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Abstract

Gold rushes are periods of economic boom, generally associated with large increases in
expenditures aimed at securing claims near new found veins of gold. An interesting aspect of
gold rushes is that, from a social point of view, much of the increased activity is wasteful since
it contributes mainly to the expansion of the stock of money. In this paper, we explore whether
business cycle fluctuations may sometimes be driven by a phenomenon akin to a gold rush.
In particular, we present a model where the opening of new market opportunities causes an
economic expansion by favoring competition for market share, which is essentially a dissolution
of rents. We call such an episode a market rush. We construct a simple model of a market rush
that can be embedded into an otherwise standard Dynamic General Equilibrium model, and
show how market rushes can help explain important features of the data. We use a simulated-
moment estimator to quantify the role of market rushes in fluctuations. We find that market
rushes may account for half the short run volatility in hours worked and a third of the short
run volatility of output.
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Introduction

There is a large literature aimed at decomposing business cycles into temporary and permanent

components. A common finding in this literature is that there is a significant temporary compo-

nent in business cycle fluctuations; that is, an important fraction of business cycles appears to be

driven by impulses that have no long run impact. While technology shocks has arisen as a lead-

ing candidate explanation to the permanent component (whether these shocks be surprise increase

in technological capacities, or news about future possibilities), there remains substantial debate

regarding the driving forces behind the temporary component of macroeconomic fluctuations. Sev-

eral potential explanation to the temporary component have been advanced and explored in the

literature; the most notable being monetary shocks and government spending shocks. While such

disturbances indeed create temporary business cycle movements, quantitative evaluation of their

effects have generally found that they account for a very small fraction of macroeconomic fluctua-

tions. Hence, the puzzle regarding the driving force behind temporary fluctuations persists. Since

the most obvious –and most easily measured – candidates have not been convincingly shown to

adequately explain temporary fluctuations, part of the literature has turned to exploring the po-

tential role of shocks that are conceptually more difficult to measure. A prominent example of this

alternative line of research is the literature related to sunspot shocks. While several papers have

argued that sunspot shocks offer a good explanation to temporary business cycle fluctuations (see

Benhabib and Farmer [1999] for a survey), much of the profession has remained skeptical.1 In this

paper we propose and evaluate a theory of temporary business cycle fluctuations which has some

similarities with sunspot shocks, in that expectation changes are the initial driving force. However,

our approach is fundamentally different since it does not rely on indeterminacy of equilibrium nor

on increasing returns to scale. Instead our model builds on the intuition derived from gold rushes,

where expectations play an important role but are nevertheless based on fundamentals.

To help motivate our approach, let us briefly discuss properties of a gold rush. For example, consider

the case of Sutter’s Mill near Coloma, California. On january 24, 1848, James W. Marshall, a

carpenter from New Jersey, found a gold nugget in a sawmill ditch. This was the starting point

of one of the most famous Gold Rushes in history, the California Gold Rush of 1848-1858. More

than 90,000 people made their way to California in the two years following Marshall’s discovery,

and more than 300,000 by 1854 – or one of about every 90 people then living in the United States.

The population of San Francisco exploded from a mere 1,000 in 1848 to 20,000 full-time residents

by 1850. More than a century later, the San Francisco 49ers NFL team is still named for the
1 There are at least two reason for why the profession has remained skeptical about the importance of sunspot

shocks in business cycles. First, the empirical evidence has not provided great support for the theoretical features
of the economy needed to allow for sunspot shocks. Second, the coordination of beliefs implicit in the underlying
mechanism is hard to understand.
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prospectors of the California Gold Rush. Another famous episode, which inspired Charlie Chaplin’s

movie “The Gold Rush” and Jack London’s book The “Call of the Wild”, is the Klondike Gold

Rush of 1896-1904. Gold prospecting took place along the Klondike River near Dawson City in the

Yukon Territory, Canada. An estimated 100,000 people participated in the gold rush and about

30,000 made it to Dawson City in 1898. By 1910, when the first census was taken, the population

had declined to 9,000.2 As these examples make clear, gold rushes are periods of economic boom,

generally associated with large increases in expenditures aimed at securing claims near new found

veins of gold. An interesting aspect of many gold rushes is that, from a social point of view, part

of the increased activity is wasteful since historically it mainly contributed to the expansion of the

stock of money. We are obviously aware that gold rush episodes do not occur at business cycle

frequency, but they will serve here as a useful metaphorical example.

In this paper, we explore whether business cycle fluctuations may sometimes be driven by a phe-

nomenon akin to a gold rush. In particular, we present a dynamic general equilibrium model where

the opening of new market opportunities causes an economic expansion by favoring competition

for market share. We call such an episode a market rush. The market rush may mainly act to

redistribute rents between firms with little external gain, in which case the net social value of such

a market rush would be minor. By embedding a simple model of market rushes into an otherwise

standard Dynamic General Equilibrium model, we cam evaluate whether such a phenomenon is

a significant contributor to business cycle fluctuations. To capture the idea of a market rush, we

build on an expanding varieties model where agents compete to secure monopoly positions in new

markets, as often done in the growth literature (see for example Romer [1987] and Romer [1990])

and in some business cycle models (see for example Devereux, Head, and Lapham [1993]), although

we treat the growth in the potential set of varieties as technologically driven and exogenous. In

this setting, when agents perceive an increase in the set of technologically feasible products, they

invest to set up a prototype firm (or product) with the hope of securing a monopoly position in

the new market. It is therefore the perception of these new market opportunities that causes the

unset of a market rush and the associated economic expansion. After the initial rush, there is a

shake out period where one of the prototypes secures the dominant position in market. The long

term effect of such a market rush depends on whether the expansion in variety has an external

effect on productivity. In the case where it does not have an external effect, the induced cycle is

socially wasteful as it only contributes to the redistribution of market rents. In contrast, when the

expansion of variety does exert positive external effects, the induced cycle can have social value but

will generally induce output fluctuations that are excessively large.3

2See http://en.wikipedia.org/wiki/Gold rushes for further facts and references.
3 A potential example of such a process is the “dot com” frenzy of the late 90s, where large investments were

made by firms trying to secure a position in the expanding internet market. At the end of this process, there was a
large shake out as many firms went bankrupt and only a small percentage survived and obtained a substantial market
position. The long run productivity gains and social value associated with this process are still debated.

3

http://en.wikipedia.org/wiki/Gold_rushes


The aim of the paper is to explore whether expectations about new profit opportunities, as cap-

tured by market rushes, could be a significant contributor to macroeconomic fluctuations.4 Since

expectations of new markets are not easily observable, we need to set a demanding standard to

evaluate such a story. This is what we do. Not only do we provide a model that is capable of

explaining important qualitative features of the business cycle dynamics of consumption, output

and hours, but we also examine the quantitative importance of market rushes when we embed them

in a model that includes prominent alternative driving forces discussed in the literature.

We begin the paper by presenting in Section 1 a very simple version of the model that can be solved

analytically as to highlight the main elements and mechanisms of a market rush. In this model, we

show that current economic activity depends positively on the expectation of next period’s activity

and on the perceived opening of new markets. Hence, when agents learn that the economy is

starting a prolonged period of market expansion, this induces an immediate increase in investment

and an associated economic expansion. Given the tractability of the model, we can solve it in the

presence of a standard technology shock and our market expansion shock. To motivate our approach

to the empirical evaluation of the model, we begin in Section 2 by highlighting the properties of

this simple model in relation to the empirical properties of a Consumption–Output VECM as first

studied by Cochrane [1994]. In particular, we show that our market rush model, augmented with

a standard technology shocks, displays several of the qualitative properties of consumption–output

VECM. While our model is not the only candidate explanation to the observed bivariate properties

of consumption and output, we show that is offers a very simple and salient interpretation. We

then turn to a more complete model to evaluate its quantitative properties. Our main finding is

that market expansion shocks (market rushes) appear to be an important driving force underlying

business cycle fluctuations. Section 4 examines the robustness of this result with respect to allowing

for alternative sources of fluctuations, such as investment specific technology shocks, temporary

technology shocks and preference shocks (in the technical appendix to this paper, we also discuss

the potential role of monetary shocks). Overall, we find that market rushes can explain a sizable

fraction of hours and output fluctuations even when allowing for these alternative explanations.

Section 5 offers concluding comments.

1 An Analytical Model of Market Rushes

In this section, we present a simple analytical model of market rushes. The main element is that, in

each period, agents receive information about potential new varieties of goods which could become
4This paper is related to several papers, both old and recent, which emphasize the role of expectations in affecting

business cycles. The newest embodiment of the literature (Beaudry and Portier [2004a], Beaudry and Portier [2004b],
Jaimovich and Rebelo [2006]and Christiano, Motto, and Rostagno [2005], Beaudry and Portier [2006]) emphasizes
the role of expectations regarding future productivity growth in creating fluctuations.
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profitable to produce. In response to these expectations of profits, agents invest in putting on the

market a prototype of the new good. Since many agents may invest in such startups, they engage

in a winner takes all competition for securing the market of a newly created variety. The winning

firm then becomes a monopolist on the market. This position may then be randomly lost at an

exogenous rate. Expansion in variety may or may not have a long run impact on productivity, so

that the market rush is not forced a priori to satisfy the gold rush analogy.

1.1 Model

Firms: There exists a raw final good, denoted Qt, produced by a representative firm using labor

ht and a set of intermediate goods Xt(j) with mass Nt according to a constant returns to scale

technology represented by the production function

Qt = (Θtht)
αN ξ

t

(∫ Nt

0
Xt(j)χdj

) 1−α
χ

, (1)

where α ∈ (0, 1). Θt is an index of disembodied exogenous technological progress. χ 6 1 determines

the elasticity of substitution between intermediate goods and ξ is a parameter that determines the

long run effect of variety expansion. Since this final good will also serve to produce intermediate

goods, we will refer to Qt as the gross amount of final good. Also note that the raw final good will

serve as the numéraire. The representative firm is price taker on the markets.

Each existing intermediate good is produced by a monopolist. Just like in many expanding variety

models, the production of one unit of intermediate good requires the use of one unit of the raw

final good as input. Since the final good serves as a numéraire, this leads to a situation where the

price of each intermediate good is given by Pt(j) = 1/χ. Therefore, the quantity of intermediate

good j, Xt(j), produced in equilibrium is given by

Xt(j) = (χ(1− α))
1
α ΘtN

φ−1
t ht. (2)

where φ = ξ−1+(1−α)/χ
α . The profits, Πt(j), generated by intermediate firm j are given by

Πt(j) = π0ΘtN
φ−1
t ht, (3)

where π0 =
(

1−χ
χ

)
(χ(1 − α))

1
α . Equalization of the real wage with marginal product of labor

implies

Wt = AΘtN
φ
t , (4)

where A = α(χ(1− α))
(1−α)

α .

Value added, Yt, is then given by the quantity of raw final good, Qt, net of that quantity used

to produce the intermediate goods, Xt(j). Once we substitute out for Xt(j), and take away the
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amount of Qt used in the production of Xt(t), we obtain

Yt = Qt −
∫ Nt

0
Xt(j)dj

= AΘtN
φ
t ht. (5)

The net amount of raw final good can serve for consumption, Ct, and startup expenditures, St,

purposes.

Yt = Ct + St. (6)

Variety Dynamics : We denote by Nt the number of potential varieties in period t, while Nt

is the number of active varieties –i.e. those which are effectively produced, with Nt 6 Nt. In

each period, new potential varieties are created at the stochastic growth rate ηt. The Nt existing

potential varieties of the period become obsolete at an exogenous rate µ ∈ (0, 1). Therefore, the

dynamics for the number of potential products is given by

Nt+1 = (1 + ηt − µ)Nt. (7)

Note that η brings information about future potentially profitable varieties but does not immedi-

ately affect the production function, acting like a news shock.

The law of motion of the number of effectively produced goods is driven by an endogenous adoption

decision. Any entrepreneur who desires to produce a potential new variety has to pay a fixed cost

of κ > 0 units of the final good to setup the startup. She does so if the expected discounted sum

of profits of a startup exceeds κ. Let NS,t denote the number of startups and St = κNS,t denote

total expenditures on setup costs. A time t+ 1 a startup will become a functioning new firm with

a product monopoly with an endogenous probability ρt, and existing monopolies disappear at rate

µ. Therefore, the dynamics for the number of effectively produced goods is given by

Nt+1 = (1− µ)Nt + ρtNS,t. (8)

The NS,t startups of period t compete to secure the ηtNt new monopoly positions. The successful

startups are uniformly drawn from among the NS,t existing ones. Therefore, the probability that

a startup at time t will become a functioning firm at t + 1 is given by ρt = min
(
1, ηtNt

NS,t

)
, and

the number of new goods created will be min (NS,t, ηtNt). If it turns out that startups are not

profitable enough, so that NS,t < ηtNt, not all existing varieties will be exploited and we will have

Nt < Nt. In order to obtain a tractable solution, we choose parameters to rule out this case of

partial adoption. Allocations will have the properties that it is always optimal for entrepreneurs to

exploit the whole range of intermediate goods.5 This implies that there will be no difference in the
5Such an assumption would be definitively not appealing in a growth perspective, or to account for cross–country

income differences (see for Comin and Hobijn [2004]), but seems to us acceptable in a business cycle perspective.
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model between the potential and the actual number of varieties in equilibrium, so that Nt = Nt
∀ t.

Households : The preferences of the representative household are given by

Et
∞∑
τ=0

βτ
(
log(Ct+τ ) + ψ(h− ht+τ )

)
, (9)

where 0 < β < 1 is a constant discount factor, Ct denotes consumption in period t and ht is the

quantity of labor the household supplies. The household chooses how much to consume, supply

labor, hold equities in existing firms (Et) and in startups (ESt ) by maximizing (9) subject to the

following sequence of budget constraints

Ct + P E
t Et + PSt ESt = Wtht + EtΠt + (1− µ)P E

t Et−1 + ρt−1P
E
t ESt−1, (10)

where P E
t is the beginning of period (prior to dividend payments Πt) price of an existing monopoly

equity, PSt is the price of startups and Wt is the wage rate.

The first order conditions imply:

ψCt = Wt (11)
1
Ct

(P E
t −Πt) = βEt

[
1

Ct+1
(1− µ)P E

t+1

]
(12)

PSt
Ct

= βEt
[

1
Ct+1

ρtP
E
t+1

]
. (13)

1.2 Equilibrium Allocations

The three last first order conditions can be combined to give:

PSt
ρtCt

= βEt
[
Πt+1

Ct+1

]
+ βEt

[
(1− µ)
ρt+1Ct+1

]
, (14)

which can be simply restated as

PSt = βρtEt
∞∑
τ=0

[
βτ

Ct
Ct+τ+1

(1− µ)τΠt+τ+1

]
. (15)

This condition states that the price of a startup is equal to the expected discounted sum of future

profits. Free entry of startup drives the expected discounted sum of profits (the right hand side of

equation (15)) net of the setup cost to zero. Therefore, one has in equilibrium

PSt = κ
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Using this last equation, the labor demand condition (4), the profit equation (3) and the startup

equity market equilibrium condition ESt = NS
t , the asset pricing equation (14) rewrites as(

St
Ct

)
= β

ψπ0

A

(
κηt

1− µ+ κηt

)
Etht+1 + β

(
1− µ

1− µ+ κηt

)
Et
[(

κηt
κηt+1

)(
St+1

Ct+1

)]
. (16)

Using the labor demand condition (4) and the resource constraint (6), we get(
St
Ct

)
= ψht − 1. (17)

Equation (16) can therefore we written as:

(ht − ψ−1) = βδt
π0

A
Etht+1 + βδtEt

[(
1
δt+1

− 1
)

(ht+1 − ψ−1)
]
, (18)

where δt = κηt/(1− µ+ κηt) is an increasing function of the fraction of newly opened markets ηt.

Equation (18) is a key equation of the model. It shows that current employment ht depends on

ht+1, δt and δt+1, and therefore indirectly depends on all the future expected δs. As δt brings

news about the future, employment is purely forward looking. The reason why future employment

favors current employment can be easily given an economic intuition: higher future employment

reflects higher expected profits, which therefore stimulates new entries today. Note that the model

exhibit certain salient neutrality properties,6 as the determination of employment does not depend

on either current or future changes in disembodied technological change Θt.

By repeated substitution, the above equation can be written as a function of current and future

values of δ only. Given the nonlinearity of equation (18),7 it is useful to compute a log–linear

approximation around the deterministic steady–state value of employment h. The latter is given

by:8

h =
ψ−1(1− β(1− δ))

(1− βδ π0
A − β(1− δ))

,

A condition for positive hours worked in steady state is then that βδ(1−χ)(1−α)/α+β(1−δ) < 1.9

and the log–linear approximation takes the form

ĥt = γEtĥt+1 +
(
h− ψ−1

h

)
Et
[
δ̂t − βδ̂t+1

]
6This results is due to the functional forms we use for preferences and technology. It is related to (i) the separability

between consumption and hours in the utility function ; (ii) logarithmic preferences for consumption and (iii) Cobb–
Douglas production function.

7We show in the technical appendix to this paper that it is possible to obtain an exact analytical solution to the
model in the case of i.i.d. shocks.

8Note that we used the fact that Et(ηt) = µ, which implies that δ = κµ
1+(κ−1)µ

in steady state.
9This condition obtains by noting that hours worked are positive as long as βδπ0/A + β(1− δ) < 1 and plugging

the definition of π0 and A.
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where ĥt and δ̂t now represents relative deviations from the steady state and γ ≡ βδ(π0/A)+β(1−δ)
with γ ∈ (0, 1).10 Solving forward, this can be written as

ĥt =
(
h− ψ−1

h

)(
δ̂t − βδ

(
A− π0

A

)
Et

[ ∞∑
i=0

γiδ̂t+1+i

])
. (19)

Note that, as γ ∈ (0, 1), the model possesses a unique determinate equilibrium path. Equation

(19) reveals that a positive δ̂t, – i.e. an acceleration of variety expansion, causes an instantaneous

increase in hours worked, output and investment in startups S. This boom arises as the result of the

prospects of profits derived from securing those new monopoly positions. This occurs irrespective of

any current change in the technology or in the number of varieties. Such an expansion is therefore

akin to a “demand driven” or “investment driven” boom.

Once the equilibrium path of h is computed, output is directly obtained from equation (5). Fi-

nally, combining labor demand (4) and labor supply (11), we obtain an expression for aggregate

consumption:

Ct =
A

ψ
ΘtN

φ
t . (20)

2 Equilibrium Allocations Properties

2.1 Comparison to the social optimum

Optimality properties of those allocations are worth discussing, and it is useful to compute the

socially optimal allocations as a benchmark. The social planner problem is given by

Max Et
∞∑
i=0

[
logCt+i + ψ(h− ht+i)

]

s.t.


Ct ≤ ÂΘtN

φ
t ht − κηtNS,t

Nt+1 = (1 + ηt − µ)Nt
Nt+1 = (1− µ)Nt + ρtNS,t

Nt ≤ Nt,

with Â = α(1−α)
α

(1−α) and where we have already solved for the optimal use in intermediate goods.

We assume again here that parameters are such that it is always socially optimal to invest in a new

variety, so that Nt = Nt. One necessary condition for full adoption to be socially optimal is that

the long run effect of variety expansion is positive, – i.e φ > 0 ⇐⇒ ξ > −(1 − α)(1 − χ)/χ. The

first order condition of the social planner program is given by

ÂΘtN
ξ+(1−α)(1/χ−1)

α
t

ÂΘtN
ξ+(1−α)(1/χ−1)

α
t ht − ηtNtκ

= ψ. (21)

10This follows from the restriction imposed on parameters to guarantee positive hours worked.
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There are many sources of inefficiency in the decentralized allocations. One obvious source is the

presence of imperfect competition: ceteris paribus, the social planner will produce more of each

intermediate good. Another one is the congestion effect associated with investment in startups,

because only a fraction ρt of startups are successful. The social planner internalizes this congestion

effect, and does not duplicate the fixed cost of startups, as the number of startups created is equal

to the number of available slots for optimal allocations.11 Because of these imperfections, the

decentralized allocation differs from the optimal allocation along a balanced growth path.

The difference between the market and the socially optimal allocations that we want to highlight

regards the response to expected future market shocks. It is remarkable that the socially optimal

allocation decision for employment (21) is static, and only depends on ηt (positively). This stands

in sharp contrast with the market outcome, as summarized by equation (18), in which all future

values of η appear. To understand this difference, let us consider an increase in period t in the

expected level of ηt+1. In the decentralized economy, larger ηt+1 means more startup investment in

t+1 and more firms in t+2. Those firms will affect other firms profits in period t+2 and onwards.

Therefore, a period t startup will face more competitors in t + 2, which reduces its current value,

and therefore decreases startup investment and output.12 Such an expectation is not relevant for

the social planner, which does not respond to news about future values of η. Therefore, in that

simple analytical model, part of economic fluctuations are driven by investors (rational) forecast

about future profitability that are inefficient from a social point of view.13 A stark result is obtained

in the case when the returns to variety are null, so that an expansion in the number for varieties

has no long run impact on productivity. This case corresponds to φ = ξ+(1−α)(1−χ)/χ
α = 0. In this

particular case, investment in startups occurs in the decentralized equilibrium in response to market

shocks, whereas the social planner would choose not to adopt any new good (Nt = N0 ∀ t), as

implementing new goods costs κ and has no productive effect. In this very case, optimal allocations

are invariant to market shocks η, while equilibrium allocations react suboptimally to those shocks.

In particular, as hours are only affected by market shocks in equilibrium, all equilibrium fluctuations

in hours are suboptimal.
11Note that we assume here that parameter values are such that it is optimal to adopt all the new varieties. Another

potential source of sub–optimality would be an over or under adoption of new goods by the market. As shown in
Benassy [1998] in a somewhat different setup with endogenous growth, the parameter ξ is then crucial in determining
whether the decentralized allocations show too much or too little of new goods adoption.

12This is due to the typical “business stealing” effect found in the endogenous growth literature, for example in
Aghion and Howitt [1992], and originally discussed in Spence [1976a] and Spence [1976b].

13The very result that it is socially optimal not to respond to such news is of course not general, and depends on
the utility and production function specification. The general result is not that it is socially optimal not to respond
to news about η, but that the decentralized allocations are inefficient in responding to news shocks.
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2.2 A VECM Representation of the Model Solution

As mentioned in the introduction, it is useful to represent macroeconomic fluctuations as responses

to permanent and transitory shocks to a consumption and output autoregressive vector. Here

we derive a consumption–output VECM representation of the model solution, that we will later

compare to an estimated VECM. We assume that disembodied technical change, Θt, follows (in

log) a random walk without drift

log Θt = log Θt−1 + σΘε
Θ
t ,

where εΘt are i.i.d. with zero mean and unit variance, and that the variety expansion shock ηt

follow an AR(1) process of the form

log(ηt) = ρ log(ηt−1) + (1− ρ) log(µ) + σNε
N
t ,

where εNt are i.i.d. with zero mean and unit variance. In this case, the solution for hours worked

is given by

ĥt = ωη̂t, (22)

with ω ≡ h−ψ−1

h
(1−δ)(1−βρ)

1−γρ . The logs of consumption and output are given by:

log(Yt) = ky + log(Θt) + φ log(Nt) + log(ht) (23)

log(Ct) = kc + log(Θt) + φ log(Nt), (24)

where kc and ky are constant terms. Using equation (18) to replace ht with its approximate solution,

it is straightforward to derive the MA(∞) representation of the system, which is as follows:(
∆ log(Ct)
∆ log(Yt)

)
=

(
σΘ

φL
1−ρLσN

σΘ
(ω(1−L)+φL)

1−ρL σN

)(
εΘt
εNt

)
= C(L)

(
εΘt
εNt

)
. (25)

We now estimate a similar system on postwar U.S. data, derive its Wold representation, discuss of

its properties and compare them with those implied by Equation 25.

2.3 A Target Set of Observations

The set of observations we present here provides a rich though concise description of fluctuations

in output, consumption and hours worked. Some of these observations are well known, and some

are not. The set of observations presented is meant to capture important features of fluctuations

that any business cycle theory should aim to explain. We will use these observations to evaluate

the potential role of market rushes in explaining macroeconomic fluctuations. In particular, we

will emphasize both qualitative and quantitative properties of the data, which the idea of showing
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the the simple version of the model derived above offers an explanation to the qualitative features,

while a richer models is shown to help explain the quantitative features.

Our goal is to emphasize key time series properties of output, consumption and hours worked. We

could do this by directly examining the tri-variate process. However, as is well known, such an

approach can depend heavily on the treatment of hours worked as a stationary or non-stationary

process. We therefore choose an approach that is robust to the treatment of hours worked. To

this end, we begin by reviewing properties of the bi-variate process for consumption and output.

More precisely, we study a Consumption–Output system with one co-integrating relation. The

main properties of this system were originally discussed in Cochrane [1994]. As in Cochrane [1994],

we use two schemes to orthogonalize the innovations of the process: a long run orthogonalization

scheme à la Blanchard and Quah [1989], and a short run or impact scheme à la Sims [1980]. At

this point, these two schemes should be viewed as devices for helping present properties of the data.

There is no claim that these schemes identify structural shocks, and there are no claims that these

data should be explained by a model which only has two shocks. One of the properties we will

emphasize is that these two schemes deliver almost identical impulse response functions (IRF). As

we will show, this property can be traced back to a particular feature of the Wold representation

for consumption and output, and we argue that this feature constitutes a qualitative property that

business cycle models should try to replicate.

We begin by documenting the impulse responses associated with using a long run othogonalizing

scheme à la Blanchard and Quah [1989], and show that almost all of the short run volatility of

consumption is associated with the permanent shock, while this shock only accounts for half of the

volatility of output. We then use a short run orthogonalizing scheme à la Sims [1980] to show that

the resulting output innovation does not explain the long run properties of the two variables, nor

the short run properties of consumption. We then formally test for the identity of the temporary

shock recovered using the long run scheme and the output shock recovered using the short run

scheme. This is done by showing that such an identity is in fact a zero restriction in the long

run impact matrix of the Wold representation. We then turn our focus on relating these features

with the behavior of hours and we show that the temporary/output innovation recovered from the

consumption–output VECM explains most of the short run volatility of hours.

Our empirical analysis is based on quarterly data for the US economy. The sample spans the

period 1947Q1 to 2004Q4. Consumption, C, is defined as real personal consumption expenditures

on nondurable goods and services and output, Y , is real gross domestic product. Both series

are first deflated by the 15–64 U.S. population and expressed in logarithms.14 Standard Dickey–
14Consumption is defined as the sum of services and nondurable goods, while output is real gross do-

mestic product. Each variable is expressed in per capita terms by dividing by the 15 to 64 population.
The series are obtained from the following links. Real Personal Consumption Expenditures: Nondurable
Goods : http://research.stlouisfed.org/fred2/series/PCNDGC96, Real Personal Consumption Expenditures:
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Fuller, likelihood ratio and cointegration tests indicate that C and Y are I(1) processes and do

cointegrate. We therefore model their joint behavior with Vector Error Correcting Model (VECM),

where the cointegrating relation coefficients are [1;-1] (meaning that the consumption to output

ratio is stationary). Likelihood ratio tests suggest that the VECM should include 3 lags. Omitting

constants, the joint behavior of (C, Y ) admits the following Wold representation(
∆Ct
∆Yt

)
= A(L)

(
µ1,t

µ2,t

)
, (26)

where L is the lag operator, A(L) = I +
∑∞

i=1AiL
i, and where the covariance matrix of µ is given

by Ω. As the system possesses one common stochastic trend, A(1) is not full rank. Given A(1), it

is possible to derive a representation of the data in terms of permanent and transitory components

of the form (
∆Ct
∆Yt

)
= Γ(L)

(
εPt
εTt

)
, (27)

where the covariance matrix of (εP , εT ) is the identity matrix and Γ(L) =
∑∞

i=0 ΓiLi. The Γ

matrices solve {
Γ0Γ′0 = Ω
Γi = AiΓ0 for i > 0

(28)

Note that once Γ0 is known, all Γi are pinned down by the second set of relations. But, due

to the symmetry of the covariance matrix Ω, the first part of the system only pin downs three

parameters of Γ0. One remains to be set. This is achieved by imposing an additional restriction.

We impose that the 1, 2 element of the long run matrix Γ(1) =
∑∞

i=0 Γi equals zero, that is, we

choose an orthogonalization where the disturbance εT has no long run impact on C and Y (the

use of this type of orthogonalization was first proposed by Blanchard and Quah [1989]). Hence,

εT is labeled as a temporary shock, while εP is a permanent one. Figure 1 graphs the impulse

response functions of C and Y to both shocks as well as their associated 95% confidence bands,

obtained by bootstrapping the VECM. Table 1 reports the corresponding variance decomposition

of the process.

These results provide an interesting decomposition of macroeconomic fluctuations. The lower left

panel of Figure 1 clearly shows that consumption virtually does not respond to the transitory shock,

since it accounts for less than 4% of consumption volatility at any horizon. Conversely consumption

is very responsive to the permanent shock and most of the adjustment dynamics take place in less

than one year. In other words, consumption is almost a pure random walk, that responds only to

permanent shocks and has very little dynamics. On the contrary, short run fluctuations in output

are mainly associated with the temporary shocks, which explain more than 60% of output volatility

on impact. These patterns are often interpreted as providing evidnce is favor of the permenat

Services : http://research.stlouisfed.org/fred2/series/PCESVC96, Real Gross Domestic Product, 3 Deci-
mal: http://research.stlouisfed.org/fred2/series/GDPC96, Population: 15 to 64, annual: downloaded from
http://www.economy.com/freelunch/default.asp.
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Figure 1: Responses of Output and Consumption to εP and εT
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This figure shows the responses of consumption and output to temporary εT and
permanent εP one percent shocks. These impulse response functions are com-
puted from a VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3
lags, using quarterly per capita U.S. data over the period 1947Q1–2004Q4. The
shaded area depicts the 95% confidence intervals obtained from 1000 bootstraps
of the VECM.
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Table 1: The Contribution of the Shocks to the Volatility of Output and Consumption

Horizon Output Consumption
εT εY εT εY

1 62% 80% 4% 0%
4 28 % 46 % 1% 1%
8 17 % 33% 1% 1 %
20 10 % 22 % 0% 2%
∞ 0 % 4 % 0% 4%

This table shows the k-period ahead share of the forecast error variance of con-
sumption and output that is attributable to the temporary shock εT in the long
run orthogonalization and to the output innovation εY in the short run one, for
k = 1, 4, 8, 20 quarters and for k −→ ∞. Those shares are computed from
a VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3 lags, using
quarterly per capita U.S. data over the period 1947Q1–2004Q4.

income hypothesis. However, it must be emphasized that these properties are aggregate properties

and not partial equilibrium properties, which implies that a coherent explanation to these patterns

requires a general equilibrium model that gives rise to permenent-temporary decomposition with

no temporary component in consumption.

Now we consider an alternative orthogonalization that uses short run restrictions(
∆Ct
∆Yt

)
= Γ̃(L)

(
εCt
εYt

)
, (29)

where Γ̃(L) =
∑∞

i=0 Γ̃iLi and the covariance matrix of (εC , εY ) is the identity matrix. The Γ̃

matrices are solution to a system of equations similar to (28). We however depart from (28) as

we impose that the 1, 2 element of Γ̃0 be equal to zero. Therefore, εY can be called an output

innovation, and by construction the contemporaneous response of C to εY is zero.

Figure 2 graphs the impulse responses of C and Y associated with the second orthogonalization

scheme. The associated variance decompositions are displayed in Table 1. The striking result from

these estimations is that the consumption shock εC is almost identical to the permanent shock to

consumption (εP in the long run orthogonalization scheme), so that the responses and variance

decompositions are very similar to those obtained using the long run orthogonalization scheme.

This observation is further confirmed by Figure 3, which plots εP against εC and εT against εY .

It is striking to observe that both shocks align along the 45◦ line, indicating that the consumption

innovation is essentially identical to the permanent component.

We now want to link the behavior of hours worked to the above description of output and con-

sumption. In particular, we want to ask how much of the variance of hours worked is associated

with the temporary shock (or quasi–equivalently the output shock) versus the permanent shock

15



Figure 2: Responses of Output and Consumption to εC and εY
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This figure shows the responses of consumption and output to consumption εC

and output εY one percent shocks obtained from a short run orthogonalization
scheme. Those impulse response functions are computed from a VECM (C, Y )
estimated with one cointegrating relation [1;-1], 3 lags, using quarterly per capita
U.S. data over the period 1947Q1–2004Q4. The shaded area depicts the 95%
confidence intervals obtained from 1000 bootstraps of the VECM.
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Figure 3: Plots of εC against εP and εY against εT
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The left panel plots the estimated permanent innovation εP (from the long run
orthogonalization scheme) against the consumption innovation εC (from the
short run orthogonalization scheme). The right panel plots the estimated tem-
porary innovation εT (from the long run orthogonalization scheme) against the
output innovation εY (from the short run orthogonalization scheme). In both
panels, the straight line is the 45◦ line. These shocks are computed from a
VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3 lags, using
quarterly per capita U.S. data over the period 1947Q1–2004Q4.

recovered from the consumption–output VECM. It is of interest to evaluate the contribution of

these two shocks to the volatility of hours since it allows us to see whether hours can best be

described as moving with the temporary component or the permanent component. To do so, we

adopt the following approach. Once the innovations εP and εT are recovered from the bivariate

C–Y VECM, we regress hours worked (in levels or differences) on current and lagged values of these

two shocks plus a moving average error term denoted εH , which we call an hours specific shock.15

An attractive feature of this approach is that it delivers results which are robust to the specification

of hours worked (level or difference).16 More precisely, we run the regression

xt = c+
K∑
k=0

(
αkε

P
t−k + βkε

T
t−k + γkε

H
t−k
)
, (30)

15Such a two step strategy amounts to the estimation of the following restricted trivariate moving-average process: Ct

Yt

Ht

 =

(
A(L) 02,1

B(L) C(L)

)  εP
t

εT
t

εH
t

 ,

where A(L) is a 2×2 polynomial matrix, 02,1 is a 2×1 vector of zeros, B(L) is a 1×2 polynomial matrix and C(L) is
a polynomial in lag operator. A(L), εP and εT are recovered from the first step bivariate VECM, while B(L), D(L)
and εH are estimated using a truncated approximation of the third line of the above MA process (which is equation
(30)).

16 It is well known (see for instance the discussions in Gali [1999], Gali and Rabanal [2004], Chari, Kehoe, and
McGrattan [2004], Christiano, Eichenbaum, and Vigfusson [2004]) that specification choice (levels versus first differ-
ences) matters a lot for VARs with hours worked. Results show that our procedure is robust to this specification
choice.
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where xt denotes either the (log) hours per capita in levels or in differences. This model is estimated

by maximum likelihood, choosing an arbitrarily large number of lags (K = 40). We then compute,

for each horizon k the share of the overall volatility of hours worked accounted for by εP , εT and

by the hours specific shock εH . Results are reported in Table 2. The numbers reported in the table

Table 2: Variance Decomposition of Hours Worked Levels

Level Specification Difference Specification
Horizon εp εt εH εp εt εH

1 19 % 75 % 6 % 21 % 74 % 5 %
4 37 % 56 % 7 % 46 % 52 % 2 %
8 61 % 32 % 7 % 66 % 32 % 2 %
20 60 % 21 % 19 % 69 % 28 % 3 %
40 54 % 20 % 26 % 57 % 38 % 5 %

This table shows the k-period ahead share of the forecast error variance of hours
worked to the temporary εT , the permanent εP and the hours specific shock εH .
Those shares are computed using a two-step procedure. First εT and εP are de-
rived from the estimation of a VECM (C, Y ) with one cointegrating relation [1;-
1], 3 lags, using quarterly per capita U.S. data over the period 1947Q1–2004Q4.
Then hours worked (in levels or difference depending on the specification) are
projected on current and past values of those innovations plus a moving average
term in εH .

clearly indicate that hours worked are primarily explained by the transitory component at business

cycle frequencies.

To summarize, there are four properties of the data that we want to highlight: (i) the permanent

shock (εP ) recovered using a long run restriction in a consumption–output VECM is essentially

the same shock as that corresponding to a consumption shock (εC) recovered using an impact

restriction, (ii) the response of consumption to a temporary shock is extremely close to zero at

all horizons, and there are almost no dynamics in the response of consumption to a permanent

shock, as it jumps almost instantaneously to its long run level, (iii) the temporary shock (or the

output shock in the short run orthogonalization) is responsible for a significant share of output

volatility at business cycle frequencies and (iv) hours are largely explained by the transitory shock

at business cycle frequencies. These facts emphasize that a substantial fraction of the business

cycle action seems to be related to changes in investment and hours worked, without any short

or long run implications for consumption. We have investigated the robustness of these findings

both against changes in the specification of the VECM — by estimating rather than imposing the

cointegration relation, adding additional lags or estimating the VECM in levels — and against the

data used to estimate the VECM — we considered total consumption rather than the consumption

of nondurables and services, output as measured by consumption plus investment only — and in
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all these cases we found no major changes in patterns.17 Since we have emphasized the quasi

equivalence between the shocks recovered using a long run restriction, and shocks recovered using

an impact restrictions, we also formally test for the equality between εY and εT . We show in

the appendix that such a test amount to testing the nullity of the (1,2) element of the long run

matrix of the Wold decomposition, denoted a12. The confidence intervals for the estimate of a12 are

obtained from 1000 bootstraps of the long run matrix. The coefficient â12 takes an average value

of 0.2024 with a 95% confidence interval [−0.2, 0.8]. At a 5% significance level, the hypothesis that

the consumption shock is identical to the permanent shock cannot therefore be rejected.

2.4 Orthogonalized Representations of Equilibrium Allocations

Should our simple model be the data generating process, what would give the estimation and

orthogonalizations we have just performed? A way to answer would be to simulate data using the

model, and then to estimate and orthogonalize a VECM on those simulated data. This is what

we will do in a fully fledged version of the model. As our simple model has a tractable analytical

solution, it is possible to exactly derive the VECM representation of equilibrium allocations. From

the system of equations (25), we obtain he impact and long run effect of the shocks, which are

respectively given by C(0) and C(1):

C(0) =
(
σΘ 0
σΘ ωσN

)
and C(1) =

(
σΘ

φ
1−ρσN

σΘ
φ

1−ρσN

)
.

The VECM permanent and transitory shocks are then given by
εPt =

(
σ2

Θ +
(

φ
1−ρ

)2
σ2
N

)−1/2 (
σΘε

Θ
t + φ

1−ρσNε
N
t

)
εTt =

(
σ2

Θ +
(

φ
1−ρ

)2
σ2
N

)−1/2 (
− φ

1−ρσNε
Θ
t + σΘε

N
t

)
.

(31)

Similarly, short run orthogonalization yields{
εYt = εΘt
εCt = εNt .

(32)

This simple model shares a lot of dynamic properties with the data when the parameter φ is set

to zero. This corresponds to the case where ξ = −(1− α)(1− χ)/χ, meaning that an expansion in

variety exerts no effect on labor productivity.

First of all the system (25) clearly shows that consumption and output do cointegrate (C(1) is not

full rank) with cointegrating vector [1;-1]. Second, it shows that consumption is actually a random

walk, that is only affected —in the short run as well as in the long run— by technology shocks, εΘ.
17All these results are reported in the technical appendix to this paper, available from

http://fabcol.free.fr/index.php?page=research.
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Output is also affected in the short run by the temporary shock, εN . Hence, computing, sequentially,

our short–run and long–run orthogonalization with this model would imply εP = εC = εΘ and

εT = εY = εN , as it can been seen from (31 and (32) in the case φ = 0. Finally, it is the temporary

shock εT (which is indeed εN ) that explains all the variance in hours worked at any horizon, as

it can be seen in equation (22). Such a model therefore allows for a structural interpretation of

the results we obtained in subsection 2.3. Permanent shocks to C and Y are indeed technology

shocks. Consumption does not respond to variety expansion shocks, which however account for

a lot of output fluctuations and all the fluctuations in hours worked. Variety expansion shocks

create market rushes that are indeed gold rushes, generating inefficient business cycles as the social

planner would choose not to respond to them. In effect, these shocks only trigger rent seeking

activities, as startups are means of appropriating a part of the economy pure profits.

Although simple, this model illustrates how the market mechanism we have put forward has the

potential to account for some extreme properties of the data; in particular, the equivalence of the

short and long run identification schemes, and the complete absence of a temporary component

in consumption. In the next section, we consider an extended version of the model in which

we introduce capital accumulation, possible long run effect of intermediate goods expansions and

other real frictions. We use the estimated responses from the long run orthogonalization scheme

to estimate the size of the technological and variety expansion shocks. Once those parameters are

estimated, we are able to assess the ability of the model to account quantitatively for the facts we

documented in subsection 2.3, and therefore decompose economic fluctuations in a meaningful way,

using our model as a measurement tool.

3 Quantitative Assessment

In this section, we first present the extended model before describing the calibration and estimation

procedure. Then we comment on the estimated parameters and derive some implications of the

estimated model.

3.1 Model, Calibration and Estimation Procedure

Our emphasis in this work is on the existence of a new type of shock, namely a market rush.

In order to gauge the quantitative importance of this shock in the business cycle, we enrich the

propagation mechanisms of our baseline model, and estimate it with U.S. data.

The Extended Model: We extend the model by including capital accumulation, two types of

intermediate goods and habit persistence in consumption. The final good is now produced with
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capital, Kt, labor, ht and two types of intermediate goods Xt(i) and Zt(j), according to

Qt = K1−αx−αz−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

N ξ̃
z,t

(∫ Nz,t

0
Zt(j)χdj

)αz
χ

, (33)

with αx, αz, αh ∈ (0, 1), αx + αz + αh < 1 and χ 6 1. We impose that ξ = −αx(1 − χ)/χ so that

variety expansion in intermediate goods X has no long–run impact, and that ξ̃ = (χ(1−αx)−αz)/χ,

so that the equilibrium aggregate value added production function is linear in the number of

intermediate goods of type Z (Nz,t). Θt denotes Harrod neutral technical progress, the log of

which is assumed to follow a random walk with drift γ > 1.

As in the analytical model, the numbers of available varieties evolve exogenously according to

Nx,t+1 = (1− µ+ ηxt )Nx,t

Nz,t+1 = (1− µ+ ηzt )Nz,t.

We assume that the stochastic processes for productivity and the market shocks are given by

log(ηxt ) = ρx log(ηxt−1) + (1− ρx) log(µ) + σxε
x
t

log(ηzt ) = ρz log(ηzt−1) + (1− ρz) log(µ) + σzε
z
t

log(Θt) = log(γ) + log(Θt−1) + σΘε
Θ
t .

We assume that εx, εz and εΘ are Gaussian white noises with zero means and unit variances.

The setup cost is assumed to grow with technological progress, so that a balanced growth path

exists along which the share of setup costs in total resources stays constant:

κt = Θtκ.

As the number of varieties is stationary, a small enough setup cost κ guarantees that full adoption

is an equilibrium outcome.

Capital accumulation is governed by the law of motion

Kt+1 = (1− δ)Kt +
[
1− S

(
It
It−1

)]
It,

where δ ∈ (0, 1) is the constant depreciation rate. The function S(·) accounts for the presence of

adjustments costs in capital accumulation. We assume that S(·) satisfies S(γ) = S ′(γ) = 0 and

ϕ = S ′′(γ)γ2 > 0. It follows that the steady state of the model does not depend on the parameter ϕ

while its dynamic properties do. Notice that following Christiano, Eichenbaum, and Evans [2005],

Christiano and Fisher [2003] and Eichenbaum and Fisher [2005], we adopt the dynamic investment

adjustment cost specification. In this environment, it is the growth rate of investment which is

penalized when varied in the neighborhood of its steady state value. In contrast, the standard
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specification penalizes the investment–to–capital ratio. The dynamic specification for adjustment

costs is a significant source of internal propagation mechanisms as it generates a hump–shaped

response of investment to various shocks.

Finally, we introduce habit persistence in consumption, and the intratemporal utility function is

given by

Et
∞∑
τ=0

[
log(Ct+τ − bCt+τ−1) + ψ(h− ht+τ )

]
.

Note that introducing adjustment costs to investment and habit persistence, while not affecting the

main qualitative properties of the model we have presented in Section 1, will improve the ability of

the model to capture the shape of the impulse response function. The model then solves as in the

preceding section, except that no analytical solution can be found.

Calibration: Our quantitative strategy is to calibrate those parameters for which we have esti-

mates or that we can obtain by matching balanced growth path ratios with observed averages. The

time period is a quarter. The discount factor is set such that the household discounts the future

at a 3% annual rate. We assume constant markups of 20%, so that χ = 0.833. The depreciation

rate is equal to 2.5% per quarter, as is common the literature. We assume that the two sets of

intermediate goods differ only with regards to the long run impact of a variety expansion, and

therefore assume αx = αz.18 The parameters αh and αx are set such that the model generates a

labor share and a share of intermediate goods in value added of, respectively, 60% (Cooley and

Prescott [1995]) and 50% (Jorgenson, Gollop, and Fraumeni [1987]). µ and κ are set such that the

model generates a consumption share of 70% and that investment in startups represents 15% of

total investment. The calibrated parameters are summarized in Table 3.

Table 3: Calibrated Parameters

Preferences
Discount factor β 0.9926

Technology
Elasticity of output to intermediate goods αx + αz 0.3529
Elasticity of output to hours worked αh 0.4235
Depreciation rate δ 0.0250
Elasticity of substitution bw intermediates χ 0.8333
Rate of technology growth γ 1.0060
Monopoly death rate µ 0.0086
Setup cost κ 1

18This assumption amounts to the choice of the relative variance σ2
x/σ2

z and can be made without loss of generality.
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Estimation Procedure: We estimate the following seven parameters: the standard deviation

of the technological shock innovation σΘ, the persistence parameters ρx and ρz, and the standard

deviations σx and σz of the two market shocks innovations, the habit persistence parameter b and the

adjustment cost parameter ϕ. These parameters are chosen in order to match the output impulse

responses of the long run VECM that we have presented in section 2.3, and that are displayed in

Figure 1. As the long run orthogonalization scheme cannot recover the model structural shocks

(three shocks in the model and only two innovations in the VECM), we cannot directly match the

model’s theoretical responses with the empirical responses to εP and εT . Therefore, we follow a

simulated method of moments approach. Let Ψ = (σΘ, ρx, σx, ρz, σz, b, ϕ) be the parameters to be

estimated, and let M be the column vector of estimated moments to match. We denote by M(Ψ) a

column vector of the same moments obtained from simulating the model with parameters Ψ. The

set of estimated parameters Ψ̂ is then chosen so as to minimize the distance D

D = (M(Ψ)−M)′W (M(Ψ)−M) ,

where W is a weighting matrix that is given by the inverse of the covariance matrix of the estimators

of M . The simulated moments M(Ψ) are obtained by simulating the model over 20 times 232

periods,19 which is the length of our data sample.

The last issue concerns the choice of moments to match. We aim at matching the impulse responses

of output obtained from model generated data to both the permanent and the transitory responses

presented in Section 2.3 based on real data. We use the first twenty quarters of the impulse

responses in these exercises. We leave as tests of the model its capacity to reproduce the responses

of output to the short run orthogonalization scheme and consumption in both scheme. Using the

long run scheme, the response of output to a permanent shock displays a hump,20 and for that

reason, we have supplemented the model with habit persistence and adjustment costs in investment.

There are therefore forty moments to match. We have two ways to test our model. The first is

by making use of the over–identifying restrictions associated with the estimation procedure (seven

parameters for forty moments), by means of a J–test, following Hansen [1982]. The second one

is to check whether or not the estimated model possesses the properties of the data that we have

highlighted in Section 2.3, namely the identity between the short and long run orthogonalization

schemes and the importance of the temporary shock in explaining the short run patterns in output

and hours worked, but not of consumption. To do so, we will compute two distance statistics,

D(C) and D(C, Y ). D(C) is the a measure of the distance between the first twenty coefficients of
19Michaelides and Ng [1997] have shown that efficiency gains are negligible for a number of simulations larger than

10.
20Cogley and Nason [1995] have also proposed the estimation of a (C, Y ) VECM, and show that the response of

output to the temporary shock is hump–shaped. We find in this study that it is the response to the permanent shock
that is hump–shaped. This difference comes from the sample period and the choice of the output variable, that is
Net Domestic Product in Cooley and Nason and Gross Domestic Product(GDP) in our work. We prefer the use of
GDP as it is the most commonly used measure of output in the literature.
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consumption IRF as estimated in the data and as estimated from the simulated data. The statistic

is computed as:

D(C) = (M(C, Ψ̂)−M(C))′Wc(M(C, Ψ̂)−M(C)),

where M(C) is a vector collecting the impulse responses of consumption to both the permanent and

the transitory shocks obtained from the VECM, whileM(C, Ψ̂) collects the same impulse responses

obtained by simulating the theoretical model for the estimated values of the parameters. Wc is the

inverse of the covariance matrix of these moments obtained from the VECM. Similarly, D(C, Y )

represents the distance between the model and the data for both consumption and output IRFs.

3.2 Estimation Results

Table (4) reports the estimated values of the seven parameters of interest, together with the values

of the J–statistics for over–identification. First of all note that the model is not rejected by the

data as the associated J–state is low. A key result is that σz is not significantly different from zero.

Those market shocks that contribute to business cycle volatility are therefore the ones with no

long run effects, those that have been shown to create inefficient fluctuations. The model therefore

essentially reduces to a model with only one set of intermediate goods and with φ = 0. This result

does not mean that variety expansion does not contribute to growth, but that it does so in a way

which, for our purpose, is not distinguishable from Harrod neutral technical progress.

The impulse responses of the VECM estimated on the artificial data generated from the model are

presented on Figure 4, together with the ones estimated with the data. The confidence bands are

the one computed from the data. Note that the IRFs obtained from artificial data as generated

by the model lie within the confidence bands, which confirms that the model does a good job not

only on impact and in the long run (as shown by the low level of the J–stat), but also for much

of the dynamics. This is confirmed by the D(C) statistic. This statistic is distributed according

to a chi-square with 33 degrees of freedom under the null hypothesis of equality between the IRFs

obtained from the VECM on both historical and simulated data for consumption. The test statistic

value is 42.51 with an associated p–value of 12%. The implications of the model for consumption

dynamics are not rejected by the data. Similarly, we perform the same test for the joint behavior of

consumption and output. Again, the model is not strongly at odds with the data (D(C, Y )=92.78

with p–value 6%).

The model already displays two of the three properties of the data that we put forward previously:

(i) there is virtually no dynamics in the response of consumption to the permanent shock, as it

affects permanently and almost instantaneously the level of consumption and (ii) the temporary

shock is responsible for a significant share of output volatility at business cycle frequencies.

It is now of interest to test whether the model also possesses the first property: (i) the permanent
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Table 4: Estimated Parameters

Persistence of the X market shocks ρx 0.9166
(0.0336)

Standard dev. of X market shocks σx 0.2865
(0.0317)

Persistence of the Z market shocks ρx 0.9164
(0.6459)

Standard dev. of Z market shocks σz 0.0245
(0.1534)

Standard dev. of the technology shocks σΘ 0.0131
(0.0015)

Habit persistence parameter b 0.5900
(0.1208)

Adjustment cost parameter ϕ 0.4376
(0.3267)

J–Stat 17.40
[0.99]

D(C) 42.51
[0.12]

D(C, Y ) 92.78
[0.06]

This table first presents the estimated parameters, as obtained from a Simulated
Method od Moments estimation of the model. Standard errors are in paren-
thesis. The last three lines display J–statistics and Distance statistics. These
statistics are distributed chi-square, and the p–value for testing their nullity is
given in brackets.
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Figure 4: Impulse Response Functions: Data versus Model (Long Run Orthogonalization Scheme)
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This figure compares the responses of consumption and output to permanent
and transitory shocks (long run orthogonalization scheme), as estimated from
the data (continuous line) and from model simulated data (dashed line). More
precisely, the dashed line is the average over 1000 replications of the model
simulation, VECM estimation and orthogonalization. The shaded area repre-
sents the 95% confidence intervals obtained from 1000 bootstraps of the VECM
estimated with actual data.
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Figure 5: Impulse Response Functions: Data versus Model (Short Run Orthogonalization Scheme)
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This figure compares the responses of consumption and output to consumption
and output shocks (short run orthogonalization scheme), as estimated from the
data (continuous line) and from model simulated data (dashed line). More pre-
cisely, the dashed line is the average over 1000 replications of the model simula-
tion, VECM estimation and orthogonalization. The shaded area represents the
95% confidence intervals obtained from 1000 bootstraps of the VECM estimated
with actual data.

27



Figure 6: Theoretical Impulse Response Functions (Long Run versus Short Run)
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This figure compares the responses of consumption and output to a permanent
(continuous line, labeled LR for Long Run) or consumption shock (dashed line,
labeled SR for Short Run) and to a transitory (continuous line) or output shock
(dashed line), as estimated from model simulated data. More precisely, each line
is the average over 1000 replications of the model simulation, VECM estimation
and short or long run orthogonalization.
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shock to consumption εP is approximately identical to the εC shock recovered from a consumption–

output VECM. We therefore perform our test for the equality between εY and εT in the data

generated by the model. We then generate 1000 replications of the model simulations. In 87%

of the cases we have the property that the (1, 2) element of the long run effect matrix of the

Wold decomposition of a (C, Y ) VECM is not significantly different from zero. Figure 5 reports

the estimated impulse response functions as obtained from the VECM in the data and using the

simulated data of the model assuming a short–run orthogonalization scheme. Again, the fit is

extremely good. In Figure 6 we report the IRFs of output and consumption as obtained from the

short–run and long–run orthogonalization scheme of the VECM estimated with simulated data.

The figure clearly shows that the profiles of the IRFs are very similar. The model is therefore able

to reproduce those three salient features of the data that we have put forward in section 2.3.

Table 5 reports the variance decomposition of hours worked both in the data and in the model,

as computed from the same regression as equation (30). As can be seen from the table, hours

volatility is primarily accounted for by the transitory shock over the short run horizon. In fact the

model predicts that 65% of the overall volatility of hours can be accounted for by transitory shocks

at the one period horizon, to be compared to the 75% found in the data. Again the model seems

to perform remarkably well along this dimension.

Table 5: Variance Decomposition of Hours Worked

Data Model
Horizon εp εt εh εp εt εh

1 19 % 75 % 6 % 35 % 65 % 0%
4 37 % 56 % 7 % 19 % 81 % 0%
8 61 % 32 % 7 % 24 % 76 % 0 %
20 60 % 21 % 19 % 28 % 72 % 0 %
40 54 % 20 % 26 % 28 % 72 % 0 %

This table shows the k-period ahead share of the forecast error variance of hours
worked to the temporary εT , the permanent εP and the hours specific shock εH ,
as estimated from the data and from the simulated data. Those shares are
computed using a two-step procedure. First εT and εP are derived from the
estimation of a VECM (C, Y ) with one cointegrating relation [1;-1], 3 lags,
using quarterly per capita U.S. data over the period 1947Q1–2004Q4 for the
actual data and 232 periods for simulated data. Then hours worked in levels
are projected on current and past values of those innovations plus a moving
average term in εH . In the case of the model, those numbers are averages over
the 20 replications used during the estimation process.
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3.3 Business Cycle Accounting

Once estimated, the model can be used to evaluate the importance of the market rush phenom-

ena in the U.S. business cycle. In effect, the model allows for a meaningful (structural) variance

decomposition of fluctuations as reported in Table 6.

As expected from the estimation results, the market shock that exerts a permanent effect on output

does not contribute to the dynamics of the model. Indeed, the market shock that has no impact on

productivity, εx, accounts for more than one third of output volatility21 and about 85% of hours

worked on impact. On the contrary, and as expected, consumption is almost solely explained by

the permanent technology shock.

Table 6: Contribution of Shocks to the Business Cycle in the Estimated Model

Horizon Output Consumption Hours
εΘ εx εz εΘ εx εz εΘ εx εz

1 64 % 36 % 0 % 94 % 6 % 0 % 15 % 85 % 0%
4 86 % 14 % 0 % 95 % 5 % 0 % 19 % 81 % 0%
8 92 % 8 % 0 % 96 % 4 % 0 % 32 % 68 % 0%
20 96 % 3 % 1 % 98 % 1 % 1 % 40 % 59 % 1%
∞ 96 % 0 % 4 % 96 % 0 % 4 % 41 % 57 % 2%

This table reports the forecast error variance decomposition of consumption,
output and hours worked when the estimated model is used as the forecasting
model.

Figures 7, 8 and 9 show the theoretical responses of the main variables of the model to the struc-

tural shocks. Note that responses are qualitatively different from one shock to another, which

allows for a proper identification of the contribution of each of them. The responses to the perma-

nent shock (Figure 7) display comovements of investment, output and consumption, as well as a

negative initial response of hours, explained by the role of habit persistence in consumption. The

response to the unproductive market shock (Figure 8) displays a boom in output, hours worked

and investment in the short–run, while consumption hardly responds. It is clear from this figure

that such a shock is likely to contribute to the identified transitory shock of the (C, Y ) VECM. The

market shock drives the discounted sum of expected future profits of a startup upwards, making

it worthwhile to invest in startups. This creates a boom in total investment, and also leads firms

to raise their demand for labor. Therefore output increases — creating an expansion without any

changes in productivity. Furthermore, as this shock essentially creates a competition for rents, it is

unproductive and consumption almost does not respond. The response to the productive market
21It is worth noting that the response of output to the transitory shock hinges on the response of all components

of investment except residential investment (see the technical appendix). We take this observation as an additional
fact in favor of our story in which entrepreneurs investment play a major role.
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Figure 7: Model Response to a Permanent Technology Shock εΘ

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

2.5

Horizon

%

 

 

Consumption
Output
Investment
Hours

This figure displays the responses of consumption, total investment, hours
worked and output to a technology innovation of one standard-deviation, as
computed from the estimated model.

shock (Figure 9) is quite different, which again allows for a proper identification. First the shock

exerts a permanent effect on consumption, investment and output. Second, output does not move

much in the short run, which makes this shock unlikely to contribute to the temporary shock of

the VECM. Third, the wealth effect of this permanent shock dominates the short run dynamics of

hours, investment and output. They all go down in the short run, as a consequence of the presence

of habit persistence and adjustment cost to investment.

Table 7 displays some statistics of the Hodrick-Prescot (HP) filtered simulated series. As can

be seen from the table, the model performs well in matching the ranking of volatilities and the

comovements of the US business cycle, although investment and hours appear to be not volatile

enough.

4 Alternative Models

In this section we explore the robustness of the result of the previous section which indicated that

non–productive market shocks (market rushes) may be an significant source of macroeconomic

fluctuations. Our approach is to add alternative shocks to our model, one at a time, re–estimate

it and then see whether the resulting structural variance decompositions substantially change our

estimates of the relative contribution of market rushes for output, consumption and hours fluc-
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Figure 8: Model Response to a Non-Productive Market Shock εx
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This figure displays the response of consumption, total investment, hours worked
and output to a non-productive market shock of one standard-deviation, as com-
puted from the estimated model.

Figure 9: Model Response to a Productive Market Shock εz
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This figure displays the response of consumption, total investment, hours worked
and output to a productive varieties innovation of one standard-deviation, as
computed from the estimated model.
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Table 7: Some Moments of the Simulated Data (HP–filtered)

Data Model
σx ρ(·, y) ρ(·, h) σx ρ(·, y) ρ(·, h)

y 1.69 – – 1.44 – –
c 0.78 0.78 – 0.78 0.79 –
I Total 6.81 0.86 – 3.56 0.95 –
h 1.90 0.88 – 1.12 0.66 –
y/h 0.87 0.50 0.09 1.09 0.64 -0.14

This table reports moments calculated both model generated data and actual
data. Series are taken in logs and detrended applying the HP–filter with smooth-
ing parameter λ = 1600.

tuations. We consider four types of shocks.22 First we investigate the implications of adding an

investment specific shock in our model. We examine this case in considerable detail since it has

received substantial attention in the literature and we recognize that the omission of investment

specific shocks could create a substantial bias in favor of finding that market rushes are important

even if they are not. The two other real shocks we consider are a temporary total factor produc-

tivity shock and a preference shock. A fourth possibility involves examining the role of a monetary

shock in a New–Keynesian type of model. As this fourth possibility requires writing a substantially

different model, we leave the exposition of the model and results to the technical appendix. As

can be seen in the appendix, we do not find that allowing a monetary shock to compete with our

market rush shock changes our findings regarding the relevance of market rushes for fluctuations.

One simplification we make in analyzing these cases is that we remove the Z shock (the market

shock with productivity effects), and thereby focus on models with three shocks: a permanent

TFP shock, a non–productive market shock and a third shock which can be either an investment

specific shock, a temporary TFP shock or a preference shock. The omission of the Z shock appears

reasonable since we saw in the last section that it is not playing any substantial role in fluctuations.

The production function therefore reduces to23

Qt = K1−αx−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

.

22Obviously we do not claim to have exhausted the list of possible explanations, but want to point out what we
think are the four more widespread explanations in the profession, as we can identify them from introspection and
comments during seminars.

23An implication of this simplification is that the elasticity of output with respect to the intermediate good, αx, is
now greater as it is still calibrated to match on the share of intermediate goods in output. This implies a mechanical
reduction in the volatility of the market shock ηx

t (see footnote 18).
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4.1 Investment Specific Shock

The first shock we consider is an investment specific shock à la Greenwood, Hercowitz, and Krussell

[2000] or Fisher [2002]. We modify the resource constraint, which is now given by

Yt = Ct + St + e−ζtIt,

where ζ is the investment specific shock. In his VAR study, Fisher [2002] argues that investment

specific shocks ought to exert a permanent effect and should be modeled as a random walk. We

will consider both the case where the investment specific shock is modeled as a random walk and

the case where it is modeled as a stationary autoregressive process.

We first estimate a model with a permanent investment specific shock, our market shock and

a permanent TFP shock. As a first pass, the model is estimated by matching the response of

output to both the permanent and the transitory component, as was done in the previous section.

This experiment is labeled PIS–1 in Table 8 which reports the estimation results and in Table 9

which reports the associated variance decomposition. In this version the model fits the data very

well. The model does relatively well in accounting for the joint dynamics of consumption and

output (as indicated by the value of the D(C, Y )). What is interesting is that the volatility of

the permanent investment specific shock is estimated to be very close to zero. Its contribution to

output, consumption and hours worked volatility is essentially zero. In contrast, our market shock

remains a very important component in explaining hours and output.

We replicate the estimation of this model by now matching both output and consumption responses,

instead of only matching the output response. This experiment is labeled PIS–2 in the tables. The

model is not rejected by the data (p–value=0.86), and the volatility of the investment specific

shock is now close to that usually obtained by fitting the relative price of investment. Nevertheless,

the variance decomposition reported in Table 9 shows that the investment specific shock is not an

important source of business cycle fluctuations, while the market shock remains important. These

results suggest that our market shock is not simply picking up some component of output and

consumption fluctuations that is induced by permanent investment specific shocks.

These pessimistic results regarding the contribution of the investment specific shock to fluctuations

may come from its specification as a random walk. We therefore also consider a stationary repre-

sentation of the investment specific shock. The TIS–1 experiment then corresponds to a situation

where the model parameters are estimated so as to match the impulse responses of output. One

difficulty with this model is that it estimates a volatility for the innovation to the investment specific

shock that is about three times as high as in the data. The interesting result for our conjecture,

as shown in Table 9, is that the investment specific shock does not undermine the contribution of

the market shock to accounting for the business cycle. The market shock still accounts for 42% of
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output volatility in the short–run while the investment specific shock only accounts for less than

5% of the output volatility at the same horizon. Furthermore, the same invariance result obtains

for hours worked and for consumption.

One may however be worried that the investment specific shock may not be well identified by this

procedure since it considers only output responses at the estimation stage. We therefore add the

impulse responses of consumption to our list of moments to match so as to add information to the

system. This experiment is labeled TIS–2 in the tables. This experiment still gives some strong

support to the model (p–value=0.87). Now the estimated process of the investment specific shock

is very much in line with what would result from an estimation from the relative price of investment

series. The key results in terms of variance decomposition are left unaffected. The market shock

still accounts for 40% of output volatility in the short–run while the investment specific shock only

accounts for less than 3%. Likewise hours worked are mainly explained by the market shock (94%

on impact), while consumption is only explained by the technological shock. In other words, the

investment specific shock appears to explain little of economic fluctuations when one allows for our

market shock, while the market shock continues to explain a substantial fraction of fluctuations

when the investment specific shock is included.24

4.2 Transitory Technological Shock

We now consider a version of the model in which we allow for a temporary shock to total factor

productivity in addition to a permanent TFP shock and our market shock. Technology is now

given by

Qt = eζtK1−αx−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

,

where ζ is a stationary AR(1) autoregressive process. The parameters are estimated so as to match

the impulse responses of consumption and output. The experiment is labeled T.T. in the tables.

As can be seen from Table 9, the introduction of this shock does not undermine the contribution

of the market shock to output volatility in the business cycle. The market shock still account for

about 38% of output volatility in the short–run and more than 95% of that of hours worked. In

fact, the transitory technology shock acts as a substitute for the permanent technology shock in

explaining fluctuations. This can be seen from the variance decomposition of consumption that

clearly shows that consumption is mainly accounted for by technology shocks — about 93% in the
24At first pass, these observations may appear at odds with the results in Fisher [2002] which suggest, using an

identified VAR approach, that investment specific shocks explain a substantial fraction of fluctuations. One way
to reconcile these two sets of observations is to recognize that the investment specific shocks identified in Fisher
[2002] may be capturing part of the effects we associate with market rushes. In particular, if changes in the quality
of equipment proceed and signal the opening of new markets, then the shocks identified in Fisher [2002] could be
generating macroeconomic fluctuations mainly through their effect on market rushes as opposed to working through
standard capital accumulation incentives.
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Table 8: Estimation Results

PIS–1 PIS–2 TIS–1 TIS–2 T.T. T.P.
b 0.6108 0.3125 0.6457 0.3062 0.3420 0.3877

(0.1229) (0.1921) (0.1180) (0.2184) (0.1869) (0.1472)

ϕ 0.4195 0.2534 0.6099 0.2775 0.3125 0.3699
(0.3227) (0.3201) (0.6675) (0.4235) (0.2645) (0.3228)

σΘ 0.0131 0.0088 0.0126 0.0089 0.0062 0.0075
(0.0017) (0.1592) (0.0017) (0.0016) (0.0044) (0.0037)

ρx 0.9117 0.8919 0.9143 0.8967 0.9195 0.9075
(0.0323) (0.0395) (0.0374) (0.0420) (0.0234) (0.0259)

σx 0.1575 0.1859 0.1594 0.1775 0.1768 0.1825
(0.0217) (0.0349) (0.0197) (0.0266) (0.0278) (0.0297)

ρT – – 0.5328 0.8478 0.9143 0.8799
(0.2742) (0.4974) (0.1148) (0.1959)

σT 0.0003 0.0038 0.0118 0.0032 0.0046 0.0068
(0.0243) (0.0082) (0.0137) (0.0048) (0.0021) (0.0030)

J–stat 17.31 60.96 14.89 59.48 54.65 50.56
[0.99] [0.86] [1.00]) [0.87] [0.95] [0.98]

D(C, Y ) 99.42 92.34
[0.03] [0.06])

Note: ρT and σT denote respectively the persistence parameter and the
volatility of the third shock. Standard errors are in parenthesis, p–value
in brackets.
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Table 9: Variance Decomposition

Horizon Output Consumption Hours
εΘ νx ζ εΘ νx ζ εΘ νx ζ

PIS–1: ζ=Permanent Investment Specific Shock
1 64 % 36 % 0 % 95 % 5 % 0 % 15 % 85 % 0 %
4 87 % 13 % 0 % 96 % 4 % 0 % 20 % 80 % 0 %
8 93 % 7 % 0 % 97 % 3 % 0 % 34 % 66 % 0 %
20 97 % 3 % 0 % 99 % 1 % 0 % 42 % 58 % 0 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 44 % 56 % 0 %
PIS–2: ζ=Permanent Investment Specific Shock
1 55 % 45 % 0 % 84 % 16 % 0 % 0 % 99 % 1 %
4 76 % 22 % 2 % 87 % 13 % 0 % 12 % 82 % 6 %
8 84 % 13 % 3 % 90 % 10 % 0 % 19 % 72 % 9 %
20 90 % 6 % 4 % 95 % 4 % 1 % 24 % 64 % 11 %
∞ 96 % 0 % 4 % 96 % 0 % 4 % 26 % 63 % 11 %
TIS–1: ζ=Temporary Investment Specific Shock
1 53 % 42 % 5 % 93 % 6 % 1 % 19 % 73 % 8 %
4 76 % 15 % 9 % 95 % 5 % 0 % 12 % 60 % 28 %
8 87 % 9 % 4 % 96 % 4 % 0 % 23 % 57 % 20 %
20 95 % 4 % 1 % 98 % 2 % 0 % 32 % 52 % 16 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 34 % 50 % 16 %
TIS–2: ζ=Temporary Investment Specific Shock
1 56 % 42 % 2 % 84 % 15 % 1 % 0 % 94 % 6 %
4 75 % 20 % 5 % 87 % 12 % 1 % 11 % 73 % 16 %
8 83 % 13 % 4 % 91 % 8 % 1 % 19 % 67 % 14 %
20 92 % 6 % 2 % 96 % 3 % 1 % 25 % 63 % 12 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 26 % 62 % 12 %
T.T.: ζ=Temporary Technology Shock
1 21 % 38 % 41 % 44 % 17 % 39 % 0 % 98 % 2 %
4 29 % 20 % 50 % 51 % 17 % 32 % 4 % 72 % 23 %
8 37 % 15 % 48 % 57 % 13 % 30 % 7 % 66 % 27 %
20 54 % 10 % 36 % 69 % 6 % 25 % 9 % 68 % 23 %
∞ 99 % 0 % 0 % 100 % 0 % 0 % 10 % 66 % 24 %
T.P.: ζ=Temporary Preference Shock
1 27 % 39 % 34 % 55 % 15 % 30 % 1 % 53 % 46 %
4 40 % 20 % 40 % 64 % 13 % 23 % 3 % 34 % 63 %
8 50 % 14 % 36 % 71 % 10 % 19 % 5 % 31 % 64 %
20 70 % 8 % 22 % 82 % 5 % 13 % 7 % 33 % 60 %
∞ 100 % 0 % 0 % 100 % 0 % 0 % 8 % 33 % 59 %
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short–run — and that the split between the two shocks is about half–half. This can be explained

from the estimated AR(1) process of the technology shock that clearly shows that the persistence of

this shock is high (ρT = 0.91). Hence, it exerts a strong wealth effect on the consumption decision

and it is not surprising that this shock competes with the permanent TFP one.

4.3 Transitory Preference Shock

We now introduce a transitory preference shock that shifts the labor supply. Preferences are now

given by

Et
∞∑
τ=0

[
log(Ct+τ − bCt+τ−1) + ψeζt+τ (h− ht+τ )

]
,

where ζ is the temporary preference shock, that is assumed to follow a AR(1) process. The model is

estimated so as to match the impulse responses of consumption and output. Again we find that the

market shock accounts for about 40% of output volatility in the short–run and does not contribute

much to the volatility of consumption (less than 15%). As far as output and consumption are

concerned, the introduction of the preference shock mainly undermines the role of the technology

shock. For instance, out of the 61% of output volatility not explained by the market shock about

35% is accounted for by the preference shock. The only dimension along which the preference

shock competes with the market shock is in the determination of hours worked. About half of

hours worked volatility can be accounted for by the preference shock. We however do not view it

as seriously calling into question the potential role of the market shock in the business cycle, as

the preference shock mainly reduces the explanatory power of the permanent shock rather than

undermining the role of the market shock.

4.4 Discussion

One important question relates to the interpretation of “a new market” and the associated empirical

observations with regards to its cyclical properties.25 Our metaphor of new markets describes

all new ways of introducing new products given existing technology or using new technologies,

although our estimations seem to favor the former interpretation rather than the later, as we do

not estimate any significant long run effect of new goods creation. Broadly speaking, a new market

ranges from producing a newly invented product (say cellular phones) to producing old goods with

newly developed uses (fiber–optic cable networks once the use of the internet has exploded) or new

ways of designing old products (say producing shirts of a fashionable new color). Given this broad

interpretation, it is difficult to obtain a comprehensive measure of our new market margin. In a very

narrow sense, one could associate new markets with new firms, and therefore look at Net Business
25We have here benefited from comments and discussion with Nir Jaimovich.
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Formation. Net Business Formation is without ambiguity procyclical in the U.S., which is also one

of our model predictions if we literally associate N with the number of firms. The problem is that

the evidence suggests that smaller firms typically make up the majority of entrants and exits, which

is insufficient to account for a large share of hours worked and output variance at short horizons. A

less restrictive interpretation is to look at variations in the number of establishments and franchises

as an additional channel affecting the number of “operating units”. The Business Employment

Dynamics database documents job gains and job losses at the establishments level at the quarterly

frequency for the period between the third quarter of 1992 and the second quarter of 2005. Using

these observations, Jaimovich [2004] finds that more than 20% of the cyclical fluctuations in job

creation is accounted for by opening establishments, which is already a sizable number. Another

dimension which could be associated to the new market margin is variation in the number of

franchises. As Lafontaine and Blair [2005] show, numerous firms in a variety of industries have

adopted franchising as a method of operation. Sales of goods and services through the franchising

format amounted to more than 13% of real Gross Domestic Product in the 1980s and 34% of retail

sales in 1986. Jaimovich [2004] documents that the variations in the number of franchises are

procyclical at the business cycle frequency, which is again in line with the predictions of our model.

We take this empirical evidence, together with anecdotal evidence and the evidence obtained by

estimating our model, as supporting the idea that agents expectations about the possibility of new

markets is likely an important driving force of the business cycle.

5 Conclusion

This paper presented theory and evidence in support of the idea that expectations of new market

openings may be a key component in business cycles fluctuations. In particular, we proposed a

model where the opening of new market opportunities causes an economic expansion by favoring

competition for market share. We called such an episode a market rush in analogy to a gold rush.

We first studied a simple analytical model of market rushes and showed that it displays certain

important qualitative that are consistent with the data, namely that the business cycle is, to a large

extent, associated with a non-permanent effect on output and hours and that does not move con-

sumption at any frequency. We then provided a quantitative evaluation of a more complete model,

which embedded market rushes as one component, and estimated it using simulated method of

moments. The estimation results suggest that market rush phenomenon is a significant contributor

to business cycle fluctuations and this finding is robust to the inclusion of many alternative shocks

discussed in the literature.
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Appendix

This appendix proposes a test for the equality between εY and εT (or equivalently between εC and

εP as the shocks are pairwise orthogonal). We show that, for the VECM under consideration, this

equality corresponds to a particular zero in the long run impact matrix of the Wold decomposition.

Consider the Wold representation (26), and consider the following representation of the process:(
∆Ct
∆Yt

)
= B(L)

(
ν1,t

ν2,t

)
, (34)

where B(L) =
∑∞

i=0BiL
i and the variance covariance matrix of (ν1, ν2) is the identity matrix. We

want here to perform an overidentified orthogonalization and impose at the same time that (i) the

shock ν2 has no impact effect on C and (ii) no long run effect on C and Y . More precisely, we look

for a matrix S such that µ = Sν and Bi = AiS. Imposing a zero impact effect of ν2 on C implies

s12 = 0. (35)

The matrix giving the long run effect of ν on both variables is given by B̂ = ÂS, where Â =
∑∞

i=0Ai.

Imposing the long run restriction b̂12 = 0 implies

â11s12 + â12s22 = 0. (36)

When the two series cointegrate, the matrix Â rewrites

Â =
(
â11 kâ11

â21 kâ21

)
,

where k is a real number.

When â12 6= 0 — which occurs when both k and â11 are non zero — equations (35) and (36) imply

that the second column of S is composed of zeros, meaning that S is not a full rank matrix. In

other words, the two restrictions cannot hold at the same time. On the contrary, if â12 = 0 —

when either k or â11 are zero — the long run and short run constraints are simultaneously satisfied.

This suggests that a convenient way of testing whether both the short and long run constraints are

satisfied is to test for the nullity of a particular coefficient of the long run matrix Â of the Wold

representation of the process, â12. The following proposition states this result in a more general

case where the two series need not cointegrate.

Proposition 1 Consider a bivariate process whose Wold decomposition is given by(
∆X1

t

∆X2
t

)
= A(L)

(
µ1,t

µ2,t

)
,
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with A(L) =
∑∞

i=0AiL
i, with A0 = I, where the covariance matrix of µ is given by Ω, and where the

matrix of long run effect Â = A(1) =
∑∞

i=0Ai is non singular. Consider a structural representation(
∆X1

t

∆X2
t

)
= B(L)

(
ν1,t

ν2,t

)
,

where B(L) =
∑∞

i=0BiL
i, the covariance matrix of ν is the identity matrix and µ = Sν. Then, the

two following statements are equivalent

(a) If the second structural shock ν2 has no short run impact on X1, i.e. s12 = 0, then it has no

long run impact on X1, i.e. b̂12 = 0, and conversely.

(b) The (1, 2) element of the long run effect matrix of the Wold decomposition is zero, i.e. â12 = 0

Proof : We first prove that (a) implies (b). Assume that

S =
(
s11 0
s21 s22

)
and B̂ =

(
b̂11 0
b̂21 b̂22

)
.

Inverting S, we obtain

S−1 =
(

1/s11 0
−s21/(s11s22) 1/s22

)
.

The long run effect matrix of the Wold decomposition is Â = B̂ × S−1 and one can easily check

that â12 = 0.

We then prove that (b) implies (a). We have the relation ÂS = B̂. We assume that â12 = 0. Then,

b̂12 = â11s12 . As Â is assumed to be nonsingular, â11 6= 0, so that b̂12 = 0⇐⇒ s12 = 0. Q.E.D.

44


	An Analytical Model of Market Rushes
	Model
	Equilibrium Allocations

	Equilibrium Allocations Properties
	Comparison to the social optimum
	A VECM Representation of the Model Solution
	A Target Set of Observations
	Orthogonalized Representations of Equilibrium Allocations

	Quantitative Assessment
	Model, Calibration and Estimation Procedure
	Estimation Results
	 Business Cycle Accounting

	Alternative Models
	Investment Specific Shock
	Transitory Technological Shock
	Transitory Preference Shock
	Discussion

	Conclusion

