD averages about 
25.5 percentage points below the corresponding Jevons index PJ). This result is due to the 
very large price for item 1 (and the downward trend in the price of this item): the large 
price for this item gives the item too much influence in the Dutot index and leads to the 
anomalous results for this index. However, this example illustrates the problem with the 
use of the Dutot index in an elementary category: it will generally not give satisfactory 
results if the items in the category are quite heterogeneous. 

Recall the results on approximated numerical relationships between the various 
elementary indexes which were listed in section 4.3 above. It is of some interest to see 
how well these approximation results are able to predict the differences between the 
frequently used elementary indexes when applied to the above artificial data set. 

We first consider the difference between the Dutot and Jevons indexes. The period t 
deviations from the mean (the em

t for m = 1,...,6 and t = 1,...,T) can be defined by 
equations (47) and (48). Denote the period t six dimensional vector of deviations as et for 
t = 1,...,8. The adaptation of (53) to the current context leads to the following 
approximate relationship between PJ and PD:76 

76 Note that etet/6 is Var(et), the variance of the deviations from the mean in period t for t = 1,...,8. The 
vector of variances of the deviations is  [2.533, 2.426, 2.126, 1.942, 1.793, 1.682, 1.452, and 1.185]. 
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(81) [PJ(p
1,pt)/PD(p1,pt)]  1  (1/2)[e1e1   etet]/6  = (1/2)[Var(e1)  Var(et)]; t = 2,3,...,8. 

The arithmetic mean of the seven ratios less unity on the left hand side of (81) is 0.25751 
while the average of the seven differences on the right hand side of (81) is 0.36590. Thus 
the approximation result (53) in section 4.3 is not very accurate for describing the 
expected difference between the Jevons and Dutot indexes. This lack of accuracy for our 
numerical example is not too surprising since the approximation results depend on the 
deviations em

t being reasonably small. They are not small in the present case due to the 
very large prices for item 1 and the very small prices for item 2 relative to the other prices. 

However, the numerical approximation results given by (63)-(66) for the remaining four 
elementary indexes are much more accurate as will be seen, because these 
approximations use relative prices (rather than price levels, which were used in the Dutot 
approximations). Recall that the period t price relative to the corresponding period 1 price 
was defined as rm

t  pm
t/pm

1 for t =2,3,...,8 and m = 1,...,6. Adapting definitions (56) and 
(57) to the current situation, we have the following definitions: 

(82) rt*  (1/6) m=1 
6 rm

t = PC(p1,pt) ;  t = 2,3,...,8 ; 
(83) em

t  (rm
t/rt*)  1 ; m = 1,...,6 ; t = 2,3,...,8. 

Let et  [e1
t,...,e6

t] and let Var(et) denote the variance of the entries in the vector et for t = 
2,...,8.77 Then adapting (63)-(66) to the current numerical example, we have the following 
approximate equalities: 

(84) PJ(p
1,pt)  PC(p1,pt)  (1/2)Var(et) ;   t = 2,3,...,8; 

(85) PCWSW(p1,pt)  PC(p1,pt)  (1/2)Var(et) ;  t = 2,3,...,8; 
(86) PH(p1,pt)  PC(p1,pt)  Var(et) ; t = 2,3,...,8.  

The average variance of the et over periods 2-8 is 0.2144 and so one half of this variance 
is 0.1072. Thus on average (over periods 2-8), we expect the Carli indexes to be 10.7 
percentage points above the corresponding Jevons indexes and this compares to the 
average difference between the two indexes of 12.0 percentage points from Table 2. 
Similarly we expect the Harmonic indexes to be 10.7 percentage points below the 
corresponding Jevons indexes and this compares to the average difference between the 
two indexes of 9.9 percentage points from Table 2. Thus the approximation results listed 
in section 4.3 above are reasonably accurate for our four indexes that are based on 
relative prices. 

It should be noted that in the above example, there are substantial differences between the 
Dutot and Jevons indexes, which can be traced to the aggregation of very heterogeneous 
items (which have different rates of price inflation). There is some evidence that at the 
aggregate level, there may not be much difference between indexes computed by using 

77 These variances turned out to equal [0.245, 0.013, 0.347, 0.454, 0.375, 0.081, 0.394]. Note that the price 
bouncing behavior of items 3-6 leads to fairly low variances in some periods. 
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Jevons elementary indexes versus indexes computed using Dutot elementary indexes. 
According to Evans (2012), Slovenia uses the Jevons formula exclusively at the 
elementary levels of their HICP. In their national CPI, however, they exclusively use a 
Dutot formula. This is because historically the Dutot has always been used in their CPI, 
and the Statistical Office of the Republic of Slovenia has no plans to change this in the 
short term. Evans (2012) showed that on average since 1998, the total gap between the 
Slovenian CPI and HICP has only been 0.1 percentage points. 

We have reviewed existing theory dealing with the choice of index number method both 
when information on prices and quantities is available for two periods (section 3 above) 
and when only price information is available for two periods (the present section 4). In 
the following section, we study some of the practical problems that are associated with 
the construction of a Consumer Price Index. 
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5. Lowe Indexes and the Practical Construction of a Monthly CPI 

5.1 Properties and Alternative Representations for the Lowe Index 

Practical index number construction does not proceed exactly along the lines outlined in 
the previous sections. Even at higher levels of aggregation where expenditure information 
by commodity class is available, usually this expenditure information comes from 
household expenditure surveys78 and there are delays in processing this information. Thus 
for the RPI, expenditure information that is applied to the 2012 RPI indexes comes from 
household expenditure data covering the months starting at July 2010 and ending with 
June 2011.79 This lack of up to date expenditure information means that all of the 
approaches to index number theory which were carefully explained in section 3 above 
cannot be applied if an up to date price index is to be calculated.80 

Thus practical Consumer Price Indexes use current price information at a monthly 
frequency 81  but they use quantity or expenditure weights (at the higher levels of 
aggregation) that pertain to a past base year. Thus there are two base periods or reference 
periods in a practical CPI: the base year for the reference quantities or expenditures and 
the base month for prices. This type of index is known in the literature as a Lowe (1823) 
index. 

It seems a bit odd to use annual quantity or expenditure weights with monthly price 
information but statistical agencies give two reasons for the use of annual weights:82 

 Expenditure information collected from household surveys is often unreliable 
when collected for short periods of time and this variability can be reduced by 
using annual information; 

 Some expenditures are seasonal in nature and thus the pattern of expenditure for 
any given month will not be representative for the annual average expenditures by 
commodity class.83 

78 In the UK, the household expenditure survey is called the Living Costs and Food Survey (LCF). The 
survey relates to private households only. For the Retail Prices Index (RPI), the LCF survey expenditure 
information, excluding highest income households and some pensioner households, is used to obtain 
weights at higher levels of aggregation. However, for the Consumer Price Index (or CPI which is also the 
Eurostat mandated HICP), the higher level weights are largely calculated using Household Final Monetary 
Consumption Expenditure (HFMCE); see the ONS (2012; 35-36). 
79 See the ONS (2012; 41). Evidently, quarterly expenditure information is available in the UK on a more 
or less continuous basis.  
80 Obviously, the indexes described in section 3 could be calculated on a delayed basis (at least at higher 
levels of aggregation) if we were willing to wait until expenditure information on the current period 
became available. If scanner data is used in the construction of a CPI, then the situation changes since up to 
date information on prices and quantities may be available on a current basis at the detailed item level. 
Problems associated with consumer price index construction when scanner data are available will be 
discussed below in section 8. 
81 New Zealand and Australia use current price information at a quarterly frequency. 
82 See the ONS (2012; 12) for these reasons. 
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We will discuss the above explanations in more detail in section 5.4 below but for now, 
we will accept the above arguments and proceed to explain alternative ways for 
representing the Lowe index. 

Historically, the Lowe index PLo(p
0,pt,qb) was defined in terms of a base period quantity 

vector, qb  [q1
b,...,qN

b] (which we will take to be the base year quantity vector of 
household purchases), a vector of base month prices p0 where period 0 represents the 
base month for pricing purposes and a sequence of 12 consecutive monthly household 
price vectors pt  [p1

t,...,pN
t] for m =1,2,...,12 which follow month 0: 

(87) PLo(p
0,pt,qb)  ptqb/p0qb  n=1 

N pn
tqn

b / n=1 
N pn

0qn
b ;   t = 0,1,...,12. 

Thus the level of prices in month t of the current (augmented) year84 relative to month 0 
is simply the cost of purchasing the commodity basket qb at the prices pt of month t, ptqb, 
divided by the cost of purchasing the same annual commodity basket qb at the prices p0 of 
the base month 0, p0qb. This is an index number concept that is relatively easy to explain 
to the public. 

At this point, it will be useful to introduce the notation that corresponds to the type of 
Lowe index that is used in the monthly Retail Prices Index (RPI) that is constructed by 
the ONS. The RPI uses January of each year as the base month.85 Thus if in January of 
year y, the historical level of the RPI were PRPI(y:1), then the February level in year y 
would be PRPI(y:1)PLo(p

y,1,py,2,qb), the March level would be 
PRPI(y:1)PLo(p

y,1,py,3,qb),..., the December year y level would be 
PRPI(y:1)PLo(p

y,1,py,12,qb) and the January year y+1 level would be PRPI(y+1:1)  
PRPI(y:1)PLo(p

y,1,py,13,qb). At this point, a new vector of quantity weights would be 
introduced, say qb* and there would be a new sequence of 13 consecutive monthly price 
vectors py+1,m say86 that started in January of year t+1 and finished in January of year t+2. 
Thus the February year t+1 level would be PRPI(y+1:1)  PLo(p

y+1,1,py+1,2,qb*), the March 
year y+1 level would be PRPI(y+1:1)PLo(p

0*,p2*,qb*) and so on. 

We will rewrite the Lowe index defined by (87) using the notation introduced in the 
previous paragraph so that p0 is now replaced by the year y, month 1 vector of prices, py,1 

 [p1
y,1,p2

y,1,...,pN
y,1], and pt is replaced by the (augmented) year, month m vector of 

83 In fact, the use of the Lowe index PLo(p
0,pt,qb) in the context of seasonal commodities corresponds to 

Bean and Stine’s (1924; 31) Type A index number formula. Bean and Stine made 3 additional suggestions 
for the construction of price indexes which might be able to deal with seasonal commodities. 
84 An augmented year is a string of 13 consecutive months. 
85 The CPI (or HICP) uses December as the base month in a similar procedure. The CPI index calculations 
are similar to the RPI index calculations except the link goes from December to January of the following 
year to meet Eurostat requirements.
86 If there were no changes in the commodity classification, py+1,1 should equal py,13; i.e., the old January 
year y+1 vector of prices py,13 should coincide with the first of the new string of 13 consecutive monthly 
prices py+1,m for the calendar year y+1 plus January of year y+2. 
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y,m y,mprices, py,m  [p1 ,p2 ,...,pN
y,m] for m = 1,2,...,13.87 In what follows, the Lowe index 

defined above will be written in alternative forms. 

The first alternative way of rewriting the sequence of Lowe indexes for year y is in the 
following hybrid share form: 

(88) PLo(p
y,1,py,m,sy,1,b)  n=1

N pn
y,m qn

b / n=1
N pn

y,1 qn
b ; m = 1,2,...,13; 

= n=1 
N (pn

y,m/pn
y,1)pn

y,mqn
b / n=1 

N pn
y,1qn

b 

= n=1 
N (pn

y,m/pn
y,1) sn

y,1,b 

where the hybrid expenditure shares sn
y,1,b corresponding to the (annual) quantity weights 

vector qb for the base year b and to the (monthly) prices py,1 for the prices base month 
(which is January of year y) are defined by:88 

(89) sn
y,1,b  pn

y,1qn
b / i=1 

N pi
y,1qi

b for n = 1,…,N. 

Before proceeding to other representations of the Lowe index, we note that it has very 
good axiomatic properties for the comparison of prices within a given augmented year; 
i.e., it is straightforward to show that the Lowe index satisfies all of the axioms T1-T12 
listed in section 4.4 for elementary indexes except for the following two tests: test T8 (the 
symmetric treatment of outlets test) and test T9 (the price bouncing test).89 However, 
when comparing price vectors across two different augmented years, more tests fail: T2 
(the identity test), T7 (the mean value test), T10 (the time reversal test) and T11 (the 
circularity test). 

The failure of the identity test if we compare prices across two different years is 
particularly troublesome but it is straightforward to find some sufficient conditions that 
will ensure that this test holds. In order to establish these conditions, it will be necessary 
to be more explicit on how to convert the present Lowe index methodology (with a fixed 
January base for an augmented year but then chaining the indexes across years) into 
indexes that can be put into the format of an elementary index.  

Suppose that we start the sequence of index levels at January of year y (and the price 
level is set equal to unity for this month). Let the sequence of monthly price vectors 
starting in January of year y and ending in January of year y+1 be denoted by py,1, py,2,..., 
py,13 and denote the annual base year reference vector of quantities by qb. Then the 
sequence of Lowe index price levels, PLoL(y;m), for month m in the augmented year y will 
be the following sequence of fixed base indexes: 

87 The price vector py,13 is the January of year y+1 price vector where the commodity classification that is 
used in year y is used to calculate the prices in py,13. 
88 Fisher (1922; 53) used the terminology “weighted by a hybrid value” while Walsh (1932; 657) used the 
term “hybrid weights”. The two representations of the Lowe index given by the first and last lines of 
equations (88) are given in the ONS (2012; 12) 
89 The test T8 and T9 are not really relevant in the present context. The representation of the Lowe index 
given by (88) and (89) is useful in establishing that the Lowe index satisfies test T7, the mean value test in 
section 4.4.  
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(90) PLoL(y;m)  PLo(p
y,1,py,m,qb) = py,mqb/py,1qb ; m = 1,2,...,13. 

The elementary index tests in section 4.4 involve two price vectors: a base period price 
vector p0 and a current period price vector p1 and a function, P(p0,p1), We will redefine 
the base period price vector p0 as py,r and the current period price vector p1 as py,s where r 
and s refer to two months in the augmented year y. As usual, qb is the annual basket 
vector that is used to compute Lowe indexes for year y. The “elementary” price index 
P(py,r,py,s) that corresponds to the comparison of the Lowe index price level in month s 
relative to month r in the augmented year y is defined as follows: 

(91) P(py,r,py,s)  PLo(p
y,1,py,s,qb)/PLo(p

y,1,py,r,qb) 
= [py,sqb/py,1qb]/[py,rqb/py,1qb] 
= py,sqb/py,rqb. 

It can be verified that P(py,s,py,r)  py,sqb/py,rqb passes the tests T1-T7 and T10-T12 listed 
in section 4.4.  

Now suppose that we wish to compare the prices in month s of year y+1 with the prices 
of month r in year y. We first construct the sequence of price levels for months m in 
augmented year y+1, PLoL(y+1;m). Let the sequence of monthly price vectors starting in 
January of year y+1 and ending in January of year y+2 be denoted by py+1,1, py+1,2,..., 
py+1,13 and denote the new annual base year reference vector of quantities for year y+1 by 
qb+1.90 The January level of the price index for year y+1 has already been determined as 
PLoL(y;12)  p12qb/p0qb; see (90) with m = 12. The sequence of Lowe index price levels, 
PL(y+1;m), for month m in the augmented year y+1 will be the product of the already 
determined January value of the fixed base Lowe index for month 12 in year t, 
PLo(p

y,1,py,13,qb) = PLoL(y,13) times the new fixed base Lowe index for month m in 
augmented year y+1, PLo(p

y+1,1,py+1,m,qb+1); i.e., we have the following sequence of price 
levels for augmented year y+1: 

(92) PLoL(y+1;m)  PLoL(y,13)PLo(p
y+1,1,py+1,m,qb+1) m = 1,2,...,13 

 = [py,13qb/py,1qb][py+1,mqb+1/py+1,1qb+1] ; 

Now let py,r and py+1,s be the price vectors for month r in augmented year y  and for month 
s in augmented year y+1. The “elementary” price index P(py,r,py+1,s) that compares the 
month s prices in the vector py+1,s for year y+1 relative to the month r prices in the vector 
py,r for year is defined as the ratio of the price level in month s of year y+1, PLoL(y+1;s), 
relative to the price level in month r of year y, PLoL(y;r): 

(93) P*(py,r,py+1,s)  PLoL(y+1;s)/PLoL(y;r) 
 = [py,13qb/py,1qb][py+1,sqb+1/py+1,1qb+1]/[py,rqb/py,1qb] using (90) and (92) 

90 If the commodity classification remains the same in years y and y+1, then py,13 will equal py+1,1. However, 
typically, there will be small changes in the commodity classifications going from one year to the next and 
these changes may make py,13  py+1,1. 
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 = [py+1,sqb+1/py+1,1qb+1]/[py,rqb/py,13qb]. 

Thus P*(py,r,py+1,s), which compares the level of prices in month s of year y+1 to the level 
of prices in month r of year y, is equal to the year y+1 Lowe index py+1,sqb+1/py+1.1qb+1 

(which compares the prices in month s to month 0 (January) in year y+1) divided by the 
year y Lowe index py,rqb/py,13qb (which compares the prices py,r in month r in year y to 
the prices py,13 in January of year y+1, using the year y classification scheme). 

It can be verified that the “elementary” index P* defined by (93) satisfies the following 
tests listed in section 4.4 above: T1 (continuity), T3 (monotonicity in the components of 
py+1,s), T4 (monotonicity in the components of py,r), T5 (homogeneity of degree 1 in the 
components of py+1,s), T6 (homogeneity of degree 1 in the components of py,r), and T12 
(commensurability). The following tests are not in general satisfied by P*: T2 (identity), 
T7 (mean value test), T8 (symmetric treatment of outlets test), T9 (price bouncing test), 
T10 (time reversal test) and T11 (circularity). The failures of the identity test and the time 
reversal test are fairly serious. 

However, if we make some extra assumptions, the “elementary” index defined by (93) 
simplifies and satisfies more tests. The extra assumptions are listed in (94): 

(94) py,13 = py+1,1 and qb = qb+1. 

If there are no changes in the commodity classification, then py,13 (the vector of January 
prices for year y+1 using the classification scheme of year y) will indeed be equal to 
py+1,1 (the vector of January prices for year t+1 using the classification scheme of year 
y+1) so the first equality in (94) will hold. If the reference annual quantity vector for year 
b, qb, happens to remain unchanged for the following year b+1, then qb = qb+1 and the 
second equality in (94) will hold. Thus if conditions (94) hold, then (93) simplifies as 
follows: 

(95)P*(py,r,py+1,s) = py+1,sqb/py,rqb . 

The “elementary” index P* defined by (95) will satisfy all of the tests T1-T12 with the 
exception of tests T8 and T9. 

Generally speaking, py,13 will be close to py+1,1 so the first equality in (94) will be 
approximately true. The second equality in (94) will also be approximately true 
(household purchases of commodities do not change all that much going from one year to 
the next) but the degree of approximation will not be as close as the closeness of the two 
price vectors. In particular, if there are long run trends in prices, then there will be 
substitution effects that will cause qb+1 to systematically diverge from qb. 

From the economic perspective, the Consumer Price Index Manual showed that if there 
are long term trends in prices, then the Lowe index was likely to have some substitution 
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bias;91 however, since the ONS updates its weights every year for both the RPI and the 
HICP, this substitution bias is likely to be small. 

In order to provide the additional alternative characterizations of the Lowe index (within 
an augmented year), it is necessary to introduce base year expenditures by commodity, 
say en

b for n = 1,...,N, and base year average prices by commodity, say pn
b for n = 1,...,N. 

Of course, average annual prices, annual quantities and annual expenditures should 
satisfy the following equations: 

(96) en
b = pn

bqn
b ;  n = 1,...,N. 

Now let pb  [p1
b,...,pN

b] and rewrite the sequence of within the (augmented) year Lowe 
indexes defined by (88) as follows: 

(97) PLo(p
y,1,py,m,qb) = py,mqb/py,1qb ; m = 1,2,...,13; 

= [py,mqb/pbqb]/[py,1qb/pbqb] 
= n=1 

N sn
b(pn

y,m/pn
b)/n=1

N sn
b(pn

y,1/pn
b) 

where the base year expenditure shares sn
b are defined as 

(98) sn
b  pn

bqn
b/i=1

N pi
bqi

b = en
b/i=1

N ei
b ; n = 1,...,N. 

The Laspeyres index between two price vectors p0 and p1 can be defined as PL(p0,p1,q0)  
p1q0/p0q0; recall (7) above. Thus using (97), it can be seen that the Lowe index can be 

y,mwritten as the ratio of the Laspeyres index PL(pb,p ,qb) that compares the prices of 
month m in year y, py,m, to the base year prices pb and the Laspeyres index PL(pb,py,1,qb) 
that compares the prices of month 1 in year y, py,1, to the base year prices pb:92 

(99) PLo(p
y,1,py,m,qb) = [ptqb/pbqb] /[p0qb/pbqb] m = 1,2,...,13; 

= PL(pb,py,m,qb)/PL(pb,py,1,qb). 

It is useful to explain how the annual price and quantity vectors, pb and qb, can be 
obtained from monthly price and expenditure data on each commodity during the chosen 
base year b. Let pn

b,m be the monthly (unit value) price for commodity n in month m of the 
base year b and let en

b,m be the corresponding monthly expenditure for the reference 
population for commodity n in month m of the base year b for n = 1,...,N and m = 
1,2,...,12. The annual total consumption for commodity n for base year b for the 
reference population, qn

b, can be obtained by deflating monthly values and summing over 
months in the base year b as follows: 

(100) qn
b  m=1 

12 en
b,m/pn

b,m = m=1 
12 qn

b,m ;  n = 1,…,N 

91 See ILO (2004; 273).  

92 This formula for the Lowe index can be found in ILO (2004; 271). 
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where qn
b,m  en

b,m/pn
b,m for n = 1,...,N and m = 1,...,12. In practice, the above equations 

will be evaluated using aggregate expenditures over closely related commodities and the 
price pn

b,m will be the month m price index for this elementary commodity group n in 
year b relative to the first month of year b.93 

Following national income accounting conventions, a reasonable 94 annual price for 
commodity n for the base year b, pn

b, which matches up with the annual quantity qn
b 

defined by (100) is the value of total consumption of commodity n in year b divided by 
qn

b. Thus we have: 

(101) pn
b  (m=1 

12 en
b,m) /qn

b  n = 1,…,N 
= m=1 

12 en
b,m /[m=1 

12 en
b,m/pn

b,m] using (100) 
= [m=1 

12 sn
b,m (pn

b,m)1]1 

where the share of annual expenditure on commodity n in month m of the base year is 

(102) sn
b,m  en

b,m /k=1 
12 en

b,k ;   n = 1,…,N ; m = 1,…,12. 

Thus the annual base year price for commodity n, pn
b, turns out to be a monthly 

expenditure weighted harmonic mean of the monthly prices for commodity n in the base 
year, pn

b,1, pn
b,2,…, pn

b,12. 

Once the base year prices pn
b have been calculated, the hybrid shares sn

0b defined by (89) 
can be calculated by multiplying the base year expenditures en

b by (pn
y,1/pn

b), the ratio of 
the January price for commodity n in year y, pn

y,1 to the base year price for commodity n, 
pn

b. Thus the nth hybrid share can be written as follows: 

(103) sn
y,1,b  pn

y,1qn
b / i=1

N pi
y,1qi

b = (pn
y,1/pn

b)en
b/k=1

N (pk
y,1/pk

b)ek
b. 

The operation of multiplying the base year expenditure weight for commodity n, en
b, by 

the corresponding nth price ratio, pn
y,1/pn

b, is known as price updating the base year 
expenditure weights. Substitution of (103) into the last line of (88) leads to our third 
formula 95 for the Lowe index: 

(104) PLo(p
y,1,py,m,pb,eb) = n=1

N (pn
y,m/pn

y,1)(pn
y,1/pn

b)en
b/k=1

N (pk
y,1/pk

b)ek
b; m =1,2,...,13 

93 A further complication is that at present, the ONS does not have access to monthly expenditure 
information by commodity group for the target population: only quarterly estimates are available. Thus in 
order to apply the above algebra, it will be necessary for the ONS to generate monthly expenditure 
estimates. These monthly estimates do not have to be very accurate: rough approximations will suffice.
94 Hence these annual commodity prices are essentially unit value prices. Under conditions of high inflation, 
the annual prices defined by (6) may no longer be “reasonable” or representative of prices during the entire 
base year because the expenditures in the final months of the high inflation year will be somewhat 
artificially blown up by general inflation. Under these conditions, the annual prices and annual commodity 
expenditure shares should be interpreted with caution. For more on dealing with situations when there is 
high inflation within a year, see Hill (1996).
95 The first two formulae are (87) and (88). 
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where eb  [e1
b,...,eN

b] is the vector of base year expenditure shares on the N commodities. 
The above formula shows how the Lowe indexes are functions of four sets of variables: 
py,1 (the month 1 price vector for year y),py,m (the month m price vector for year y), pb 

(the vector of annual commodity prices for the base year b) and eb (the vector of annual 
household expenditures for the reference population in year b).96 

Formula (104) for the Lowe index leads directly to our final formula for this index. Thus 
divide both numerator and denominator on the right hand side of (104) by total annual 
expenditures by the reference population in the base year b, n=1

N  en
b, and using 

definitions (102) which define the annual expenditure shares sn
b for the base year, it can 

be seen that the Lowe index can be written as the ratio of two Young (1812) indexes: 

(105) PLo(p
y,1,py,m,pb,sb) = n=1

N (pn
y,m/pn

b)sn
b/k=1 

N (pk
y,1/pk

b)sk
b; m =1,2,...,13 

= PY(pb,py,m,sb)/PY(pb,py,1,sb) 

where the Young index PY(p0,p1,s) which compares the prices p1 to the prices p0 using the 
share weights s is defined as 

(106) PY(p0,p1,s)  n=1 
N (pn

1/pn
0)sn. 

Comparing the Young index defined by (106) with the Carli index defined by (39), it can 
be seen that the Carli index is a special case of the Young index when the weights sn are 
all equal to 1/N. Unfortunately, the Young index has the same upward bias problem that 
made the Carli index an unattractive choice of elementary index; i.e., it can be shown that 
the Young index fails the time reversal test with the likelihood of an upward bias. In 
particular, the following inequality holds which is the counterpart to the inequality (44) 
for the Carli index:97 

(107) PY(p0,p1,s)PY(p1,p0,s)  1 

where the strict inequality in (107) holds unless p1 is proportional to p0. 

However, since the Lowe index is a ratio of Young indexes, there is no obvious bias in an 
index that is equal to a ratio of Young indexes, as in (105). 

Having introduced the concept of a Young index, it is useful to contrast the following 
y,mYoung index, PY(py,1,p ,sb), which compares the prices in month m of year y, py,m, to 

the prices of month 1 in year m, py,1, using the base year expenditure shares sb as weights: 

(108) PY(py,1,py,m,sb)  n=1
N (pn

y,m/pn
y,1) sn

b ; m = 1,2,...,13. 

96 Actually, it can be seen that the Lowe index depends only on three vectors: the within year y vector of

relative prices [p1

y,m/p1
y,1,p2

y,m/p2
y,1,...,pN

y,m/pN
y,1] that compares the prices in month m of year y with the


corresponding commodity prices of month 1 of year y; the vector of relative prices [p1
y,1/p1

b,...,pN
y,1/pN

b] 

that compares the prices in month 1 of year y with the corresponding commodity prices of the base year

and the annual expenditures vector for the base year b, eb  [e1

b,...,eN
b].


97 See the ILO (2004; 277).  
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The above Young index can be compared to the representation of the corresponding 
y,mLowe index given by (88), PLo(p

y,1,p ,sy,1,b), which compared the same monthly price 
vectors, py,1 and py,m in year m, but used the hybrid expenditure shares sy,1,b defined by 
(89) as weights in place of the base year expenditure shares sb: 

(109) PLo(p
y,1,py,m,sy,1,b)  n=1

N (pn
y,m/pn

y,1) sn
y,1,b ; m = 1,2,...,13. 

The hybrid expenditure shares, sn
y,1,b, can be regarded as price updated versions of the 

base year expenditure shares; i.e., starting with definitions (89), we have the following 
representation for the hybrid shares: 

(110) sn
y,1,b  pn

y,1qn
b / i=1

N pi
y,1qi

b  for n = 1,…,N 
  = (pn

y,1/pn
b)pn

bqn
b / i=1

N (pi
y,1/pi

b)pi
bqi

b

  = (pn
y,1/pn

b)en
b/ i=1

N (pi
y,1/pi

b)ei
b

  = (pn
y,1/pn

b)sn
b/ i=1

N (pi
y,1/pi

b)si
b 

where the last equality follows by dividing numerator and denominator by the base year 
annual expenditures, n=1 

N  en
b, and using definitions (98) which define the base year 

expenditure shares, sn
b. 

At first glance, it would appear that the indexes defined by (108) and (109) should be 
numerically close. Obviously, if inflation is uniform across all commodity classes going 
from the base year to the base month 1 in year y, so that pn

y,1 = pn
b for n = 1,...,N for 

some scalar  > 0, then sn
y,1,b will equal sn

b for all n with the consequence that the Young 
y,mindex PY(py,1,p ,sb) defined by (108) will equal the Lowe index defined by (109). 

However, this price proportionality assumption is unlikely to hold so we will develop a 
more general necessary and sufficient condition for the equality of the Lowe and Young 
indexes defined by (108) and (109). 

In order to simplify the notation, define the relative price rn between months m and 1 for 
commodity n in year y and the relative price tn between month 1 in year y for commodity 
n relative to the average price of commodity n in the base year b  as follows: 

(111) rn  pn
y,m/pn

y,1 ; tn  (pn
y,1/pn

b) ;  n = 1,...,N. 

Define r* as the share weighted average of the rn and t* as the share weighted average of 
the tn, where the base year expenditure shares, sn

b, are used as weights as follows: 

(112) r*  n=1
N sn

brn = PY(py,1,py,m,sb) ; t*  n=1
N sn

btn = PY(pb,py,1,sb). 

y,mNote that r* is equal to the Young index PY(py,1,p ,sb) defined by (108). It will also be 
useful to define the weighted covariance between the relative price vectors r  [r1,...,rN] 
and t  [t1,...,tN] using the base year shares sn

b as weight as follows: 

(113) Cov(r,t,sb)  n=1
N (rnr*)(tnt*)sn

b = n=1
N rntnsn

b  r*t*. 
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Substituting definitions (111) into (109) leads to the following expression for the Lowe 
index PLo(p

y,1,py,m,sy,1,b): 

(113) PLo(p
y,1,py,m,sy,1,b)  n=1

N rn sn
y,1,b ; m = 1,2,...,13 

= n=1
N rntnsn

b/n=1
N tnsn

b  using (110) and (111) 
= [Cov(r,t,sb) + r*t*]/t*   using (112) and (113) 

y,m= [Cov(r,t,sb)/t*] + PY(py,1,p ,sb) using (112). 

Thus we obtain the following simple relationship between the Young index 
PY(py,1,py,m,sb) which uses the base year shares sn

b as weights for the relative prices 
pn

y,m/pn
y,1 and the corresponding  Lowe index PLo(p

y,1,py,m,sy,1,b) which uses the hybrid 
share vector sn

y,1,b as weights: 

(114) PLo(p
y,1,py,m,sy,1,b)  PY(py,1,py,m,sb) = Cov(r,t,sb)/t* = Cov(r,t,sb)/PY(pb,py,1,sb) 

where the last equality follows using (112). Thus the difference between the Lowe index 
for month m in year y (that uses the price updated hybrid shares sn

y,1,b as weights for the 
price relatives pn

y,m/pn
y,1) and the corresponding Young index for month m in year y (that 

uses the base year expenditure shares sn
b as weights for the price relatives pn

y,m/pn
y,1) is 

equal to the weighted covariance between the within year y price relatives rn  pn
y,m/pn

y,1 

and the price relatives tn   pn
y,1/pn

b between the base year and month 1 of year y, 
Cov(r,t,sb), divided by the Young index PY(pb,py,1,sb), which measures price inflation 
going from the base year b to month 1 of the current year y. 

Since PY(pb,py,1,sb) will generally be a number which is slightly larger than 1, the key 
term which will explain the difference between the Lowe and Young indexes is the 
covariance, Cov(r,t,sb). If price change over all commodity groups proceeds smoothly 
with long run trends in most strata, then this covariance will be positive and the Lowe 
index will exceed the corresponding Young index. However, if there is mean reversion of 
prices (so that a relatively high average price pn

b for commodity n in the base year is 
followed by relatively low monthly prices pn

y,m for this commodity in the current year y), 
then the covariance will be negative.98 The situation is also complicated by the existence 
of seasonality in the monthly prices for year y; this seasonality could cause the 
covariance Cov(r,t,sb) to be either positive or negative.99 

98 This appears to be the case for computations based on some Israeli data on fresh fruits. Diewert, Finkel 
and Artsev (2009) computed Lowe and Young indexes for fresh fruits for the 72 months starting in January 
1997 and extending through December 2002 and the sample means of the Lowe and Young indexes were 
1.1220 and 1.1586 respectively. 
99 Our discussion of the use of Young indexes in the place of Lowe indexes is not irrelevant to the ONS 
situation. At lower levels of aggregation, the ONS uses replication weights that are not price updated and so 
their Lowe type index is not a “pure” Lowe index but rather has some elements of Young indexes in their 
procedures; see the ONS (2012; 38-41). The above algebra suggests that if Cov(r,t,sb) is small in magnitude 
for the stratum under consideration, then price updating the weights at lower levels of aggregation will not 
materially affect the overall index. 
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Our conclusion at this point is that the Lowe index is a reasonably satisfactory index 
concept for the construction of a practical consumer price index. In particular, its 
axiomatic properties are reasonably satisfactory. However, these axioms do not deal 
adequately with seasonal baskets and so later in this report, we will suggest indexes that 
deal more adequately with seasonal commodities. Since the ONS updates its annual 
expenditure weights on a continuous basis, the substitution bias that is inherent in a fixed 
basket index will be relatively low under normal conditions.100 However as noted above, 
there are some problems with the use of annual weights that are used in conjunction with 
monthly prices and these problems will be discussed later in section 5.3. In addition, 
there are some specific problems with ONS procedures that will be discussed in the 
following section. 

5.2 Problems with the Estimation of Annual Prices and Quantities for the Base Year 

The algebra in the previous section implicitly assumed that the ONS collected price and 
expenditure data for every distinct product that is sold to households in the UK over the 
course of a year. This is an oversimplification: expenditures are split up into strata and 
within each stratum, specific products within the strata are chosen to be priced. The 
underlying assumption is that the sampled specific product prices capture the trend for all 
products in the strata. At present, the ONS collects item prices for 705 specific products 
but these collected prices are generally stratified by location (12 regions of the UK are 
distinguished) and by shop type. In the end, expenditure weights for 5000-5500 strata are 
constructed. At the start of each calendar year, the annual expenditure weights refer to a 
“split” year consisting of the first 6 months of the previous year and the last six months of 
the calendar year of two years ago. With respect to prices, approximately 160,000 item 
prices are collected each month from various retail outlets (or centrally for some 
commodities).  

At higher levels of aggregation (i.e., at the level of the 5000 or so strata for which there is 
expenditure weight information), the ONS uses the Lowe index as its target index 
concept. However, note that within each stratum for which expenditure weights are 
available, an elementary price index is used in place of true micro prices for each product 
in each stratum. The problems associated with the choice of elementary aggregate 
formula were reviewed in more detail in section 4. In this section, we will look at how the 
ONS price updates its annual expenditure information.   

The ONS does not follow the Lowe index methodology as outlined in the previous 
section. In particular, it uses a modification of formula (104) to compute the RPI, where 
we now interpret pn

b,m as the elementary price index for stratum n for month m of base 
year b and pn

y,m as the same elementary price index for stratum n but for month m of the 
current year y. Recall the price updating methodology explained in the previous section 
where the base year expenditure weight for commodity group n, en

b, was multiplied by 
the corresponding nth price ratio, pn

y,1/pn
b, where the annual price for stratum n in the 

100 For the 2012 ONS RPI, upper level expenditure weights are based on household expenditure data 
covering the period starting in July 2010 and ending in June 2011. Thus at the start of 2012, the expenditure 
weights are only 6 months out of date; see the ONS (2012; 41). 
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base year b, pn
b, turned out to equal the share weighted harmonic average of the monthly 

prices in the base year b, [m=1 
12  sn

b,m (pn
b,m)1]1. The ONS (2012; 41) method for 

updating the base year expenditure weights for the RPI uses the elementary price indexes 
for the previous January, pn

y1,1, in place of base year average prices, pn
b, defined by 

(101). Thus in place of the “true” Lowe indexes defined by (104), PLo(p
y,1,py,m,pb,eb), the 

ONS uses the following approximate Lowe indexes when constructing their RPI: 

(115) PLoRPI(p
y,1,py,m,py1,1,eb) = n=1

N (pn
y,m/pn

y,1)(pn
y,1/pn

y1,1)en
b/k=1

N (pk
y,1/pk

y1,1)ek
b ; 

m = 1,...,13. 

Thus in place of using the more appropriate annual average prices pn
b defined by (101), 

the ONS approximates these prices by taking the monthly elementary index for January 
of the previous year (which is the approximate midpoint of the base year), pn

y1,1. It is 
likely that the ONS approximation does not lead to any appreciable bias for most years101 

but if it is possible to construct monthly expenditure share estimates for the base year, 
then the ONS could calculate the annual average base year prices pn

b using definition 
(101) and then these better estimates for the base year prices could be used in place of the 
approximate base year prices pn

y1,1 in their price updating procedures. 

5.3 Two Stage Aggregation and Lowe Indexes 

Another practical problem which was not considered in any detail up to now is the fact 
that the Lowe indexes that the ONS calculates do not use the single stage of aggregation 
methodology which was used in section 5.1. The prices pn

b and pn
y,m which appear in the 

various formulae for the Lowe index in section 5.1 are actually elementary indexes for 
the N strata under consideration. Under what conditions will these various formulae for 
the Lowe index be equal to a true Lowe index? This is the question which we will now 
address. 

The problems associated with reconciling two stage aggregation with single stage 
aggregation can be illustrated if the overall index consists of only two strata. Some new 
notation needs to be introduced. Let pnk

b, qnk
b and enk

b denote the base year prices, 
quantities and expenditures for the kth item in stratum n where n = 1,2 and k = 
1,2,...,K(n). Using the same commodity classification, let pnk

y,m, qnk
y,m and enk

y,m denote 
the (augmented) year y and month m prices, quantities and expenditures for the kth item 
in stratum n where n = 1,2; k = 1,2,...,K(n) and m = 1,2,...,13. Thus there are K(1) 
separate items in the first stratum and K(2) items in the second stratum. Then the true 
Lowe index for month m in the augmented year y, constructed in a single stage, is defined 
as follows: 

(116) PLo(p1
b,p2

b,p1
y,1,p2

y,1,p1
y,m,p2

y,m,s1
b.s2

b,e1
b,e2

b) m= 1,2,...,13 

 [k=1
K(1) p1k

y,mq1k
b + k=1

K(2) p2k
y,mq2k

b]/[k=1
K(1) p1k

y,1q1k
b + k=1

K(2) p2k
y,1q2k

b] 

101 The use of January prices in the base year in place of true average prices for the base year will lead to 
more volatility in the price updated weights for the current year since the prices for a single month will tend 
to be more volatile than the corresponding annual prices. 
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where p1
b  [p11

b,p12
b,...,p1K(1) 

b] and p2
b  [p21

b,p22
b,...,p2K(2) 

b] are the base year price 
vectors for strata 1 and 2; pn

y,m  [pn1
y,m,pn2

y,m,...,pnK(n)
y,m] is the augmented year y, month 

m vector of prices for stratum n for n = 1,2 and m = 1,2,...,13; sn
b  [sn1

b,sn2
b,...,snK(n) 

b] is 
the vector of base year expenditure shares for stratum n for n = 1,2 and finally, e1

b and e2
b 

are total expenditures on strata 1 and 2 respectively in the base year. The second 
expression for the true Lowe index in equations (116) looks rather formidable but it will 
prove to be useful below. 

Now suppose that the statistical agency has constructed elementary indexes for the two 
strata. For stratum n, suppose that the elementary index level for the base year is Pn

b for n 
= 1,2. The corresponding (approximate) base year quantities for the two strata, Qn

b, are 
defined as follows: 

(117) Qn
b  en

b/Pn
b ;   n = 1,2. 

We further suppose that the elementary index levels for stratum n for month m in the 
augmented year y are defined by Pn

y,m for n = 1,2 and m = 1,2,...,13. 

The following two stage (approximate) Lowe index, PLoA, constructed using the 
elementary indexes and the approximate base year quantities defined by (117), is defined 
as follows: 

(118) PLoA(Pb,Py,1,Py,m,eb)  [P1
y,mQ1

b + P2
y,mQ2

b]/[P1
y,1Q1

b + P2
y,1Q2

b] ; m = 1,2,...,13 
  = [(P1

y,m/P1
b)e1

b + (P2
y,m/P2

b)e2
b]/[(P1

y,1/P1
b)e1

b + [(P2
y,1/P1

b)e2
b]  using (117)

  = [(P1
y,m /P1

y,1)(P1
y,1/P1

b)e1
b + (P2

y,m /P2
y,1)(P2

y,1/P2
b)e2

b]/[(P1
y,1/P1

b)e1
b + [(P2

y,1/P1
b)e2

b]. 

Under what conditions will the approximate Lowe index PLoA defined by (118) be equal 
to the true Lowe index PLo defined by (116)? An intuitively appealing set of sufficient 
conditions for equality are:  

 Within each stratum, prices move in a proportional manner and 
 The elementary indexes capture these proportional movements in prices. 

The price proportionality assumptions for each stratum can formally be represented by 
the following equations; there exist positive constants n

m such that prices within the 
augmented year y satisfy the following equations:102 

(119) pnk
y,m = n

mpnk
y,1;  n = 1,2 ; k = 1,2,...,K(n) ; m = 1,2,...,13. 

102 When m = 1, equations (119) are automatically satisfied. 
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We will also require that prices within a stratum move in a proportional manner going 
from the base year b to the first month of year y; i.e., there exist positive constants n 

such that the month 1, year y price vector for stratum n, pn
y,1 is proportional to the 

corresponding base year stratum price vector pn
b; i.e., we have the existence of positive 

constants 1 and 2 such that the following equations are satisfied: 
(120) pnk

1,m = npnk
b; n = 1,2 ; k = 1,2,...,K(n). 

Finally, the assumption that the elementary indexes capture the same trends in prices that 
are present in each stratum can be represented algebraically by the following 
assumptions: 

(121) Pn
y,m /Pn

y,1 = n
m;   n = 1,2 ; m = 1,2,...,13; 

(122)  Pn
y,1/Pn

b = n ; n = 1,2. 

If we substitute assumptions (121) and (122) into the approximate Lowe index defined by 
(118), we find that: 

(123) PLoA = [1
m 1e1

b + 2
m 2e2

b]/[1e1
b + 2e2

b] ;      m = 1,2,,,,,13. 

If we substitute assumptions (119) and (120) into the true Lowe index defined by (116), 
we find that 

(124) PLo(p1
b,p2

b,p1
y,1,p2

y,1,p1
y,m,p2

y,m,s1
b.s2

b,e1
b,e2

b)    m= 1,2,...,13 
= [k=1

K(1) 1
m1s1k

be1
b + k=1

K(2) 2
m2s2k

be2
b]/[k=1

K(1) 1s1k
be1

b + k=1
K(2) 2s2k

be2
b] 

= [1
m 1e1

b + 2
m 2e2

b]/[1e1
b + 2e2

b]  since k=1
K(n) snk

b = 1 for each n 
= PLoA(Pb,Py,1,Py,m,eb)   using (123). 

Thus if prices within each stratum vary proportionally over time and the elementary 
indexes capture these proportional movements in prices, then the approximate Lowe 
index that is constructed in two stages using the elementary indexes in the first stage will 
be equal to the true Lowe index. While the assumptions underlying this result are not 
likely to hold in practice, they may be approximately true and so the Lowe type indexes 
constructed by the ONS will approximate true Lowe indexes under these conditions. 

5.4 Problems Associated with the Use of Annual Baskets in a Monthly Index 

We conclude our discussion of Lowe indexes with some problematic aspects of Lowe 
indexes that use annual baskets in the context of producing monthly price indexes. 

It should be noted that the problems associated with the Lowe index that uses an annual 
basket in the context of a monthly price index have been noted in the literature on price 
indexes when there are seasonal commodities. In the context of seasonal price indexes, 
the Lowe index is known as the Bean and Stine (1924; 31) Type A index or an Annual 
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Basket (AB) index. The price statistician Andrew Baldwin’s comments on this type of 
index are worth quoting at length:103 

“For seasonal goods, the AB index is best considered an index partially adjusted for seasonal 
variation. It is based on annual quantities, which do not reflect the seasonal fluctuations in the 
volume of purchases, and on raw monthly prices, which do incorporate seasonal price 
fluctuations. Zarnowitz (1961; 256-257) calls it an index of ‘a hybrid sort’. Being neither of sea 
nor land, it does not provide an appropriate measure either of monthly or 12 month price change. 
The question that an AB index answers with respect to price change from January to February say, 
or January of one year to January of the next, is ‘What would have the change in consumer prices 
have been if there were no seasonality in purchases in the months in question, but prices 
nonetheless retained their own seasonal behaviour?’ It is hard to believe that this is a question that 
anyone would be interested in asking.”  Andrew Baldwin (1990; 258). 

Basically, the problem is that households do not purchase (fractions) of their annual 
basket of purchases for each month of the given year; i.e., there is a seasonal pattern to 
their purchases. Thus for each month of the year, there will be an appropriate monthly 
basket that is relevant for index number construction rather than an annual basket. The 
problem of seasonal commodities in an annual basket index becomes apparent for 
strongly seasonal commodities; these are commodities that are present in some months of 
the year but not all months. 

Are there solutions to the index number problems generated by seasonal commodities? If 
not, the Lowe index with some suitable modifications may still be the best index that can 
be produced under the circumstances. Thus in the following section, we will review 
where the current state of theory is with respect to producing monthly price indexes when 
seasonality is present. 

103 Balk (1980; 68c) also clearly pointed out the problems associated with using annual weights and 
monthly prices in the context of seasonal commodities. 
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6. The Problem of Seasonal Commodities 

6.1 Introduction 

Most of the material on the treatment of seasonal commodities that will be presented in 
this section is in Chapter 22 of the Consumer Price Index Manual. 

It should be noted that all of the methods that will be suggested to deal with seasonal 
commodities assume that the statistical agency is able to collect expenditure information 
on these seasonal commodities by month. This expenditure information may be collected 
on a delayed basis through household expenditure surveys or possibly by obtaining 
detailed price and quantity data from retailers on a current basis (as is the case in the 
Netherlands).  

Seasonal commodities are commodities which are either: (a) not available in the 
marketplace during certain seasons of the year or (b) are available throughout the year but 
there are regular fluctuations in prices or quantities that are synchronized with the season 
or the time of the year.104 A commodity that satisfies (a) is termed a strongly seasonal 
commodity whereas a commodity which satisfies (b) will be called a weakly seasonal 
commodity.105 

Strongly seasonal commodities offer the biggest challenge to traditional bilateral index 
number theory, which assumes that all commodities are present in both periods being 
compared. Obviously, it is not possible to compare the price of a strongly seasonal 
commodity in a month where it is present in the marketplace with a nonexistent price for 
the commodity in a month where it is not available at all. However, even weakly seasonal 
commodities offer challenges to traditional index number theory since an increase in the 
index in a given month may simply be due to a seasonal increase in prices rather than a 
“true” increase in underlying inflation for the reference population.  

In order to deal with seasonal commodities, the Consumer Price Index Manual offers 
four types of index: 

 Year over year monthly indexes; 
 Year over year annual indexes; 
 Rolling year annual indexes and 
 Month to month (chained) indexes. 

In the following four subsections, each type of index will be defined and (briefly) 
discussed. Section 6.6 will conclude that the first three types of index are conceptually 
sound but the fourth type of index suffers from a chain drift problem and hence is not a 

104 This classification of seasonal commodities corresponds to Balk’s narrow and wide sense seasonal 
commodities; see Balk (1980a; 7) (1980b; 110) (1980c; 68). Diewert (1998; 457) used the terms type 1 and 
type 2 seasonality.

Mitchell (1927) noted that seasonal variations in prices and quantities are basically due to (i) 
fluctuations in the weather and (ii) customs.  

105 
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suitable index for the ONS to consider producing. Section 7 below will offer an 
alternative month to month index that has superior properties. 

Before proceeding to the technical definitions of the various indexes, it is necessary to 
discuss the notation that will be used and the interpretation of the variables. The algebra 
below will assume that the statistical agency has information on the monthly prices and 
quantities for the N commodities that enter the scope of the index. However, not all 
commodities will be present in each month. Denote the set of commodities n which are 
present in the marketplace during month m of any year as S(m).106 Denote the price of 
commodity n in month m of year y as pn

y,m the corresponding quantity and expenditure 
share as qn

y,m and sn
y,m   pn

y,mqn
y,m/kS(m)  pk

y,mqk
y,m for y = 0,1, m = 1,2,...,12 and 

nS(m).107 

In the following four sections, various index number formulae will be defined using the 
above notation. However, the resulting indexes could refer to several situations: 

 N is the total number of separate items that are to be distinguished in the overall 
consumer price index; i.e., the underlying assumption here is that we have 
complete price and quantity information on the universe of expenditures for the 
reference population. 

 N refers to the number of items in one particular stratum of the overall consumer 
price index. Standard index number theory is also applicable in this situation. 

 N refers to the number of strata in the consumer price index and in this case, the 
prices pn

y,m are in fact, elementary indexes, and the corresponding sn
y.m are 

expenditure shares on the nth elementary category or stratum.108 

Obviously, application of the first interpretation of the indexes is unrealistic; the 
statistical agency will typically not have access to true microeconomic data at the finest 
level of aggregation. However, application of the second interpretation of the indexes is 
quite possible; the existence of scanner data sets has led to the possibility of computing 

106 We are making the simplifying assumption that the set of strongly seasonal commodities remains the 
same as the years change. In practice, this assumption does not always hold; see Diewert, Finkel and Artsev 
(2009; 63). In order to deal with this situation where a price is present in one year for a month but not in the 
same month for the other year, a price for the commodity should be imputed for the month when the 
commodity is not available. Basically, the imputed price should be based on price movements of products 
that are thought to be comparable to the given seasonal product; see Diewert, Finkel and Artsev (2009; 61) 
for one such imputation method. For more systematic discussions of imputation methods, see Alterman, 
Diewert and Feenstra (1999) and Diewert and Feenstra (2001). The corresponding imputed quantity and 
monthly expenditure share for the missing price should be set equal to zero.   

y,m107 The summation kS(m) pk qk
y,m means that we sum expenditures in month m of year y over products k 

that are actually present in month m; i.e., strongly seasonal products that are not present in month m are 
excluded in this sum. 
108 In this case, the corresponding quantities are defined implicitly as qn

y,m   sn
y,m /pn

y,m for nS(m). A 
useful assumption that can ensure that the indexes constructed under this framework are true indexes (e.g., 
true Fisher indexes that are based on microeconomic data at the finest level of aggregation) is that within 
each stratum, prices of the products within the stratum vary proportionally over time as in section 5.3 above. 
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say true Fisher indexes for some strata of the CPI.109 The third interpretation of the 
indexes is of course directly relevant to the ONS. In what follows, the discussion of the 
indexes will use the first interpretation but the reader should keep in mind the more 
useful third interpretation. 

6.2 Year over Year Monthly Indexes 

For over a century,110 it has been recognized that making year over year comparisons111 

of prices in the same month provides the simplest method for making comparisons that 
are free from the contaminating effects of seasonal fluctuations. 

We will take the Fisher index as the “best” functional form for making bilateral 
comparisons. In the present context, the 12 month over month Laspeyres, Paasche and 
Fisher indexes, PL, PP and PF, comparing the prices in year 1 for month m to those in year 
0 for month m are defined as follows, using the notation in the previous subsection: 

(125) PL(p0,m,p1,m,s0,m)  nS(m) (pn
1,m/pn

0,m)sn
0,m ; m= 1,...,12; 

(126) PP(p0,m,p1,m,s1,m)  [nS(m) (pn
1,m/pn

0,m)1sn
0,m]1 ;   m= 1,...,12; 

(127) PF(p0,m,p1,m, s0,m,s1,m)  [PL(p0,m,p1,m,s0,m)PP(p0,m,p1,m,s1,m)]1/2 ;   m = 1,...,12  

where py,m is the vector of prices for commodities that are present in month m of year y 
and sy,m is the corresponding expenditure vector for y = 0,1 and m = 1,...,12. In the 
Consumer Price Index Manual, 112 it was noted that approximate month over month 
Laspeyres, Paasche and Fisher indexes could be defined, using information that is 
generally available to the statistical agency, by replacing the monthly expenditure shares 
sn

0,m and sn
1,m by the available monthly expenditure shares for the current base year sn

b,m 

for m = 1,...,12. Thus the 12 approximate month over month Laspeyres, Paasche and 
Fisher indexes, PAL, PAP and PAF, are defined as follows: 

(128) PAL(p0,m,p1,m,sb,m)  nS(m) (pn
1,m/pn

0,m)sn
b,m ; m= 1,...,12; 

(129) PAP(p0,m,p1,m,sb,m)  [nS(m) (pn
1,m/pn

0,m)1sn
b,m]1 ;   m= 1,...,12; 

(130) PAF(p0,m,p1,m,sb,m)  [PL(p0,m,p1,m,sb,m)PP(p0,m,p1,m,sb,m)]1/2 ;   m = 1,...,12 

where sb,m is the vector expenditure shares for month m in the base year b.113  The 
approximate Fisher year over year monthly indexes defined by (130) will provide 
adequate approximations to their true Fisher counterparts defined by (127) if the monthly 
expenditure shares for the base year b are not too different from their current year 0 and 1 
counterparts. Hence, it will be useful to construct the true Fisher indexes on a delayed 

109 See Ivancic, Diewert and Fox (2011) and de Haan and van der Grient (2011) for applications of this type.

We will discuss what can be done when scanner data are available in more detail in section 7 below. 

110 See Jevons (1884;3), Flux (1921; 199) and Yule (1921; 199). 

111 In the seasonal price index context, this type of index corresponds to Bean and Stine’s (1924; 31) Type

D index.

112 See the ILO (2004; 397). 

113 Thus this vector excludes the strongly seasonal commodities that are not present in month m.
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basis in order to check the adequacy of the approximate Fisher indexes defined by 
(130).114 

The year over year monthly approximate Fisher indexes defined by (130) will normally 
have a certain amount of upward bias, since these indexes cannot reflect long term 
substitution of consumers towards commodities that are became relatively cheaper over 
time. This reinforces the case for computing true year over year monthly Fisher indexes 
defined by (127) on a delayed basis so that this substitution bias can be estimated. 

In the following section, it is shown how the various year over year monthly indexes 
defined in this section can be aggregated into an annual index. 

6.3 Annual Year over Year Indexes 

Mudgett (1955) in the consumer price context and Stone (1956) in the producer price 
context independently suggested a very effective way of dealing with seasonal 
commodities in the context of constructing an annual index: 

“The basic index is a yearly index and as a price or quantity index is of the same sort as those about which 
books and pamphlets have been written in quantity over the years.”  Bruce D. Mudgett (1955; 97). 

“The existence of a regular seasonal pattern in prices which more or less repeats itself year after year 
suggests very strongly that the varieties of a commodity available at different seasons cannot be 
transformed into one another without cost and that, accordingly, in all cases where seasonal variations in 
price are significant, the varieties available at different times of the year should be treated, in principle, as 
separate commodities.”  Richard Stone (1956; 74-75). 

Thus the basic idea is that each commodity in each month should be treated as a distinct 
commodity in an annual index. Thus the price of commodity n in January of year 1 is 
compared to the price of the same commodity in January of year 0 and so on.  

Using the notation introduced in the previous section, the Laspeyres, Paasche and Fisher 
annual indexes comparing the prices of year 0 with those of year 1 can be defined as 
follows: 

(131) PL(p0,1,...,p0,12;p1,1,...,p1,12;q0,1,...,q0,12) 
 m=1 

12 nS(m)pn
1,mqn

0,m / m=1 
M nS(m) pn

0,mqn
0,m ; 

(132) PP(p0,1,...,p0,12;p1,1,...,p1,12;q1,1,...,q1,12) 
 m=1 

12 nS(m) pn
1,mqn

1,m / m=1 
M nS(m) pn

0,mqn
1,m ; 

(133) PF(p0,1,...,p0,12;p1,1,...,p1,12;q0,1,...,q0,12;q1,1,...,q1,12)  

114 For the modified Turvey (1979) data set in the Consumer Price Index Manual, the approximate Fisher 
indexes were quite close to the true Fisher indexes; see the ILO (2004; 398-400). However, for the Israeli 
data set on fresh fruits, the correspondence between the true and approximate Fishers was not close for a 
large number of observations; i.e., for 16 out of 60 observations, the difference exceeded 5%: see Diewert, 
Finkel and Artsev (2009; 59-60). The Israeli example shows the importance of computing the true Fishers 
on a delayed basis when the true expenditure information becomes available. 
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[PL(p0,1,...,p0,12;p1,1,...,p1,12;q0,1,...,q0,12)PP(p0,1,...,p0,12;p1,1,...,p1,12;q1,1,...,q1,12)]1/2. 

The above formulae can be rewritten in terms of price relatives and monthly expenditure 
shares as follows: 

(134)  PL(p0,1,...,p0,12;p1,1,...,p1,12;0,1s0,1,...,0,12s0,12) 
 m=1 

12 nS(m) 0,msn
0,m (pn

1,m/pn
0,m) 

= m=1 
12 0,m PL(p0,m,p1,m,s0,m) ; 

(135)  	PP(p0,1,...,p0,12;p1,1,...,p1,12;1,1s1,1,...,1,12s1,12) 
 [m=1 

12 nS(m) 1,msn
1,m (pn

1,m/pn
0,m)1]1

 = [m=1 
12 1,m nS(m) sn

1,m (pn
1,m/pn

0,m)1]1

 = [m=1 
12 1,m [PP(p0,m,p1,m,s1,m)]1]1 ; 

(136)  	PF(p0,1,...,p0,12;p1,1,...,p1,12;0,1s0,1,...,0,12s0,12;1,1s1,1,...,1.12s1,12) 
 [m=1 

12 nS(m) 0,msn
0,m (pn

1,m/pn
0,m){m=1 

12 nS(m) 1,msn
1,m (pn

1,m/pn
0,m)1}1}]1/2 

= [{m=1 
12 0,m PL(p0,m,p1,m,s0,m)}{m=1 

12 1.m [PP(p0,m,p1,m,s1,m)]1}1]1/2 

where the expenditure share for month m in year t is defined as: 

(137)  	t,m  nS(m) pn
t,mqn

t,m / i=1
12 jS(i) pj

t,iqj
t,i ; m = 1,2,...,12 ; t = 0,1 

= pt,m qn
t,m / i=1

12 pt,iqt,i 

and the year over year monthly Laspeyres and Paasche price indexes PL(p0,m,p1,m,s0,m) 
and PP(p0,m,p1,m,s1,m) were defined by (125) and (126) respectively. As usual, the annual 
Fisher index PF defined by (136) is the geometric mean of the Laspeyres and Paasche 
indexes, PL and PP, defined by (134) and (135). The last equations in (134) and (135) 
shows that the annual Laspeyres index can be written as a weighted arithmetic average of 
the year over year monthly Laspeyres indexes PL(p0,m,p1,m,s0,m), where the weights are the 
monthly expenditure shares 0,m in year 0, and the annual Paasche index can be written as 
a weighted harmonic average of the year over year monthly Paasche indexes 
PP(p0,m,p1,m,s1,m), where the weights are the monthly expenditure shares 1,m in year 1. 
Hence once the year over year monthly indexes defined in the previous subsection have 
been numerically calculated, it is easy to calculate the corresponding annual indexes.  

The approach to computing annual indexes outlined in this subsection, which essentially 
involves taking monthly expenditure share weighted averages of the 12 year over year 
monthly indexes, should be contrasted with the usual approach to the construction of 
annual indexes that simply takes the arithmetic mean of the 12 monthly indexes. The 
problem with the latter approach is that months where expenditures are below the average 
(e.g., February) are given the same weight in the unweighted annual average as months 
where expenditures are above the average.115 

115 In addition, the Mudgett-Stone approach to the construction of annual indexes can be given a strong 
justification from the viewpoint of the economic approach to index number theory. 
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As in section 6.2, Approximate Laspeyres, Paasche and Fisher counterparts to the true 
indexes defined by (134)-(136) can be defined by these same equations, except that the 
monthly expenditure shares, 0,m and 1,m, are replaced by the corresponding base year 
expenditure shares, b,m, for m = 1,...,12 and the within the month expenditure shares, 
sn

0,m and sn
1,m, are replaced by the corresponding within the month base year expenditure 

shares, sn
b,m for m = 1,...,12 and nS(m). 

For the artificial data set in the Consumer Price Index Manual, the approximate annual 
Fisher index provided a very close approximation to the true Fisher indexes. This result 
needs further validation but it should be noted that the approximate Fisher index can be 
computed using the same information set that is normally available to statistical agencies. 

6.4 Rolling Year Annual Indexes 

In the previous subsection, the price and quantity data pertaining to the 12 months of a 
calendar year were compared to the 12 months of a base calendar year. However, there is 
no need to restrict attention to calendar year comparisons: any 12 consecutive months of 
price and quantity data could be compared to the price and quantity data of the base year, 
provided that the January data in the noncalendar year is compared to the January data of 
the base year, the February data of the noncalendar year is compared to the February data 
of the base year, …, and the December data of the noncalendar year is compared to the 
December data of the base year.116 Alterman, Diewert and Feenstra (1999; 70) called the 
resulting indexes rolling year or moving year indexes.117 

In order to theoretically justify the rolling year indexes from the viewpoint of the 
economic approach to index number theory, some restrictions on preferences are required. 
The details of these assumptions can be found in Diewert (1999a; 56-61). 

Of course, approximate counterpart to rolling year Laspeyres, Paasche and Fisher indexes 
can be obtained by replacing the various expenditure shares in the current year by their 
counterparts in the base year. The details and an example based on the Turvey data can 
be found in pages 402-406 of the Consumer Price Index Manual. The bottom line is that 
the true rolling year indexes were very smooth and free of seasonal influences and the 
approximate rolling year Fisher index approximated its true counterpart very well.118 

Basically, the rolling year indexes are generally quite smooth and free from seasonal 
fluctuations. Each rolling year index can be viewed as a seasonally adjusted annual 
consumer price index that compares the data of the 12 consecutive months that end with 
the current month with the corresponding price and quantity data of the 12 months in the 
base year. Thus rolling year indexes offer statistical agencies an objective and 

116 Diewert (1983) suggested this type of comparison and termed the resulting index a “split year”

comparison.

117 Crump (1924; 185) and Mendershausen (1937; 245) respectively used these terms in the context of

various seasonal adjustment procedures. The term “rolling year” seems to be well established in the 

business literature in the UK. 

118 Similar results were obtained using the Israeli data; see Diewert, Artsev and Finkel (2009; 61).
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reproducible method of seasonal adjustment that can compete with existing time series 
methods of seasonal adjustment.119 Rolling year indexes are probably the most reliable 
indexes that can be constructed when there is substantial seasonality in prices. 

There are two main difficulties with the use of rolling year indexes: 

 The measure of inflation generated by the current index value is for a rolling year 
that is centered around the month that took place six months ago and 

 It is not a valid measure of month to month inflation. 

Thus in the following subsection, month to month inflation indexes are considered.  

6.5 Maximum Overlap Month to Month Price Indexes 

A possible method for dealing with seasonal commodities in the context of picking a 
target index for a month to month CPI is the following one:120 

	 Determine the set of commodities that are present in the marketplace in both months 
of the comparison. 

	 For this maximum overlap set of commodities, calculate one of the three indexes 
recommended in previous sections; i.e., calculate the Fisher, Walsh or Törnqvist 
Theil index. 

Thus the bilateral index number formula is applied only to the subset of commodities that 
are present in both periods.121 

The question now arises: should the comparison month and the base month be adjacent 
months (thus leading to chained indexes) or should the base month be fixed (leading to 
fixed base indexes)? In the Consumer Price Index Manual, a preference was expressed 
for chained indexes over fixed base indexes for the following two reasons:122 

	 The set of seasonal commodities which are present in the marketplace during two 
consecutive months is likely to be much larger than the set obtained by comparing the 

119 For discussions on the merits of econometric or time series methods versus index number methods of 
seasonal adjustment, see Diewert (1999a; 61-68) and Alterman, Diewert and Feenstra (1999; 78-110). The 
basic problem with time series methods of seasonal adjustment is that the target seasonally adjusted index 
is very difficult to specify in an unambiguous way; i.e., there are an infinite number of possible target 
indexes. For example, it is impossible to identify a temporary increase in inflation within a year from a 
changing seasonal factor. Hence different econometricians will tend to generate different seasonally 
adjusted series, leading to a lack of reproducibility.
120 For more on the economic approach and the assumptions on consumer preferences that can justify 
month to month maximum overlap indexes, see Diewert (1999a; 51-56). 
121 Keynes (1930; 95) called this the highest common factor method for making bilateral index number 
comparisons. Of course, this target index drops those strongly seasonal commodities that are not present in 
the marketplace during one of the two months being compared. Thus the index number comparison is not 
completely comprehensive. Mudgett (1951; 46) called the “error” in an index number comparison that is 
introduced by the highest common factor method (or maximum overlap method) the “homogeneity error”.
122 See the ILO (2004; 407-411). 
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prices of any given month with a fixed base month (like January of a base year). 
Hence the comparisons made using chained indexes will be more comprehensive and 
hence more accurate than those made using a fixed base. 

	 In many economies, on average 2 or 3 percent of price quotes disappear each month 
due to the introduction of new commodities and the disappearance of older ones. This 
rapid sample attrition means that fixed base indexes rapidly become unrepresentative 
and hence it seems preferable to use chained indexes which can more closely follow 
marketplace developments. 

Thus in the present subsection, we will follow the advice in the Manual and define the 
relevant Laspeyres, Paasche and Fisher maximum overlap month to month chain links. 
Some new notation is required. Let there be N commodities that are available in at least 
one month of the current year and let pn

y,m and qn
y,m denote the price and quantity of 

commodity n that is in the marketplace in month m of year y (if the commodity is 
unavailable, define pn

y,m and qn
y,m to be 0). Let py,m  [p1

y,m,p2
y,m,...,pN

y,m] and qy,m  
[q1

y,m,q2
y,m,...,qN

y,m] be the month m and year y price and quantity vectors respectively. 
Let S(y,m) be the set of commodities that is present in month m of year y and the 
following month. Then the maximum overlap Laspeyres, Paasche and Fisher indexes 
going from month m of year t to the following month can be defined as follows:123 

(138) PL(py,m,py,m+1,qt,m,S(y,m))   nS(y,m) pn
y,m+1qn

y,m/nS(y,m) pn
y,mqn

y,m; m = 1,2,...11; 
(139) PP(py,m,py,m+1,qy,m+1,S(y,m))  nS(y,m) pn

y,m+1qn
y,m+1/nS(y,m) pn

y,mqn
y,m+1 ; 

m = 1,2,...11; 
(140) PF(py,m,py,m+1,qy,m,qy,m+1,S(y,m))  

 [PL(py,m,py,m+1,qy,m,S(y,m))PP(py,m,py,m+1,qy,m+1,S(y,m))]1/2 ;    m = 1,2,...,11. 

Note that PL, PP and PF depend on the two (complete) price and quantity vectors 
pertaining to months m and m+1 of year y, py,m,py,m+1,qy,m,qy,m+1, but they also depend on 
the set S(y,m), which is the set of commodities that are present in both months. Thus the 
commodity indices n that are in the summations on the right hand sides of (138) and 
(139) include indices n that correspond to commodities that are present in both months, 
which is the meaning of nS(y,m); i.e., n belongs to the set S(y,m).  

We will not convert formulae (138) and (139) into expenditure share form; the details on 
how this can be done are in the Consumer Price Index Manual.124 

The performance of maximum overlap chained indexes has not been satisfactory; indexes 
based on this methodology tend to suffer from a chain drift problem; i.e., indexes 
constructed using this methodology tend to exhibit a downward bias.125 

123 The formulae are slightly different for the indices that go from December to January of the following

year. In order to simplify the exposition, these formulae are left for the reader. 

124 See the ILO (2004; 408). 

125 For documentation of this phenomenon, see the ILO (2004; 409), Ivancic, Diewert and Fox (2011) and

de Haan and van der Grient (2011).  
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An objective method to test for the existence of chain drift in a price index P(p1,p2,q1,q2) 
is the following multiperiod identity test,126 which was initially proposed by Walsh (1901, 
401): 

(141) P(p1,p2,q1,q2) P(p2,p3,q2,q3) P(p3,p1,q3,q1) = 1. 

P(p1,p2,q1,q2) and P(p2,p3,q2,q3) are price indexes between periods 1 and 2, and then 2 and 
3, respectively, where pt and qt are the price and quantity vectors pertaining to periods t 
for  t = 1, 2, 3. Their product gives the chained price index between periods 1 and 3. Note 
that there is a final link in the chain in (141), P(p3,p1,q3,q1), which is a price index 
between periods 3 and 4, where the period 4 price and quantity data are the same as the 
period 1 data. The price index formula P will not suffer from chain drift or chain link bias 
if the product of all of these factors equals 1. 

To see the relevance of the test defined by (141), suppose that in year y, month 1 and 
month 4 have exactly the same price and quantity data so that py,1 = py,4 and qy,1 = qy,4. 
Under these conditions, we would like the consumer price index chain links defined by 
(138)-(140) to be such that the month 1 and month 4 index values to be identical. Thus if 
the Fisher index is being used, in order to achieve this identity of index values for months 
1 and 4 in year y, we require the following equality: 

(142) PF(py,1,py,2,qy,1,qy,2,S(y,1))PF(py,2,py,3,qy,2,qy,3,S(y,2)) PF(py,3,py,1,qy,3,qy,1,S(y,3)) = 1. 

The equality in (142) will not hold in general and thus chained maximum overlap month 
to month indexes will be subject to chain drift.127 

What causes the downward drift of chained superlative indexes? A large part of the 
downward drift can be attributed to the problem of sales. A small numerical example will 
illustrate the problem. 

Suppose that we are given the following price and quantity data for 2 commodities for 4 
periods: 

Table 3: Price and Quantity Data for Two Commodities 

Period t p1
t p2

t  q1
t q2

t

 1 1.0 1.0  10 100 
2 0.5 1.0 5000 100 
3 1.0 1.0 1 100 
4 1.0 1.0  10 100. 

126 Diewert (1993; 40) gave the test this name. Our exposition of how to define chain drift follows that of 
Ivancic, Diewert and Fox (2011; 26).

127 The term “chain drift” seems to be due to Frisch: “The divergency which exists between a chain index

and the corresponding direct index (when the latter does not satisfy the circular test) will often take the

form of a systematic drifting.” Ragnar Frisch (1936; 8).
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The first commodity is subject to periodic sales (in period 2), when the price drops to one 
half of its normal level of 1. In period 1, the “normal” off sale demand for commodity 1 
is equal to 10 units. In period 2, the sale takes place and demand explodes to 5000 units. 
In period 3, the commodity is off sale and the price is back to 1 but most shoppers have 
stocked up in the previous period so demand falls to only 1 unit. Finally in period 4, the 
commodity is off sale but we are back to the “normal” demand of 10 units. Commodity 2 
is an unexciting commodity: its price is 1 in all periods and the quantity sold is 100 units 
in each period. Note that the only thing that has happened going from period 3 to 4 is that 
the demand for commodity one has picked up from 1 unit to 10 units. Also note that the 
period 4 data are exactly equal to the period 1 data so if Walsh’s test is satisfied, the 
product of the period to period chain links should equal one. 

In Table 4, the fixed base Fisher, Laspeyres and Paasche price indexes, PF, PL and PP and 
as expected, they behave well in period 4, returning to the period 1 level of 1. The 
chained Fisher, Törnqvist, Laspeyres and Paasche price indexes, PFCH, PTCH, PLCH and 
PPCH are listed. Obviously, the chained Laspeyres and Paasche indexes have chain link 
bias that is very large but what is interesting is that the chained Fisher has a 2% 
downward bias and the chained Törnqvist has a close to 3% downward bias. 

Table 4: Fixed Base and Chained Fisher, Törnqvist, Laspeyres and Paasche Indexes 

Period PF PL  PP  PFCH PTCH PLCH  PPCH

 1   1.00000   1.00000   1.00000 1.00000   1.00000   1.00000   1.00000 
2   0.69759   0.95455   0.50980 0.69759   0.69437   0.95455   0.50980 
3   1.00000   1.00000   1.00000 0.97944   0.97232   1.87238   0.51234 
4   1.00000   1.00000   1.00000 0.97944   0.97232   1.87238   0.51234 

If the above data were monthly, and they repeated themselves 3 times over the year, the 
overall chain link bias would build up to the 6 to 8% range for the two chained 
superlative indexes, PFCH, PTCH, which is fairly large. 

The sales problem can be explained as follows: when commodity one comes off sale and 
goes back to its regular price in period 3, the corresponding quantity does not return to 
the level it had in period 1: the period 3 demand is only 1 unit whereas the period 1 
demand for commodity 1 was 10 units. It is only in period 4 that demand for commodity 
one recovers to the period 1 level. However, since prices are the same in periods 3 and 4, 
all of the chain links show no change (even though quantities are changing) and this is 
what causes the difficulties. If demand for commodity one in period 3 had immediately 
recovered to its “normal” period 1 level of 10, then there would be no problem with chain 
drift. 

The problem of chain drift does not always lead to a downward bias in chained 
superlative indexes. Feenstra and Shapiro (2003) provide an empirical example where the 
chain drift bias goes in the opposite direction and they explain why this result occurred:  
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“The fixed base Törnqvist does not equal the chained Törnqvist in general, and for our sample of 
weekly tuna data, we find that the differences between these two indexes are rather large: the 
chained Törnqvist has a pronounced upward bias for most regions of the United States. The 
reason for this is that periods of low price (i.e., sales) attract high purchases only when they are 
accompanied by advertising, and this tends to occur in the final weeks of a sale. Thus, the initial 
price decline, when the sale starts, does not receive as much weight in the cumulative index as the 
final price increase when the sale ends. The demand behavior that leads to this upward bias of the 
chained Törnqvist—with higher purchases at the end of a sale—means that consumers are very 
likely purchasing goods for inventory accumulation. The only theoretically correct index to use in 
this type of situation is a fixed base index, as demonstrated in section 5.3.”  Robert Feenstra and 
Matthew Shapiro (2003, 125). 

Thus Feenstra and Shapiro suggested that a solution to the problems generated by big 
fluctuations in prices and quantities due to sales is to move from chained indexes to fixed 
base indexes. In the following section, this suggestion will be implemented. 
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7. Scanner Data and the Rolling Year GEKS Method for Constructing Indexes 

7.1 The ONS and Scanner Data 

In early 2012, the ONS commenced Eurostat funded research on the exploitation of 
scanner data for the purpose of producing multipurpose consumer price statistics. Scanner 
data is defined as data on sales of consumer goods obtained by ‘scanning’ the barcodes 
for individual products at electronic point of sales systems. The data can provide detailed 
information about quantities, characteristics and values of goods sold as well as their 
prices. ONS research will focus on three defined stages of obtaining sample scanner data, 
implementing the data and testing the use of the scanner data in the construction of price 
indices. An assessment will be made of the feasibility of implementing a regular scanner 
data feed(s) into future production processes.   

One of the potential benefits of using scanner data compared to traditional price 
collection methods is the availability of more frequent expenditure (or weight) 
information, at more detailed levels than in household surveys typically. The availability 
of this information presents an opportunity to calculate superlative indices, indices which 
treat prices and quantities equally across periods rather than assuming quantities are fixed 
for a period of time. There are three well known superlative indices – Fisher, Törnqvist 
and Walsh. However, recent literature has highlighted that these indexes can suffer from 
chain drift, this is where a chained index ‘does not return to unity when prices in the 
current period return to their levels in the base period’ (ILO, 2004). A newer 
methodological approach to the production of month to month indexes is suggested that 
avoids the chain drift problem. This new approach will be described in the following sub 
sections. 

7.2 The Multilateral GEKS Method Applied in the Time Series Context 

The GEKS method of making index number comparisons between multiple time periods 
or countries is due to Gini (1924; 110) (1931; 12). It was derived in a different fashion by 
Eltetö and Köves (1964) and Szulc (1964) and thus the method is known as either the 
GEKS or EKS method for making multilateral comparisons. 

Some new notation will be introduced in order to explain the method in the time series 
context. Denote the price and quantity data for the past thirteen months by the superscript 
c = 1, 2, ..., 13. Thus when c equals 13, the data refer to the current month and when c = 1, 
the data refer to the same month one year ago from the current month. We call these 
thirteen months the current augmented year. As usual, let there be N commodities that 
are available in at least one month of the current augmented year and let pn

c and qn
c 

denote the price and quantity of commodity n that is in the marketplace in month c of the 
current augmented year. If the commodity is unavailable in month c, define pn

c and qn
c to 

c c c cbe 0.128 Let pc  [p1 ,p2 ,...,pN
c] and qc  [q1 ,q2 ,...,qN

c] be the price and quantity vectors 
for month c in the current augmented year. Let S(i,j) be the set of commodities that is 

128 If quantity information for the current augmented year is not available but price and expenditure 
information, pn

c and en
c, is available, then if en

c > 0, define qn
c  en

c/pn
c and if en

c = 0, define qn
c  0. 
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present in months i and j of the current augmented year, for i, j = 1,2,...,13. Then the 
maximum overlap Laspeyres, Paasche and Fisher indexes that compare the prices in 
month j to month i in the current augmented year are defined as follows:  

(143) PL(j/i)  nS(i,j) pn
jqn

i/nS(i,j) pn
iqn

i; 	  i.j = 1,2,...,13; 
(144) PP(j/i)  nS(i,j) pn

jqn
j/nS(i,j) pn

iqn
j ; 	 i.j = 1,2,...,13; 

(145) PF(j/i)  [PL(j/i)PP(j/i)]1/2; 	 i.j = 1,2,...,13. 

The Fisher indexes PF(j/i) will have the usual satisfactory axiomatic properties, including 
satisfying the time reversal test (PF(i/j) = 1/PF(j/i)) and the identity test (PF(i/i) = 1).  

Now choose month k as the base month. Using k as the base month and the Fisher 
indexes as our formula, a complete set of index numbers for the augmented year can be 
obtained as the following sequence of 13 fixed base numbers: PF(1/k), PF(2/k), ..., 
PF(13/k). In the international comparisons literature, this set of price indexes for a fixed k 
is called the set Fisher star PPPs with country k as the star.129 The final set of GEKS 
indexes for the 13 months is simply geometric mean of all 13 of the specific month star 
parities; i.e., the final set of GEKS indexes for the months in the augmented year is any 
normalization of the following indexes:130 

(146) [k=1
13 PF(1/k)]1/13, [k=1

13 PF(2/k)]1/13, ... , [k=1
13 PF(13/k)]1/13 . 

The above GEKS indexes have a number of important properties:131 

	 They satisfy Walsh’s multiperiod identity test so that if any two months in the 
augmented year have exactly the same price and quantity vectors, then the above 
index values will coincide for those two months; i.e., the above indexes are free 
from chain drift. 

	 The above indexes do not asymmetrically single out any single month to play the 
role of a base period; all possible base months contribute to the overall index 
values.132 

 The above indexes make use of all possible bilateral matches of the price data 
between any two months in the augmented year. 

 Strongly seasonal commodities make a contribution to the overall index values. 

129 This terminology follows that of Kravis (1984). In our present context, the “countries” are now the 13 
months in the current augmented year. 
130 Balk (1981; 74) derived the GEKS parities using this type of argument rather than the usual least 
squares derivation of the GEKS parities; see Balk (1996) and Diewert (1999b) for these alternative 
derivations. 
131 The basic idea of adapting a multilateral method to the time series context is due to Balk (1981) who set 
up a framework that is very similar to the one explained here (which follows Ivancic, Diewert and Fox 
(2011) more closely). Balk (1981) used an index number formula due to Vartia (1976a) (1976b) in place of 
maximum overlap bilateral Fisher indexes as his basic building blocks and he considered augmented years 
of varying length instead of a 13 month augmented year but the basic idea of adapting multilateral methods 
to the time series context is due to him. 
132 Thus the above GEKS procedure is an improvement over the suggestion of Feenstra and Shapiro (2003) 
who chose only a single base month. 
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The last property explains why the augmented year should include at least 13 consecutive 
months, so that strongly seasonal commodities can make a contribution to the overall 
index. 

The major problem with the GEKS indexes defined by (146) is that the indexes change as 
the data for a new month becomes available. A headline CPI cannot be revised from 
month to month due to the fact that many contracts are indexed to a country’s headline 
consumer price index. A solution to this no revisions problem will be described in the 
following subsection. 

7.3 Rolling Year GEKS Indexes 

Ivancic, Diewert and Fox (2011) dealt with the fact that the addition of a new month’s 
data would cause the GEKS indexes for past periods to change in the following way. 
Their method adds the price and quantity data for the most recent month to the 
augmented year and drops the oldest month from the old augmented year in order to 
obtain a new augmented year. The GEKS indexes for the new augmented year are 
calculated in the usual way and the ratio of the index value for the last month in the new 
augmented year to the index value for the previous month in the new augmented year is 
used as an update factor for the value of the index for the last month in the previous 
augmented year. The resulting indexes are called Rolling Year GEKS indexes. 

Numerical experiments with Australian and Dutch scanner data from grocery chains 
show that the Rolling Year GEKS indexes work well when up to date price and quantity 
data are made available to the statistical agency; see Ivancic, Diewert and Fox (2011) and 
de Haan and van der Grient (2011). In particular, adding and dropping a month of data 
and recomputing the GEKS indexes does not seem to change past index values very 
much.133 

A more recent paper that describes the Dutch experience with Rolling Year GEKS is by 
van der Grient and de Haan (2011) and we will briefly describe the contents of this 
important paper. The authors note that in 2010, Statistics Netherlands expanded the use 
of scanner data in their CPI using the monthly unit value data by detailed product 
provided by six supermarket chains. The six chains for which scanner data were included 
in the January 2010 CPI have an aggregate market share of some 50% and a weight of 
slightly over 5% in the CPI. They also described the new method that utilized this 
scanner data in the Dutch CPI. Monthly chained Jevons price indexes are now computed 
at the lowest aggregation level. However, not all item prices are used: the authors noted 
that using all item prices in the various elementary indexes overstates the importance of 
low expenditure items. Thus in the Dutch CPI, an item price is used in the computation of 
the price index between two adjacent months if its average expenditure share in the 
current and preceding month with respect to the set of matched items is above a certain 
threshold value. The threshold (for including the item in the Jevons elementary 

133 Balk (1981; 77) also observed the same phenomenon as he computed his GEKS indexes using 
successively larger data sets. 
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aggregate) was chosen so that roughly 50 percent of the items are selected, representing 
80 to 85 percent of aggregate expenditure. This cut-off sampling was done at the 
elementary aggregation level; i.e., for each product category at the most detailed level 
within each supermarket chain. Van der Grient and de Haan (2011) noted that the lack of 
weighting at the item level is an obvious weakness. Thus the Dutch Central Bureau of 
Statistics is also computing Rolling Year GEKS indexes to compare with their cut-off 
sampling method for constructing elementary aggregates, which are used in their official 
CPI. In order to make an informed decision about possible implementation of the Rolling 
Year GEKS method, Statistics Netherlands has a shadow system running which computes 
rolling year GEKS indexes for each COICOP category and each supermarket chain. Van 
der Grient and de Haan (2011) fully describe both the official Dutch cut-off sampling 
method and the Rolling Year GEKS method and they present monthly index numbers for 
2009 and 2010. At the all items level, they find that the two methods yield similar results. 
However, as might be expected, at lower levels of aggregation, there appear to be some 
marked differences.134 

The problems associated with the treatment of quality change have not been mentioned in 
this report but quality adjusting prices of products that are subject to rapid technological 
change is an important problem. One important method for the treatment of quality 
change is the hedonic regression technique. This method regresses the price of the 
product on its price determining characteristics. It is outside the scope of this report to 
discuss this method in detail but an important new paper by de Haan and Krsinich (2012) 
shows how hedonic regression techniques can be combined with the Rolling Year GEKS 
method in the scanner data context.  

Our conclusion at this point is that Rolling Year GEKS appears to be the “best” method 
for constructing elementary aggregates, provided supermarket chains are willing to 
provide the statistical agency with the required data on prices and quantities. 

7.4 Approximate Rolling Year GEKS Indexes 

The methodology that is used in constructing Rolling Year GEKS indexes for some 
elementary aggregates can be adapted for use in situations where the statistical agency 
has only “traditional” elementary aggregate information (based on a sample of item 
prices) and base year expenditure information for a rolling year in the past.135 

The notation that was explained in section 7.2 above will be used here, with some 
modifications. Denote the (elementary) price index data for the past thirteen months by 
the superscript c = 1, 2, ..., 13. Thus when c equals 13, the data refer to the current month 
and when c = 1, the data refer to the same month one year ago from the current month. 
As in section 7.2, we call these thirteen months the current augmented year. Suppose that 
there are N elementary aggregates and let pn

c denote the elementary price index level for 

134 Other countries who are experimenting with using supermarket scanner data in their consumer price

indexes are Norway and Australia. 

135 This base year expenditure information is required for each month in the base year in order to implement

the method suggested here. 
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stratum n in month c of the current augmented year for n = 1,...,N. If the stratum n 
corresponds to strongly seasonal items and in month c, no items are available, then define 
pn

c to be 0. It is assumed that quantity or expenditure information for the current 
augmented year is not available but expenditure information by month is available for 
each stratum for an augmented base year b. Reorder the augmented base year expenditure 
information so that the monthly expenditures by month in the augmented base year line 
up with the months in the current augmented year. Thus if month 13 in the current 
augmented year is July of the current year, en

13* corresponds to the July expenditures for 
elementary stratum n in the base year; en

12* corresponds to the base year expenditures for 
stratum n in June of the base year and so on. These augmented base year expenditures by 
stratum and month can be converted into implicit quantities by dividing the augmented 
base year expenditures by the corresponding elementary price indexes pn

c*. Thus if en
c* > 

0, define qn
c*  en

c*/pn
c* and if en

c* = 0, define qn
c*  0. Define the vector of elementary 

price indexes for month c of the current augmented year as pc  [p1
c,p2

c,...,pN
c] and define 

the vector of quantities for month c in the augmented base year as qc*  [q1
c*,q2

c*,...,qN
c*] 

for c = 1,...,13. Let S(i,j) be the set of elementary strata that have positive elementary 
indexes for months i and j of the current augmented year, for i, j = 1,2,...,13. Then the 
approximate maximum overlap Laspeyres, Paasche and Fisher indexes that compare the 
prices in month j to month i in the current augmented year are defined as follows:  

(147) PAL(j/i)  nS(i,j) pn
jqn

i*/nS(i,j) pn
iqn

i*; 	   i.j = 1,2,...,13; 
(148) PAP(j/i)  nS(i,j) pn

jqn
j*/nS(i,j) pn

iqn
j* ; 	  i.j = 1,2,...,13; 

(149) PAF(j/i)  [PAL(j/i)PAP(j/i)]1/2 ; 	 i.j = 1,2,...,13. 

The indexes defined by (147)-(149) are the approximate counterparts to the “true” 
Laspeyres, Paasche and Fisher indexes defined earlier by (143)-(145): basically, current 
month c implicit quantity vectors qc are replaced by their base year counterparts, qc*. 

Once the above approximate indexes have been defined, we can follow the methodology 
explained in section 7.1 above. Thus define the set of approximate GEKS indexes for the 
months in the augmented year as any normalization of the following indexes: 

(150) [k=1
13 PAF(1/k)]1/13, [k=1 

13 PAF(2/k)]1/13, ... , [k=1
13 PAF(13/k)]1/13 . 

The above approximate GEKS indexes have a number of important properties: 

	 They satisfy a modification of Walsh’s multiperiod identity test so that if any two 
months in the augmented year have exactly the same price vectors and the 
implicit quantity vectors for those two months in the base augmented year are the 
same, then the above index values will coincide for those two months; i.e., the 
above indexes are free from chain drift. 
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 The above indexes do not asymmetrically single out any single month to play the 
role of a base period; all possible base months contribute to the overall index 
values.136 

 Strongly seasonal commodities make a contribution to the overall index values. 

Now follow the Rolling Year GEKS methodology explained in section 7.2 above. Thus 
we add the price data for the most recent month to the current augmented year and drop 
the price data for the oldest month in order to obtain a new augmented year for prices. 
Similarly, we add an additional month of quantity data to the base year for expenditures 
and implicit quantities and drop the oldest month of quantity data for the augmented base 
year. The approximate GEKS indexes for the new augmented years are calculated in the 
usual way and the ratio of the index value for the last month in the new augmented year 
to the index value for the previous month in the new augmented year is used as an update 
factor for the value of the index for the last month in the previous augmented year. The 
resulting indexes are called Approximate Rolling Year GEKS indexes. 

Since this method has not been suggested before, there have been no numerical 
experiments to see how it performs in practice. A priori, this method appears to be an 
improvement over traditional annual basket methods but it will have to be tested before it 
can be used by national statistical agencies in their consumer price indexes. 

Some of the methods described in this section can be adapted to the elementary index 
context as will be seen in the following section. 

136 Thus the above GEKS procedure is an improvement over the suggestion of Feenstra and Shapiro (2003) 
who chose only a single base month. 
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8. The Rolling Year Time Product Dummy Method for Constructing Elementary
 Indexes 

8.1 The Time Product Dummy (TPD) Method for Constructing Elementary Indexes 

Recall the simple stochastic approach to elementary indexes that was explained in section 
4.6 above. In that approach, a statistical model was proposed that used only the data of 
two consecutive periods. A problem with this approach is that if there are strongly 
seasonal commodities in the elementary aggregate, they can have no influence on the 
elementary aggregate unless the commodity is present in both periods under 
consideration. Thus it seems more appropriate to extend the model of section 4.6 to cover 
the data for an augmented year so that strongly seasonal commodities will have an 
influence on the elementary indexes. The basic hypothesis is that prices within the 
elementary stratum vary proportionally over time except for random errors. Thus if a 
sample of M items in the elementary stratum are priced over the thirteen months in the 
current augmented year, let S(c) denote the set of items that are actually priced during 
month c of the augmented year and denote the price of item m in month c of the 
augmented year by pm

c for c = 1,2,...,13 mS(c) and c = 1,2,...,13. The counterparts to 
equations (74) and (75) in section 4.6 are the following equations: 

(151) pm
1  m ; mS(1); 

(152) pm
c  cm ; c = 2,3,...,13; mS(1). 

The sequence of numbers 1, 2, 3,..., 13 are the desired factors of proportionality over 
the 13 months in the current augmented year and they represent the sequence of 
elementary indexes for the stratum under consideration for the augmented year. The 
parameters 1, 2,..., M represent quality adjustment factors that adjust for the differing 
quality of the outlets sampled and the items chosen. Adding multiplicative error terms to 
the right hand sides of (151) ad (152) and taking logarithms of both sides of the resulting 
equations leads to the following system of linear in parameters estimating equations: 

(153) ln pm
1 = bm + m

1 ; mS(1); 
c(154) ln pm = ac + bm + m

1 ;  c = 2,3,...,13; mS(1) 

where bm  ln m for m = 1,...,M and ac  ln c for c = 2,3,...,13. 

Once the ac parameters have been estimated, estimates of the c can be obtained by 
exponentiating the ac. It can be seen that the model defined by (153) and (154) is formally 
identical to Summer’s (1973) Country Product Dummy model for generating elementary 
indexes except that the time periods in the current augmented year replace the countries 
in Summer’s method. Thus it seems appropriate to term the present time series model the 
Time Product Dummy model for generating elementary indexes.137 

137 Balk (1980c; 70) proposed a weighted version of this model in the time series context and Diewert 
(2004) proposed a weighted version of this model in the multilateral context.  
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Some of the advantages of the TPD method of constructing elementary aggregates over 
traditional method that rely on the Jevons, Carli or Dutot formulae as aggregation 
techniques are as follows: 

	 The TPD estimates do not single out a single month’s prices as the base prices 
as is done using the current ONS methodology for the RPI that uses Carli 
indexes with a January base month; the TPD method treats all months in the 
current augmented year in a completely symmetric manner. 

	 The TPD method makes use of all of the price information collected for the 
current augmented year and so there is maximal (implicit) matching of prices 
within the augmented year. 

	 There is no need for special methods (like carry forward missing prices) to 
deal with missing prices or strongly seasonal commodities: the TPD method 
automatically deals with these problems. 

	 The TPD method generates standard errors for the resulting elementary 
indexes. 

	 The TPD method generates elementary indexes that satisfy Walsh’s 
multiperiod identity test; i.e., if the prices for two months in the augmented 
year are identical, then the resulting TPD index values will be identical for 
those two months. Thus TPD indexes will be free of chain drift.  

Of course, a problem with the TPD indexes is that they will change as data for a new 
month becomes available. In the following subsection, we use the Rolling Year 
methodology to overcome this difficulty. 

8.2 The Rolling Year Time Product Dummy (RYTPD) Method for Constructing 
Elementary Indexes 

As usual, the Rolling Year GEKS methodology explained in section 7.2 can be adapted to 
deal with the problem identified at the end of the last subsection. Thus we add the price 
data for the most recent month to the current augmented year and drop the price data for 
the oldest month in order to obtain a new augmented year for prices. A new model 
defined by (154) and (155) for the new augmented year is estimated and new index 
values say 12* and 13* are generated for the new augmented year. The value of the 
index for the last month in the previous augmented year is multiplied by 13*/12* in 
order to obtain an updated index for the last month in the new augmented year. The 
resulting indexes are called Rolling Year Time Product Dummy(RYTPD) elementary 
indexes. 

Since this method has not been implemented, there have been no numerical experiments 
to see how it performs in practice.138 A priori, this method appears to be an improvement 

138 Although the method has not been precisely implemented, Balk (1980c) more or less implemented a 
weighted version of the model using his Dutch data set on greenhouse fruits and vegetables for 72 months. 
Balk computed his weighted TPD indexes, starting with the first 4 months of data, then adding one more 
month of data and ending up using all 72 months of data. He found that once 48 months of data were used, 
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over traditional elementary index methods but it will have to be tested before it can be 
used by national statistical agencies in their consumer price indexes. 

adding an additional month of data to the previous regression model did not significantly change the earlier 
model price levels. Thus for his data set, a rolling window of length 48 months would probably work well. 



85 

9. The Problem of Fashion Goods 

A fashion good is a good which comes on the market with a price premium due to its 
newness and then declines in price as its “newness” wears off. Examples of fashion 
commodities are certain items of women’s clothing, automobiles, electronic games and 
movies. 

One of the best papers which deals with fashion goods in a systematic manner is by 
Greenlees and McClelland (2010). They obtained scanner data on apparel sales of 
“women’s tops” in the US for a number of years and they tried a wide variety of 
techniques to deal with the problems associated with fashion goods. The basic problem is 
that at the beginning of the fashion season, a fashion good comes into the marketplace at 
a high price and then as time passes, the price of the same item declines rapidly. Thus if 
any kind of matched model price index is used, the resulting index will show a 
tremendous downward movement throughout the year. When a new fashion item that is 
somewhat comparable is introduced at the beginning of the following season is linked in 
with the last price of last year’s comparable fashion item, and then the index will rapidly 
decline to a very low level. However, if one uses annual unit value prices for the fashion 
items, there is very little change in these prices over time. 

How can a fashion good be detected? In the case of a clothing item, a useful test would 
be a persistent decline in the price of the item after its introduction. Greenlees and 
McClelland (2010) document the decline in price of a women’s fashion item (misses’ 
tops) for a major department store chain in the U.S. from the start of each March over the 
years 2004-2007. Only 2 percent of transactions in this item take place at the introductory 
price at the start of each season. The average selling price is about one half of the starting 
price. Non fashion items tend to sell at prices that may fluctuate but do not persistently 
decline.  

There are two problems that are associated with the use of average prices to reflect the 
movements in the prices of fashion items: 

•	 Average prices fail to account for any changes in average item characteristics or 
“quality” over time. 

•	 The effects of the product cycle for these fashion goods leads to tremendous 
fluctuations in the month to month indexes. These fluctuations are not “real” 
because the same physical item in the middle of the year is not the same (in the 
eyes of purchasers) as the item when it is “newer”.  

The answer to the above problems is to treat each fashion good in each month of its life 
as a separate good. These separate goods cannot be directly compared across the months 
within the fashion cycle but a brand new car of a certain model and type can be compared 
with the comparable brand new car that is introduced at the start of the next fashion cycle. 
The effect of this treatment is to make each vintage of a fashion good a strongly seasonal 
commodity that can be compared across fashion seasons (for models of the same vintage) 
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but cannot be directly compared within the fashion season.139 Basically, comparing prices 
of a particular fashion item as it “ages” in the market place is not comparing like with 
like: an older vintage of a fashion good gives less utility to purchasers as compared to a 
new vintage. Index number theory rests on the assumption that we are comparing the 
same good (that gives purchasers the same utility) at two or more time periods and 
fashion goods do not satisfy this criterion: different vintages of the same physical fashion 
good give purchasers differing amounts of utility. 

139 Of course, there is a practical problem facing price collectors in following this advice: it may be difficult 
to determine if a particular fashion item just introduced in the current month is comparable to last season’s 
just introduced fashion item. 
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10. Recommendations 

Our recommendations for changing procedures will be directed at the Retail Prices Index 
(RPI) since the ONS has control over this index whereas the CPI or HICP is controlled by 
European legislation.140 

10.1 Short Run Recommendations 

The following three recommendations could be implemented in the near future. 

Recommendation 1: The scope of the RPI should be changed to cover the expenditures of 
all households in the UK on consumer goods and services. 

The present restrictions on the scope of the RPI seem to be a historical artefact and 
should be dropped. 

Recommendation 2: The RPI should drop its use of the Carli index as an elementary 
index and replace it by either the Jevons index or the Carruthers Sellwood Ward and 
Dalen elementary index. 

The upward bias in the Carli index was explained in sections 4.4 and 4.5 and illustrated in 
sections 4.8 and the Appendix. Arguments that attempt to justify the use of the Carli 
index on the basis of the economic approach to elementary indexes that are presented on 
pages 364-369 of the Consumer Price Index Manual cannot be used to justify the use of 
the Carli index. What the arguments in the Manual show is that if one has knowledge of 
the expenditure shares associated with each price, then a sampling scheme that uses this 
weighting information can recover various indexes such as the Laspeyres and Paasche 
indexes. However, at the elementary level, by definition, the price statistician does not 
have the required information on weights.141 The use of Dutot elementary indexes is 
satisfactory if the elementary stratum is very narrowly defined so that all items in the 
stratum are very similar. But if this narrowness assumption is not satisfied, the use of 
Dutot indexes should be avoided; see section 4.8 for an example where the use of the 
Dutot index is not appropriate. 

Recommendation 3: Fashion goods should not be used as priced items in the current RPI.  

140 The HICP uses much the same methodology as the RPI and so many of the recommendations made in 
this section apply also to the HICP. One major difference between the RPI and HICP is that the HICP does 
not use the Carli index at the elementary level whereas the RPI uses the Carli in about 50% of its strata. 
This methodological difference probably explains most of the recent differences in the two indexes. It 
should be noted that the HICP was initially designed as a general inflation index (with no imputations) as 
opposed to a measure of domestic household consumer price inflation. For a discussion of the 
methodological differences between the HICP and a Consumer Price Index based on a cost of living 
framework, see Diewert (2002). 
141 In retrospect, it was probably a mistake to include this material on the economic approach to elementary 
indexes in the Consumer Price Index Manual. 
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If the overall methodology used in the RPI is changed to use monthly baskets and rolling 
year techniques, then fashion goods can be introduced into the list of sampled items but 
these items need to be treated as strongly seasonal products; see section 9 above. 

Recommendation 4: The use of Young indexes (weighted Carli indexes) at lower levels 
of aggregation should be eliminated due to the inherent upward bias in these indexes.142 

These Young indexes could be replaced by their weighted Jevons counterparts, which are 
not subject to the bias problem. Alternatively, the weighting structure used in the RPI 
could be simplified. At present, there are multiple layers of aggregation in the RPI and it 
is difficult to determine what the effects of these layers are (and it is difficult to explain to 
the public exactly how the aggregation is accomplished). Ideally, there would be only 
two layers of aggregation: a lower level of aggregation where there are no weights 
available and so an elementary index number formula would be used to aggregate the 
items within each stratum at this lower level and a higher level of aggregation, where 
weights are available. 

10.2 Longer Run Recommendations 

The following recommendations are longer run recommendations. Basically, these 
recommendations involve using new techniques to produce better indexes. The biggest 
problem with the current RPI and HICP is that they use monthly prices but annual 
weights. As was explained in section 5.4 above, this is not methodologically sound. But 
before these suggestions on producing more methodologically sound indexes are 
implemented, they need to be tested by the ONS; i.e., they need to be produced on an 
experimental basis and carefully evaluated before they are published. 

Recommendation 5: The ONS should collect monthly expenditure information on 
household expenditures so that monthly expenditure shares for the target population can 
be calculated. 

This recommendation would necessitate more resources for improving the existing 
consumer expenditure surveys. This recommendation is a key one. Existing approaches 
to the construction of consumer price indexes all assume that information on prices and 
the corresponding quantities consumed is available at the frequency of the index so if the 
index is produced on a monthly basis, information on both prices and quantities is 
required on a monthly basis.143 

The following four recommendations assume that monthly expenditure and price 
information is available. 

142 See the ONS (2012; 41) for an explanation of how Young indexes are used at lower levels of 

aggregation in the RPI. 

143 See section 5.4 above for criticisms of approaches to index number theory that use monthly prices but

annual quantities.
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Recommendation 6: The Approximate Rolling Year GEKS indexes described in section 
7.3 should be produced by the ONS on an experimental basis. 

If these indexes perform well, then this index should become the headline measure of 
inflation and replace the current RPI. 

Recommendation 7: The Rolling Year GEKS indexes described in section 7.2 should be 
produced on a delayed basis (as current month expenditure information becomes 
available) as an analytic series. 

The approximate Rolling Year GEKS indexes will have a small amount of substitution 
bias in them and so in order to form estimates of this bias, it will be necessary to produce 
“true” Rolling Year GEKS indexes on a delayed basis in order to evaluate this bias. 

Recommendation 8: The ONS should explore the possibility of obtaining detailed price 
and quantity data from the major supermarket chains in the UK.  

Chains in the Netherlands and in Australia have provided this information to their 
national statistical agencies on a voluntary basis and it seems likely that this would be 
possible in the UK as well. With detailed price and quantity information, accurate 
elementary indexes for many strata could be calculated as the Dutch experience 
demonstrates; see section 7.2 above. 

Recommendation 9: The ONS should compute Rolling Year Time Product Dummy 
elementary indexes on an experimental basis. 

If the resulting experimental indexes look reasonable, then the ONS should replace its 
current methods for constructing elementary indexes by RYTPD indexes. The 
methodological advantages of these indexes are listed in section 8.2 above.  

The final two recommendations are probably not as important as the previous 
recommendations. Basically, these two final recommendations boil down to an index 
number method for seasonally adjusting a consumer price index but other methods of 
seasonal adjustment may work just as well. 

Recommendation 10: The ONS should produce the Approximate Rolling Year Annual 
indexes described in section 6.4 as analytic indexes. 

Recommendation 11: As information on current period monthly expenditures becomes 
available, the ONS should produce the superlative Rolling Year Annual indexes 
described in section 6.4 on a delayed basis as analytic indexes. 

These Rolling Year Annual indexes should be very useful to the Bank of England as 
seasonally adjusted measures of consumer price inflation and may be suitable as target 
indexes. The differences between the Approximate and True Annual Rolling Year 
indexes described in sections 6.4 should provide some information on the amount of 
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higher level substitution bias that is inherent in the Approximate Rolling Year Annual 
indexes. 

Many of the above recommendations should be considered as recommendations for 
further research by other national and international statistical agencies. In particular, 
Recommendations 6-11 can also be applied to the HICP.  
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