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Abstract. We consider a committee problem in which efficient information ag-

gregation is hindered by differences in preferences. Sufficiently large delays

could foster information aggregation but would require commitment. In a

dynamic delay mechanism with limited commitment, successive rounds of

decision-making are punctuated by delays that are uniformly bounded from

above. Any optimal sequence of delays is finite, inducing in equilibrium both

a “deadline play,” in which a period of no activity before the deadline is fol-

lowed by full concession at the end to reach the efficient decision, and “stop-

and-start” in the beginning, in which the maximum concession feasible alter-

nates with no concession. Stop-and-start is achieved by binding and slacken-

ing the bound on delay in turn.
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1. Introduction

The committee problem is a prime example of strategic information aggregation.1 The

committee decision is public, affecting the payoff of each committee member; the infor-

mation for the decision is dispersed in the committee and is private to committee mem-

bers; and committee members have conflicting interests in some states and common inter-

ests in others. As a mechanism design problem, the committee problem has the following

distinguishing features. First, there are no side transfers, unlike in Myerson and Satterth-

waite (1983). Second, each committee member possesses private information about the

state, in contrast with the strategic information communication problem of Holmstrom

(1984). Third, the number of committee members is small, unlike the large election prob-

lem studied by Feddersen and Pesendorfer (1997).

It is well-known in the mechanism design literature that a universally bad outcome

or a sufficiently large penalty can be useful toward implementing desirable social choice

rules when agents have complete information about one another’s preferences (Moore

and Repullo 1990; Dutta and Sen 1991). In the absence of side transfers in a committee

problem, costly delay naturally emerges as a tool to provide incentives to elicit private

information from committee members. In a companion paper (Damiano, Li and Suen

2012), we show how introducing delay in committee decision-making can result in effi-

cient information aggregation and ex ante welfare gain among committee members. In

that paper, the cost incurred with each additional round of delay is fixed and is assumed

to be small relative to the value of the decision at stake. If we drop the assumption of

small delay, even the first best may be achievable: under the threat of collective punish-

ment, committee members would reach the Pareto efficient decision immediately with no

delay incurred on the equilibrium path. However, achieving the first best requires delay

to be sufficiently costly. This poses at least two problems for mechanism design. First,

the mechanism is not robust in that a “mistake” made by one member will produce a

bad outcome for all. More importantly, because imposing a lengthy delay is very costly

ex post, the mechanism is not credible unless there is strong commitment power. This

paper takes a limited commitment approach to mechanism design in committee prob-

lems.2 Specifically we assume that the mechanism designer can commit to imposing a

delay penalty and not renegotiating it away immediately upon a disagreement, but there

is an upper bound on the amount of delay that he can commit to impose. That is, he

1See Li, Rosen and Suen (2001) for an example and Li and Suen (2009) for a literature review.
2See Bester and Strausz (2001), Skreta (2006), and Kolotilin, Li and Li (2011) for other models of limited

commitment.
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can commit to “wasting” a small amount of money (or time) ex post, but not too much.

The upper bound on the delay reflects the extent of his limited commitment power. In

our model, a sufficiently tight bound on delay would imply that the efficient decision

cannot be reached immediately, and that delay will occur in equilibrium. This gives rise

to dynamic delay mechanisms in which committee members can make the collective de-

cision in a number of rounds, punctuated by a sequence of delays between successive

rounds, and with each delay uniformly bounded from above depending on the commit-

ment power. When delays will be incurred in equilibrium, there is a non-trivial trade-off

between raising the level of punishment through delay and the resulting improvement

in quality of the collective decision. This framework allows us to ask questions that can-

not be addressed in our companion paper: Does punishment (delay) work better if it is

front-loaded or back-loaded? Is it optimal to maintain a constant sequence or delays be-

tween successive rounds? Do deadlines for agreements arise endogenously as an optimal

arrangement? These questions are the subject of the present paper.

The model we adopt in this paper is a slightly simplified version of Damiano, Li and

Suen (2012). In this symmetric, two-member committee problem, there are two alterna-

tives to be chosen, with the two committee members favoring a different alternative ex

ante. One can think of this as a situation in which each member derives some private

benefit if his ex ante favorite alternative is adopted. The payoffs from the two alterna-

tives also depend on the state. If it is known that the state is a “common interest state,”

both members would choose the same alternative despite their ex ante preferences. If it

is known that the state is a “conflict state,” the two members would prefer to choose their

own ex ante favorites. Therefore, the prior probability of the conflict state is an indicator

of the degree of conflict in the committee. Information about the state, however, is dis-

persed among the two members. Each member cannot be sure about the state based on his

private information alone, but they could jointly deduce the true state if they truthfully

share their private information. This model is meant to capture the difficulties of reaching

a mutually preferred collective decision when preference-driven disagreement (difference

in ex ante favorites) is confounded with information-driven disagreement (difference in

private information). Damiano, Li and Suen (2012) provide examples including compet-

ing firms choosing to adopt a common industry standard, faculty members in different

specialties recruiting job candidates, and separated spouses deciding on child custody.

For tractability, Damiano, Li and Suen (2012) adopts a model in which members choose

their actions in continuous time. In this paper, since the focus is the optimal sequencing

of delays, members move in discrete “rounds,” with variable delays between successive

rounds.
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We show an impossibility result in the committee problem that we study: in the ab-

sence of side transfers, there is no incentive compatible mechanism that Pareto-dominates

flipping a coin if the degree of conflict in the committee is sufficiently high. This is a stark

illustration of the difficulties of efficient information aggregation because the members

would have agreed to make the same choice (in the common interest state) had they been

able to share their information. We also show that introducing a collective punishment in

the form of delay if the members disagree may improve decision-making. Indeed, com-

mitting to a sufficiently long and thus costly delay would achieve the first-best outcome

of Pareto efficient decision—implement the agreed alternative in each common interest

state and flip a coin in the conflict state—without actually incurring the delay.

This paper focuses on situations in which the first best is unachievable because there

is a limit to how much time members can commit to wasting when both committee mem-

bers persist with their own favorite alternatives. The members can attempt to reach an

agreement repeatedly in possibly an infinite number of rounds, but the length of de-

lay between successive rounds cannot exceed a fixed upper bound. In this framework,

any given sequence of delays is a mechanism that induces a dynamic game between the

members, and we examine the “optimal” sequence that maximizes the members’ ex ante

payoffs subject to the uniform bound on the length of each delay.

The dynamic game induced by a delay mechanism resembles a war of attrition with

incomplete information and interdependent values.3 In equilibrium of this game, an in-

formed member (who knows that the state is a common interest state for his alternative)

always persists with his own favorite. An uninformed member (who is unsure whether

it is a conflict state or a common interest state for his opponent’s alternative) may ran-

domize between persisting with his favorite and conceding to his opponent’s favorite.

Because of the structure of this equilibrium strategy profile, an uninformed member’s

belief that his opponent is also uninformed (i.e., the state is a conflict state) weakly de-

creases in the next round when both members are observed to be persisting with their

favored alternatives in the current round. Given any fixed delay mechanism, finding the

equilibrium of the dynamic game involves jointly solving the sequence of actions chosen

by the uninformed, the sequence of beliefs, and the sequence of continuation payoffs. For

an arbitrary sequence of delays, such an approach is not manageable and does not yield

any particular insights. In this paper, we introduce a “localized variation method” to

study the design of an optimal delay mechanism. Consider changing the delay at some

3See also Hendricks, Weiss and Wilson (1988), Cramton (1992), Abreu and Gul (2000), and Deneckere
and Liang (2006).
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round t. We study its effect by simultaneously adjusting the delay at round t− 1 (through

the introduction an extra round if necessary) in such a way that keeps the continuation

payoff for round t − 2 fixed, and adjusting the delay at round t + 1 (also through the in-

troduction of an extra round if necessary) in such a way that keeps the equilibrium belief

at round t + 2 constant. In this manner the effects of these variations are confined to a

narrow window, so that there is no need to compute the entire sequence of equilibrium

actions, equilibrium beliefs, and continuation payoffs. It turns out that just by employing

this localized variation method, we can arrive at a complete characterization of optimal

delay mechanisms.

The main result of this paper is a characterization of all delay mechanisms that have

a symmetric perfect Bayesian equilibrium with the maximum ex ante expected payoff

to each member. Such “optimal” delay mechanisms have interesting properties that we

highlight in Section 3 and establish separately in Section 4. First, we show that any op-

timal delay mechanism is a finite sequence of delays. Thus, it is optimal to have a final

round, or “deadline,” for making the decision; failing to make the decision in the final

round would entail that the decision is made by flipping a coin after incurring the fi-

nal delay. In an optimal delay mechanism, however, an informed committee member

always persists with his favorite alternative while an uninformed member concedes to

the favorite alternative of his fellow member with probability one at the final round if it

is reached. The decision is thus always Pareto efficient in equilibrium. Second, we show

that in equilibrium of an optimal delay mechanism there is a “deadline play,” in which

each member persists with his own favorite alternative for a number of rounds before

the deadline. This means that it is optimal to have the committee make no attempt at

reaching a decision just before the deadline arrives. Third, we show that an optimal delay

mechanism induces a “stop-and-start” pattern of making concessions. At the first round,

each uninformed member starts by adopting a mixed strategy with the maximum feasible

probability of conceding to the favorite alternative of his fellow member. If the committee

fails to reach an agreement, the uninformed types would make no concession in the next

round or next few rounds. After one or more rounds of no concession, the uninformed

types start making the maximum feasible concession again, and would stop making any

concession for one or more rounds upon failure to reach an agreement. Thus equilibrium

play under the optimal delay mechanism alternates between maximum concession and

no concession, until the deadline play kicks in. Perhaps surprisingly, it is not optimal to

induce an uninformed committee member to concede with a positive probability in each

round of the dynamic delay mechanism. Instead, under an optimal delay mechanism,

a round of maximum concession probability by an uninformed member is immediately
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followed by no concession.4 To achieve this “stop-and-start” pattern of equilibrium play,

the length of delay between successive rounds cannot be constant throughout. Before the

deadline play is reached, the delay is equal to the limited commitment bound in rounds

when members are making concessions, and is strictly lower than the bound in rounds

when they are not making concessions.

As the uniform upper bound on delay goes to zero, optimal delay mechanisms cannot

improve welfare over the optimal deadline in the continuous-delay model of Damiano,

Li and Suen (2012). This welfare convergence result is derived in Section 5. There we

also briefly discuss two robustness issues regarding our main results. The first robustness

issue concerns the implicit assumptions on the payoff structure made in the committee

problem introduced in Section 2.1. In particular, we have assumed that the two mem-

bers derive the same benefit of implementing the correct alternative in a common interest

state, which is also equal to the private benefit of implementing one’s ex ante favorite

alternative in the conflict state. We show that our characterization of optimal delay mech-

anisms remains qualitatively valid for general payoff structures. The second robustness

issue has to do with the assumption made in the delay mechanism introduced in Section

2.2. Specifically, we assume that in each round a particular direct revelation mechanism

is played: any agreement leads to the implementation of the agreed alternative without

delay, and a disagreement caused by the two members conceding to each other’s favorite

alternative leads to a coin flip without delay. It turns out that these restrictions on the

mechanism used in each round are not without loss of generality. We discuss some impli-

cations of this issue.

2. Model

2.1. A simple committee problem

Two players, called LEFT and RIGHT, have to make a joint choice between two alterna-

tives, l and r. There are three possible states of the world: L, M, and R. We assume that

the prior probability of state L and state R is the same. The relevant payoffs for the two

players are summarized in the following table.

In each cell of this table, the first entry is the payoff to LEFT and the second is the

4The round of no concession following each round of maximal concession may be interpreted as tempo-
rary “cooling off” in a negotiation process. For negotiation practitioners, such cooling off is often seen as
necessary to keep disruptive emotions in check and avoid break-downs, and sometimes as a useful negotia-
tion tactic (see, for example, Adler, Rosen and Silverstein, 1998) . Our characterization of the stop-and-start
feature of optimal delay mechanism provides an alternative explanation.
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L M R

l (1, 1) (1, 1 − 2λ) (1 − 2λ, 1 − 2λ)
r (1 − 2λ, 1 − 2λ) (1 − 2λ, 1) (1, 1)

payoff to RIGHT. We normalize the payoff from making the preferred decision to 1 and

let the payoff from making the less preferred decision be 1 − 2λ. The parameter λ > 0 is

the loss from making the wrong decision relative to a fair coin flip. In state L both players

prefer l to r, and in state R both prefer r to l. The two players’ preferences are different

when the state is M: LEFT prefers l while RIGHT prefers r. We refer to l as the ex ante

favorite alternative for LEFT, and r as the ex ante favorite alternative for RIGHT. In this

model there are elements of both common interest (states L and R) and conflict (state M)

between these two players.

The information structure is such that LEFT is able to distinguish whether the state is L

or not, while RIGHT is able to distinguish whether the state is R or not. Such information

is private and unverifiable. When LEFT knows that the state is L, or when RIGHT knows

that the state is R, we say they are “informed;” otherwise, we say they are “uninformed.”

Thus, an informed LEFT always plays against an uninformed RIGHT (in state L), and an

informed RIGHT always plays against an uninformed LEFT (in state R). Two uninformed

players playing against each other can only occur in state M. Without information aggre-

gation, however, an uninformed LEFT does not know whether the state is M or R. Let

γ1 < 1 denote his initial belief that the state is M.5 We note that γ1 can be interpreted

as the ex ante degree of conflict. When γ1 is high, an uninformed player perceives that

his opponent is likely to have different preferences regarding the correct decision to be

chosen.

In the absence of side transfers, if γ1 ≤ 1/2, the following simultaneous voting game

implements the Pareto efficient outcome. Imagine that each player votes l or r, with

the agreed alternative implemented immediately and any disagreement leading to an

immediate coin flip between l and r and a payoff of 1 − λ to each player. It is a dominant

strategy for an informed player to vote for his ex ante favorite alternative. Given this,

because γ1 ≤ 1/2, it is optimal for an uninformed player to do the opposite. This follows

because, regardless of the probability x1 that the opposing uninformed player votes for

his own favorite, the payoff from voting the opponent’s favorite is higher than the payoff

5An uninformed RIGHT shares the same belief. The implied common prior beliefs are: the state is M
with probability γ1/(2 − γ1), and is L or R each with probability (1 − γ1)/(2 − γ1).
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from voting one’s own favorite:

γ1 [x1(1 − 2λ) + (1 − x1)(1 − λ)] + 1 − γ1 ≥ γ1 [x1(1 − λ) + (1 − x1)] + (1 − γ1)(1 − λ).

The equilibrium outcome is Pareto efficient: the informed player gets the highest payoff

of 1, and the uninformed player also gets 1 when the state is the common interest state in

favor of his opponent or otherwise gets 1 − λ from a coin flip in the conflict state.

In contrast, if γ1 > 1/2, the unique equilibrium in the above voting game has both the

informed and the uninformed types voting for their favorite alternatives. As a result, the

decision is always made by a coin flip in equilibrium, despite the presence of a mutually

preferred alternative in a common interest state. Further, using a standard application of

the revelation principle we generalize this negative result.

Claim 1. Suppose γ1 > 1/2. A mechanism without transfers is incentive compatible if and only

if the probability of implementing each alternative is independent of the true state.

Proof. Let qR, qM, and qL denote the probabilities of implementing alternative r when

the true states are R, M, and L, respectively, and let q̃ be the probability of implement-

ing r when the reports are inconsistent, that is, when both players report that they are

informed. The incentive constraint for an informed RIGHT is

qR + (1 − qR)(1 − 2λ) ≥ qM + (1 − qM)(1 − 2λ).

From the above condition and a symmetric condition for informed LEFT we immediately

get qR ≥ qM and qM ≥ qL. The incentive constraint for an uninformed RIGHT is

γ [qM + (1 − qM)(1 − 2λ)] + (1 − γ) [qL(1 − 2λ) + (1 − qL)]

≥ γ [qR + (1 − qR)(1 − 2λ)] + (1 − γ) [q̃(1 − 2λ) + (1 − q̃)] ,

which together with a symmetric condition for an uninformed LEFT implies that (1 −
γ)(q̃ − qL) ≥ γ(qR − qM) and (1 − γ)(qR − q̃) ≥ γ(qM − qL), and thus

(1 − γ)(qR − qL) ≥ γ(qR − qL).

The above is inconsistent with γ > 1/2 unless qR − qL = 0, and so qR = qM = qL in any

incentive compatible outcome.

In the absence of side transfers, there is no incentive compatible mechanism that
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Pareto dominates flipping a coin when γ1 > 1/2. Thus, our model provides a stark

environment that illustrates the severe restrictions on efficient information aggregation in

committees when side transfers are not allowed.

2.2. Delay mechanisms

As suggested in our companion paper (Damiano, Li and Suen 2012), delay in making de-

cisions can improve information aggregation and ex ante welfare in the absence of side

transfers. We model delay by an additive payoff loss to the players, and denote it as

δ1 ≥ 0. Properly employed by a mechanism designer, delay helps improve information

aggregation by “punishing” the uninformed player when he acts like the informed. Sup-

pose we modify the voting game in Section 2.1 by adding delay: when both players vote

for their favorite alternatives, a delay δ1 is imposed on the players before the decision is

made by flipping a coin. It is straightforward to show that this modified game, which we

refer to as a one-round delay mechanism, achieves the first-best outcome of Pareto efficient

decision without the players having to incur delay. More precisely, for any γ1 > 1/2 and

δ1 ≥ λ(2γ1 − 1)/(1 − γ1), the unique equilibrium in the modified voting game is that the

informed votes for his favorite alternative while the uninformed votes for his opponent’s

favorite alternative.

Using delay to improve information aggregation in committees is both natural and, as

a mechanism, simple to implement. However, as a form of collective punishment, such

“delay mechanism” requires commitment. Furthermore, if the degree of conflict becomes

larger, that is, if γ1 becomes greater, the amount of delay required to achieve first best

increases without bound. In this paper, we assume that there is “limited commitment” in

the sense that the amount of delay δ1 is bounded from above by some exogenous positive

parameter ∆. Throughout the paper, we assume that

0 < ∆ < λ. (1)

This is admittedly a crude way of modeling the constraint on commitment power: the

destruction of value on and off the equilibrium path is unlikely to be credible unless the

amount involved is small relative to the decision at stake.

Of course, whether the bound ∆ is binding or not depends on the initial degree of

conflict γ1. Throughout the paper, we assume that ∆ < λ(2γ1 − 1)/(1 − γ1), so that the

first-best outcome cannot be achieved through a delay mechanism with δ1 ≤ ∆. Equiva-
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lently, this assumption can be written as:

γ1 > γ∗ ≡
λ + ∆

2λ + ∆
. (2)

Note that γ∗ > 1/2. Under assumption 2, using delay to achieve the “second best” leads

to a trade-off because a greater δ1 makes the uninformed more willing to vote for his

opponent’s favorite alternative but it raises the payoff loss whenever delay occurs.

2.2.1. Optimal one-round delay mechanism

Restricting to one-round delay mechanisms, it is straightforward to characterize the op-

timal mechanism that maximizes the agents’ ex-ante welfare. The following claim estab-

lishes that it is either optimal to set δ1 = ∆ if the initial degree of conflict γ1 is low or it is

optimal to set δ1 = 0.

Claim 2. In an optimal one-round delay mechanism, if δ1 > 0 then δ1 = ∆.

Proof. In the unique equilibrium of the voting game the informed player always votes for

his favorite alternative while the uninformed player votes for his favorite alternative with

some probability x1 = min{1, (γ1λ − (1 − γ1)(λ + δ1))/γ1δ1}. Note that x1 decreases in

δ1 whenever it is strictly smaller than 1. To see why the trade-off must result in a corner

solution, note that when x1 < 1, the payoff of the uninformed can be given by the payoff

from voting the opponent’s favorite:

γ1 [x1(1 − 2λ) + (1 − x1)(1 − λ)] + 1 − γ1.

Raising δ1 lowers x1 and therefore benefits the uninformed. The payoff of the informed is

1 − x1(λ + δ1),

which is also increasing in δ1.

A larger cost reduces the equilibrium probability that the uninformed votes for his

favorite alternative. The welfare gains from such reduction more than compensate the

increased delay penalty in the case of a disagreement. The net benefits are positive for

both the uninformed and the informed. As a result, whenever it is possible and desirable

to have x1 < 1, the optimal mechanism sets δ1 equal to the upper bound to induce the

lowest possible x1.
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When the initial belief γ1 is close to γ∗, the one-round delay mechanism with δ1 = ∆

implements an equilibrium outcome that approximates the first best. As γ1 increases,

however, the uninformed player votes for his favorite alternative with a greater probabil-

ity, which leads to a greater payoff loss due to delay. At some γ1, the benefit of inducing

the uninformed player to vote for the opponent’s favorite alternative some of the time is

exactly offset by the payoff loss due to delay. So at this belief a one-round delay mecha-

nism with δ1 = ∆ gives the same ex ante payoff to the players as simply flipping a coin

(i.e., δ1 = 0).

2.2.2. Welfare improvements with a two-round delay mechanism

Imagine that we modify the original one-round mechanism by replacing the coin flip out-

come after delay with a second one-round mechanism with some delay δ2 ≤ ∆. Suppose

that in this two-round delay mechanism we can choose δ2 such that, when the second round

is reached, the uninformed player obtains from equilibrium randomization x2 < 1 a con-

tinuation payoff exactly equal to the coin-flip payoff of 1− λ. Then, it remains an equilib-

rium for the uninformed player to vote for his favorite alternative in the first round with

the same probability x1 as in the original one-round mechanism. As both x1 and the con-

tinuation payoff 1 − λ remain unchanged in the modified mechanism, the equilibrium

payoff to the uninformed player is the same as in the one-round mechanism. Further-

more, because a smaller x2 benefits the informed player more than it benefits the un-

informed player, whenever the uninformed is indifferent between a continuation round

with x2 < 1 and δ2 > 0 and no continuation round (x2 = 1 and δ2 = 0), the informed

is strictly better off with the former than with the latter. Thus, this two-round mecha-

nism delivers the same payoff to the uninformed player but improves the payoff of the

informed player.

In the above argument we have assumed that there is a continuation round with delay

δ2 such that the uninformed player would get the coin-flip payoff of 1− λ in the continu-

ation. This is a valid assumption if the uninformed players’ updated belief γ2 at the end

of the original one-round mechanism that the state is the conflict state satisfies two con-

ditions: it cannot be so low that the only equilibrium is for the uninformed to vote for his

opponent’s favorite alternative, and it cannot be so high that the payoff of the uninformed

is lower than 1 − λ even when the delay penalty is maximized at δ2 = ∆. The next claim

shows that these conditions are met for a non-empty range of initial beliefs.

Claim 3. For γ1 just above (λ + 2∆)/(2λ + 2∆), a two-round delay mechanism improves wel-

fare over the optimal one-round delay mechanism.
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Proof. At γ1 = (λ + 2∆)/(2λ + 2∆), the equilibrium of a one-round delay mechanism

with δ1 = ∆ has x1 < 1. The equilibrium payoff of the uninformed is 1 − λ, and the

equilibrium payoff of the informed is strictly larger than 1 − λ. Thus δ1 = ∆ is the opti-

mal one-round delay mechanism, and the ex-ante welfare of both agents is strictly larger

than the welfare from a coin flip. Further, the updated belief of the uninformed player

after disagreement, γ2, is exactly 1/2. It follows that for ε sufficiently small, the optimal

one-round delay mechanism still improves over a mechanism with no delay for all ini-

tial beliefs γ1 ∈ ((λ + 2∆)/(2λ + 2∆), (λ + 2∆)/(2λ + 2∆) + ε). The updated belief γ2

corresponding to such γ1 satisfies γ2 ∈ (1/2, (λ + 2∆)/(2λ + 2∆)).

Consider now a two-round delay mechanism with δ1 = ∆ and the second round delay

penalty, δ2, satisfying γ2 = (λ + 2δ2)/(2λ + 2δ2). This is feasible because γ2 < (λ +

2∆)/(2λ + 2∆). By construction, γ2 is such that the equilibrium continuation strategy has

x2 < 1 and the uninformed player’s continuation payoff is exactly 1 − λ. Thus this two-

round delay mechanism has an equilibrium where the uninformed chooses his favorite

alternative with the same probability as in the optimal one-round delay mechanism in

the first round, and with probability x2 < 1 in the second round. The equilibrium payoff

of the uninformed is the same as in the one-round delay mechanism since both the first

round equilibrium strategy and the continuation payoff of the uninformed are unchanged

by construction. The continuation payoff of the informed, given by x2(1 − λ − δ2) + (1 −
x2), is instead strictly larger than (1 − γ2 + γ2x2)(1 − λ − δ2) + γ2(1 − x2), which is the

continuation payoff of the uninformed. Thus, the expected payoff of the informed is

strictly larger than in the optimal one-round delay mechanism.

That a two-round mechanism can improve over a one-round mechanism raises the

question about what a general dynamic delay mechanism can achieve. A delay mechanism

is formally defined as a sequence of delays, (δ1, . . . , δT), with each δt ∈ [0, ∆]. We allow

T to be finite or infinite. Any delay mechanism defines an extensive-form game. In each

round t < T conditional on the game having not ended, each player chooses between

voting for his favorite alternative (persist) and voting against it (concede). If the two votes

agree, the agreed alternative is implemented immediately and the game ends. If both

players vote for their opponent’s favorite alternative (we call this a reverse disagreement),

the decision is made by a coin flip without delay. If both vote for their own favorite

(regular disagreement), the delay δt is imposed and the game moves on to the next round.

If T is finite, the deadline round T differs from previous rounds only in that following a

regular disagreement, the decision is made by a coin flip after the delay δT is imposed,

which ends the game. To ensure that the game is well-defined for T infinite, we assume
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that the payoff to each player from never implementing an alternative is smaller than the

payoff from implementing either alternative, so that it is not an equilibrium for the two

players to persist forever even if the infinite sequence of delays is identically zero.

3. Results

Given the initial degree of conflict γ1 and the upper-bound on delay ∆, we say that a de-

lay mechanism, together with a symmetric perfect Bayesian equilibrium in the extensive-

form game defined by the mechanism, is optimal if there is no delay mechanism with

a symmetric perfect Bayesian equilibrium that gives a strictly higher ex ante payoff to

each player. This definition of optimality allows for multiple symmetric perfect Bayesian

equilibria in a given delay mechanism.6 When there is no danger of confusion, we use

“equilibrium” instead of symmetric perfect Bayesian equilibrium, and apply optimality

and sub-optimality to the delay mechanism itself instead of to the combination of mech-

anism and equilibrium. We provide a characterization of optimal delay mechanisms and

highlight their main properties in this section.

For any γ1 ∈ (γ∗, 1), let r∗(γ1) be the smallest integer r satisfying

(

λ + ∆

λ

)r

≥ 1 − γ∗
1 − γ1

. (3)

We shall see in Section 4.1 below that r∗(γ1) is the minimum number of “steps” for the

posterior belief to reach from γ1 to γ∗. To avoid clutter, we sometimes write r∗ to stand

for r∗(γ1) when there is no danger of confusion. Define the “residue” η such that

η

(

λ + ∆

λ

)r∗−1

=
1 − γ∗
1− γ1

. (4)

By definition, η ∈ (1, (λ + ∆)/λ]. When η is equal to its upper bound, (3) holds as an

equation.

Main Result. There exists γ and γ, with γ∗ < γ < γ < 1, such that

(a) for γ1 ≤ γ, an optimal delay mechanism is the one-round mechanism with maximum delay:

δ1 = ∆, with T = 1;

6The main restriction we impose is symmetry. Generally there are asymmetric equilibria in which only
one informed type concedes with a positive probability. Our approach is to impose symmetry and establish
(in Section 4.5) that both informed types persist with probability one in any equilibrium. This is a more
natural approach given the underlying committee problem set up in Section 2.1.
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(b) for γ1 ∈ (γ, γ) such that r∗(γ1) = 1, an optimal delay mechanism is given by:

δ1 = ∆, δ2 = . . . = δτ+1 = (γ1λ − (1 − γ1)∆)/τ,

δ2+τ = ∆, with T = 2 + τ,

where τ is the smallest integer greater than or equal to γ1(λ + ∆)/∆ − 1;

(c) for γ1 ∈ (γ, γ) such that r∗(γ1) ≥ 2, an optimal delay mechanism is given by:

δ2t−1 = ∆, δ2t = λ∆/(λ + ∆), for t = 1, 2, . . . , r∗ − 2,

δ2(r∗−1)−1 = ∆, δ2(r∗−1) = λ(η − 1)/η,

δ2r∗−1 = λ(η − 1), δ2r∗ = δ2r∗+1 = . . . = δ2r∗+τ−1 = γ∗λ/τ,

δ2r∗+τ = ∆, with T = 2r∗ + τ;

where τ is the smallest integer greater than or equal to γ∗λ/∆;

(d) for γ1 ≥ γ, an optimal delay mechanism is flipping a coin:

δ1 = 0, with T = 1.

Furthermore, the set of γ1 for which case (b) applies is non-empty, and the set of γ1 for which case

(c) applies is non-empty if and only if ∆ < (
√

2 − 1)λ.

The above characterization establishes that it is optimal to have a dynamic delay

mechanism so long as the initial degree of conflict γ1 is intermediate, that is, between

γ and γ. Otherwise, either a one-round delay mechanism with maximum delay ∆ is op-

timal when γ1 is close to γ∗ (case (a) of Main Result), or a coin flip without delay when

γ1 is close to 1 (case (d) of Main Result). When optimal delay mechanisms are dynamic

(i.e, cases (b) and (c)), they induce intuitive properties of equilibrium play which high-

light the logic of using delays dynamically to facilitate strategic information aggregation

under the limited commitment constraint. We list the most interesting features of optimal

delay mechanisms below:

(i) Any optimal delay mechanism is finite with a deadline T.

(ii) Any optimal dynamic delay mechanism induces deadline play with the efficient dead-

line belief in equilibrium: there is t with 2 ≤ t ≤ T − 1 such that the uninformed

player persists with probability one in rounds t, . . . , T − 1, and his belief γT enter-

ing the last round is less than or equal to γ∗, so that the Pareto efficient decision is

made at the deadline.
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(iii) Any optimal dynamic delay mechanism induces stop-and-start in equilibrium: for

any two adjacent rounds before the deadline play, the uninformed player persists

with probability one in one of them and randomizes in the other, starting with ran-

domization in the first round.

Property (i) implies that in any equilibrium induced by an optimal mechanism the to-

tal delay is bounded from above by T∆. Intuitively, it follows from the optimality of the

delay mechanism that there is a bound on the total delay such that an uninformed player

concedes with probability one before it is incurred. However, this argument relies on the

claim that an informed player persists with probability one regardless of the history of the

play. We establish this claim and property (i) simultaneously in Section 4.5.7 Not surpris-

ingly, the intuition behind the claim is that an informed player has a stronger incentive to

persist with his favorite alternative than an uninformed player does.

Property (ii) implies that an optimal delay mechanism generally induces a “stalling

tactic” adopted by the uninformed types before the deadline, during which no attempt is

made to reach a decision, until they make a “last minute concession” to take the oppo-

nent’s favorite alternative when the deadline arrives. These two tactics are not contradic-

tory, because the expectation of high payoff from last minute concession at the deadline

causes the uninformed types to stop any concession prior to the deadline. After explain-

ing our methodology and presenting some preliminary results in Section 4.1, we show

in Section 4.2 that any optimal delay mechanism induces a deadline belief γT of the un-

informed player that is less than or equal to γ∗. Intuitively dynamic delay mechanisms

work by driving down the uninformed players’ belief that the state is a conflict state. In-

ducing a deadline belief greater than γ∗ would imply that the uninformed player would

not concede with probability one in the last round, and as a result the Pareto efficient de-

cision could not be achieved at the end. But driving down the uninformed players’ belief

through delay is costly. It does not pay to induce a deadline belief too much below γ∗.

When r∗(γ1) ≥ 2 (i.e., case (c)), we show that the deadline belief γT must be exactly equal

to γ∗. A lower deadline belief would imply that the uninformed player would concede

in the last round even if in the last round the limited commitment bound is slack, and so

the delays before the deadline can be reduced while still guaranteeing the Pareto efficient

decision at the end.

Property (iii) refers to case (c) of the Main Result and is perhaps the most interesting

insight of this paper. This property will be established in Section 4.3 below. It turns out

7The proof is relegated to the end of our main analysis section while we derive properties (ii) and (iii)
assuming that (i) holds, because property (i) is less central to the insights of this paper.
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that in general inducing the uninformed player to concede with a positive probability

in two successive rounds is not optimal. The logic behind this is that having the unin-

formed player randomize in the next round in fact fails to minimize the probability that

the uninformed persisting in the present round. This is because in the present round the

probability of the uninformed player persisting is increasing in the expected payoff he

obtains in the next round. If the probability of the uninformed player persisting in the

next round is increased, then he will expect a lower payoff from the next round and is

thus induced to persist with a lower probability in the present round. This is why an op-

timal mechanism has a stop-and-start feature: having the players stop conceding in the

follow-on round provides a greater punishment in the event of a regular disagreement

that induces them to concede more in the current round. In an optimal dynamic mecha-

nism, an “active round” of voting (in which the uninformed type concedes with positive

probability) is always followed by an “inactive round” (in which the uninformed type

concedes with zero probability). We show that this alternating pattern of start-and-stop

drives the belief from γ1 to γ∗ in the smallest possible number of steps. Furthermore,

the Main Result states that an optimal mechanism cannot have a delay equal to the up-

per bound in every round. The optimal delays should alternate between the maximum

bound (to induce an “active round”) and a level strictly below the bound (to induce an

“inactive round”).

4. Analysis

4.1. Preliminary results

Until Section 4.5, we consider only finite delay mechanisms and restrict our analysis to

symmetric perfect Bayesian equilibria in which the informed players always persist. De-

note xt as the equilibrium probability that the uninformed players persist in round t in

a game induced by the mechanism (δ1, . . . , δT). Given the rules of our dynamic delay

mechanism, the game would end immediately at round t whenever xt = 0. Let γt be the

equilibrium belief of the uninformed player that his opponent is uninformed (i.e., that the

state is M) at the beginning of round t. Given the initial belief γ1, the belief in subsequent

rounds is derived from Bayes’ rule:

γt+1 =
γtxt

γtxt + 1 − γt
. (5)

We call γT the deadline belief of the game. Finally, we denote as Ut the equilibrium ex-

pected payoff of an uninformed player at the beginning of round t. This payoff is given
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by:

Ut =







γt [xt(−δt + Ut+1) + 1 − xt] + (1 − γt)(−δt + Ut+1) if xt > 0,

γt [xt(1 − 2λ) + (1 − xt)(1 − λ)] + 1 − γt if xt < 1.
(6)

In the above, the top expression is the payoff from persisting and the bottom expression

is the payoff from conceding. The uninformed player is indifferent between these actions

when xt ∈ (0, 1). We often write Ut(γt) to acknowledge the relation between Ut and γt.

We denote as Vt the equilibrium expected payoff of an informed player at the beginning

of round t, and we write Vt(γt) even though the informed player knows the state. The ex

ante payoff of each player, before they learn their types, is given by

W1(γ1) =
1

2 − γ1
U1(γ1) +

1 − γ1

2 − γ1
V1(γ1). (7)

An optimal delay mechanism is one that maximizes W1(γ1) subject to the constraint that

δt ≤ ∆ for all t.

Given a delay mechanism (δ1, . . . , δT), an equilibrium of the induced game can be

characterized by a sequence {γt, xt, Ut}T
t=1 that satisfies (5) and (6). The “boundary con-

ditions” are provided by the initial belief γ1, and by the continuation payoff −δT + 1 − λ

in the event that the players fail to reach an agreement at the last round T. Although it

is possible to solve the equilibrium for some particular delay mechanism (such as one

with constant delay), characterizing all equilibria for any given mechanism is neither fea-

sible nor insightful. Instead we introduce a “localized variation method” to derive neces-

sary conditions on an equilibrium induced by an optimal delay mechanism. It turns out

that these necessary conditions are sufficient to provide a full characterization of optimal

mechanisms that gives our Main Result.

One interesting observation about our model is that equilibrium analysis depends

on the incentives of the uninformed players alone. We show that whenever the un-

informed player is indifferent between persisting and conceding, the informed player

strictly prefers to persist. Hence the incentive constraints for the informed player is not

binding and does not play a part in the equilibrium analysis. The analysis of optimal

mechanisms, however, requires studying the payoffs to both uninformed players and in-

formed players. Therefore, in order to perform welfare analysis, it is necessary to link the

equilibrium payoff of the informed V1(γ1) to that of uninformed U1(γ1). The following

result proves to be important.
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Lemma 1. (LINKAGE LEMMA) Suppose a mechanism induces an equilibrium in which it is a

best response for an uninformed player to persist through to the last round T from some round

t ≤ T onward. Then

Ut(γt) = γtVt(γt) + (1 − γt)

(

1 − λ −
T

∑
s=t

δs

)

. (8)

Proof. Suppose an uninformed player persists in each round from round t onwards. With

probability γt, his opponent is an uninformed player who persists with probability xs for

s = t, . . . , T. In this case his payoff would be identical to that of an informed player facing

an uninformed opponent, who uses the same strategy as his own. With probability 1− γt,

his opponent is an informed player who persists in every round. In this case his payoff

would be 1 − λ − ∑
T
s=t δs. Since persisting from round t onwards is a best response, the

uninformed player’s payoff at round t is given by equation (8).

Although simple, the Linkage Lemma has an important implication. By equation (8),

if raising the total delay ∑
T
t=1 δt does not lower U1(γ1), and if persisting in each round

remains a best response, then such a change strictly increases V1(γ1) and hence the ex

ante payoff W1(γ1). The logic is that a greater delay keeps the expected payoff of an

uninformed player unchanged only if it induces him to lower the probabilities of persist-

ing. Since an informed player faces an uninformed opponent with probability 1, while

an uninformed player faces an uninformed opponent with probability γ1 < 1, the same

reduction in probabilities of persisting by the opponent benefits an informed player by

more than it benefits an uninformed player. We have already seen in Section 2.2 that

this logic leads to the conclusion that an optimal one-round mechanism has δ1 = ∆. It

remains useful when we use the localized variation method to study general dynamic

mechanisms.

The Linkage Lemma suggests that increasing the total delay may improve the ex ante

payoff (7) of each player. Although each δt in a delay mechanism is bounded from above

by ∆, the total delay can be increased by inserting additional rounds of delay. This is

frequently used in our localized variation approach.

We say that voting round t in a delay mechanism is an active round if xt ∈ (0, 1).

Suppose that, in equilibrium of a delay mechanism, there are r active rounds prior to the

last round. Let t(1) < . . . < t(r) represent such rounds. By Bayes’ rule (5), the posterior

belief that the state is M decreases after a regular disagreement in an active round. We say
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that voting round t is an inactive round if xt = 1. Since no concession is made by either the

informed or the uninformed, no updating of belief occurs after an inactive round. Clearly,

the first round of an optimal delay mechanism must be an active round (i.e., t(1) = 1), for

otherwise the mechanism would be wasting time prior to round t(1). When needed, we

define t(r + 1) to be equal to T. For convenience of notation, we let

σt(i) ≡
t(i+1)−1

∑
t=t(i)

δt

for each i = 1, . . . , r be the effective delay in round t(i).

Definition 1. There is no slack in an active round t < T if δt = ∆ and Ut+1(γt+1) = 1 −
2γt+1λ.

There is slack in active round t if δt < ∆ or Ut+1(γt+1) > 1 − 2γt+1λ. Given fixed γt

and the upper bound ∆ on the delay in each round, the next result shows that lowering

xt is feasible if and only if there is slack in round t. This is clear when δt < ∆t as we can

reduce slack and lower xt by increasing δt. When Ut+1(γt+1) > 1 − 2γt+1λ, we can insert

one additional round s with delay δs between t and t + 1 and keep raising δs, so long as

in equilibrium xs = 1, or equivalently, Ut+1(γt+1) − δs > 1 − 2γt+1λ. This reduces the

slack and lowers xt, as the effective delay in round t is raised from σt to σt + δs. If the

requisite δs to fill the slack exceeds the bound ∆, we can keep inserting additional rounds

between t and t + 1 while ensuring the uninformed players persist in these extra rounds

until there is no slack.

Lemma 2. (MAXIMAL CONCESSION LEMMA) For any t < T and γt > ∆/(λ + ∆), the

lowest feasible xt is given by

χ(γt) ≡
γtλ − (1 − γt)∆

γt(λ + ∆)
,

and the lowest feasible γt+1 is given by

g(γt) ≡
γtλ − (1 − γt)∆

λ
.

These lower bounds are attained if and only if there is no slack in round t.

Proof. If an uninformed player is randomizing at round t, the indifference condition (6)

requires:

1 − γtλ − γtxtλ = (γtxt + 1 − γt) [−δt + Ut+1(γt+1)] + γt(1 − xt).
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At round t + 1, the uninformed player can guarantee a payoff of at least 1 − γt+1λ −
γt+1xt+1λ by conceding with probability one. Therefore, Ut+1(γt+1) ≥ 1 − 2γt+1λ, with

equality when xt+1 = 1. Using this bound and the bound on δt, we obtain

γtλ + γtxtλ ≤ (γtxt + 1 − γt)(∆ + 2γt+1λ),

with equality when there is no slack at round t. Using Bayes’ rule for γt+1 and solving for

xt, we obtain xt ≥ χ(γt). Since γt+1 is increasing in xt, plugging in the lowest value of xt

and using Bayes’ rule give γt+1 ≥ g(γt).

For fixed belief γt of the uninformed player, the probability xt that he persists in round

t depends both on the round t delay δt and on the continuation payoff Ut+1(γt+1). In gen-

eral, xt is not necessarily decreasing in δt or increasing in Ut+1(γt+1) separately. Nonethe-

less, the Maximal Concession Lemma establishes a lower bound on xt, and hence a lower

bound on the updated belief γt+1, which binds when both δt is maximized and Ut+1(γt+1)

is minimized.

When there is maximal concession by the uninformed player, his belief that the state

is M evolves according to
1 − g(γt)

1 − γt
=

λ + ∆

λ
. (9)

Comparing this to equation (3), we see that it takes at least r∗(γ1) steps for the belief

to reach from γ1 to γ∗, if the uninformed is making maximal concessions in each active

round.8 A tighter commitment bound ∆ would mean that it requires more active rounds

for the initial degree of conflict γ1 to reduce to the level γ∗, when the conflict can be

efficiently resolved.

4.2. Efficient deadline belief

First we show that in any optimal delay mechanism the Pareto efficient decision is made

with probability one. This is clearly the case if there is some round N < T such that

xN = 0 given that the informed player always persists. If such round N does not exist,

then we must have xT = 0 in the last round for the decision to be Pareto efficient.

We prove this result using a localized variation method. Suppose to the contrary that

xT > 0. This must imply γT > γ∗. We show that a modified mechanism which induces a

smaller equilibrium deadline belief γ̃T will increase the ex ante payoff. Hence the original

8Define g(n)(γ) to be such that g(1)(γ) = g(γ) and g(n)(γ) = g(g(n−1)(γ)). Then r∗(γ) is the smallest

integer r such that g(r)(γ) ≤ γ∗.
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mechanism cannot not optimal.

Suppose there are r active rounds under the original mechanism. A smaller deadline

belief γ̃T can be obtained by introducing an extra active round s, after round t(r) but

before round T, with an appropriately chosen delay δ̃s to induce x̃s < 1. The difficulty is

that the equilibrium sequence {γt, xt, Ut} is jointly determined through (5) and (6). For

example, introducing the extra round s to induce x̃s < 1 would change the continuation

payoffs at round t(r) and before. Our localized variation method bypasses this difficulty

by introducing yet another extra round s′ in between round t(r) and round s. The delay

δ̃s′ for this round is chosen in such a way to keep the continuation payoff in the event of a

disagreement at round t(r) fixed at the original value of

−δt(r) + Ut(r)+1(γt(r)+1).

Because both the initial belief γ1 and the continuation payoff at round t(r) are fixed, if

{γt, xt, Ut}t(r)
t=1 is part of equilibrium under the original mechanism, then the same se-

quence constitutes part of equilibrium under the modified mechanism.9 In particular, the

modified mechanism does not affect U1(γ1). Furthermore, as long as xT > 0, we can

still have x̃T > 0 in the modified mechanism after marginally lowering the deadline be-

lief to γ̃T. This means that persisting through to the end remains a best response for the

uninformed player given the equilibrium strategy in the modified mechanism.

In this construction, to lower the probability of persistence from xs = 1 to x̃s < 1 re-

quires raising the delay δ̃s at round s. When x̃s becomes smaller, the uninformed player’s

payoff increases, and therefore the delay δ̃s′ must also rise to keep the continuation payoff

for round t(r) fixed. As a result the total delay in the modified mechanism is higher than

that in the original mechanism. It then follows from the Linkage Lemma that the ex ante

payoff of the players must increase. The details of this construction are relegated to the

Appendix.

Proposition 1. Suppose that r∗(γ1) ≥ 1. Then in an optimal mechanism, xT = 0.

An immediate corollary to Proposition 1 is that the deadline belief must satisfy γT ≤
γ∗. The intuition behind this result is that if the deadline belief is not sufficiently low to

induce the Pareto efficient decision at the final round, then it is possible to slightly modify

the mechanism so as to increase the total delay without affecting the expected payoff

9In constructing this modified mechanism, we take the belief at the beginning of round s to be fixed at
the original value of γt(r)+1 and find the δ̃s that would induce x̃s < 1. This is justified because the modified
mechanism does not change the equilibrium play prior to round s, ensuring that the posterior belief at the
beginning of round s is indeed fixed.
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of the uninformed. This is accomplished by inducing the uninformed to play another

round of randomization before the final round. Since an informed player benefits more

from concession by the uninformed than an uninformed player does, the Linkage Lemma

implies that the ex ante payoff can be improved.

The next result establishes a counterpoint to Proposition 1. Although an optimal delay

mechanism would drive down the degree of conflict from γ1 to γT ≤ γ∗, so that the

Pareto efficient decision becomes achievable at the final round, it is generally too costly

to use delay to drive γT to a level too much below what is needed to achieve efficiency.

Specifically, if γT is strictly below γ∗ then the payoff can be improved by ending the game

“earlier,” that is, by reducing the total delay. Thus, in an optimal mechanism the deadline

belief of the uninformed player is efficient, in the sense that it is the highest possible belief

that would ensure the Pareto efficient decision is made with probability one.

The proof of the proposition below makes the assumption that γ1 > g−1(γ∗). This is

equivalent to r∗(γ1) ≥ 2, so that there must be at least two active rounds for the dead-

line belief to reach a level strictly below γ∗. This assumption is necessary because our

localized variation method relies on keeping unchanged the continuation payoff at the

next-to-last active round. If there is no such round, this method does not apply.10

Proposition 2. Suppose r∗(γ1) ≥ 2. Then in an optimal mechanism, γT = γ∗.

We outline the localized variation argument used to establish Proposition 2; details

of the calculations are given in the Appendix. Suppose by way of contradiction that

γT < γ∗. Consider the belief at the last active round t(r). There are two possibilities:

(i) γt(r) ≤ γ∗; or (ii) γt(r) > γ∗.

In case (i), we show that the ex ante payoff can be improved by letting the game end

with deadline belief γt(r) instead of γT, through the following modification to the original

mechanism:

1. Change σt(r) in such a way to make the uninformed just indifferent between persist-

ing and conceding at x̃t(r) = 1. This is achieved by setting σ̃t(r) = λγt(r).

2. Change σt(r−1) in such a way to keep the continuation payoff for the uninformed at

round t(r − 1) fixed. This is achieved by setting σ̃t(r−1) = σt(r−1) − λγt(r)(1 − xt(r)).

In case (ii), we modify the original mechanism so that the game ends with deadline belief

10When r∗(γ1) = 1 the optimal delay mechanism is given by case (a) or (b) of the Main Result. In case
(b), we have γT < γ∗ under an optimal delay mechanism. But even in this case, γT cannot be below g(γ∗).
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γ∗ instead of γT. The approach is to choose x̃t(r) such that the posterior belief satisfies

γt(r) x̃t(r)

γt(r) x̃t(r) + 1 − γt(r)
= γ∗,

and calculate the requisite effective delay needed to achieve this, while maintaining the

continuation payoff for the uninformed at round t(r − 1) constant.

Because the continuation value at round t(r − 1) is kept constant, the equilibrium play

up to and including round t(r − 1) remains part of equilibrium in the modified mecha-

nism. Therefore U1(γ1) is unchanged. However, since γT < γ∗, persistence is not a best

response for the uninformed player at round T. This means we cannot use the Linkage

Lemma. Instead, we calculate the payoff to the informed player at round t(r − 1), and

show that Ṽt(r−1) > Vt(r−1) in both cases (i) and (ii). By the recursion,

Vt(γt) = xt [−δt + Vt+1(γt+1)] + 1 − xt,

and by the fact that the sequence {γt, xt, Ut}t(r−1)
t=1 remains part of equilibrium after the

modification, we conclude that Ṽ1(γ1) > V1(γ1). So the original mechanism cannot be

optimal.

In addition to its inherent interest, Proposition 2 is useful because it is a best response

to persist throughout the game if γT = γ∗. This means that in our analysis of optimal

mechanism, we can apply the Linkage Lemma to facilitate comparison of payoff to the

informed whenever r∗(γ1) ≥ 2.

4.3. Stop-and-start

In this subsection, we provide a series of lemmas that characterize the presence or absence

of slack in an optimal mechanism, leading to the main characterization result of Proposi-

tion 3. Throughout this series of lemmas, we maintain the assumption that r∗(γ1) ≥ 2, or

equivalently, γ1 > g−1(γ∗). The key result is the following lemma.

Lemma 3. A mechanism with slack in both round t(i) and round t(i + 1) (i = 2, . . . , r − 1) is

not optimal.

The localized variation argument leading to Lemma 3 is slightly more involved than

before, because we have to make sure not only that the equilibrium play prior to round

t(i) remains unchanged, but also that the equilibrium play subsequent to round t(i + 1)

is unchanged as well. We consider the following modifications to a mechanism for which
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there is slack in both round t(i) and round t(i + 1):

1. Marginally change xt(i) by changing σt(i).

2. Change xt(i+1) in such a way that xt(i)xt(i+1) remains fixed. This is achieved by

changing σt(i+1).

3. Change σt(i−1) in such a way to keep −σt(i−1) + Ut(i)(γt(i)) constant.

As before, step 3 of this construction ensures that the equilibrium sequence {γt, xt, Ut}
from round 1 to round t(i − 1) is unchanged, which also implies that γt(i) is unchanged.

Step 1 changes xt(i), which changes γt(i+1). But since step 2 also adjusts xt(i+1) in such

a way to keep xt(i)xt(i+1) constant, this means that the posterior belief γt(i+2) under the

modified mechanism is unchanged by the construction. As a result, the original equilib-

rium sequence {γt, xt, Ut} from round t(i + 2) to the deadline round T is also unchanged.

By appealing to the Linkage Lemma, we only need to calculate the total delay between

round t(i − 1) and round t(i + 2) in order to evaluate the effect of this modification on the

ex ante payoff.

One can think of this localized variation exercise as choosing γt(i+1) to maximize the

total delay, while holding γt(i) and γt(i+2) (and the continuation payoff at round t(i − 1))

fixed. From the Maximal Concession Lemma, the feasible set for the choice of γt(i+1) is

[

max
{

γt(i+2), g(γt(i))
}

, min
{

γt(i), g−1(γt(i+2))
}]

.

In the proof of Lemma 3, we show that the total delay is a convex function of γt(i+1).

When there is slack in both round t(i) and round t(i + 1), γt(i+1) is in the interior of the

feasible set. So the mechanism cannot be optimal.

Since there cannot be slack in both round t(i) and t(i + 1), the total delay as a function

of γt(i+1) in the problem considered above is maximized either at γt(i+1) = g−1(γt(i+2))

(no slack at round t(i + 1)) or at γt(i+1) = g(γt(i)) (no slack at round t(i)). It turns out

that these two choices of γt(i+1) entail the same total delay; therefore they are payoff-

equivalent.

Lemma 4. Holding γt(i) and γt(i+2) fixed, a mechanism with slack at round t(i) but no slack at

round t(i + 1) is payoff-equivalent to a mechanism with no slack at round t(i) but slack at round

t(i + 1).

The next result shows that it is optimal to induce maximal concession by the informed

player in the first round.

Lemma 5. In an optimal mechanism, there is no slack in the first round.
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In the proof of this result, we assume that there is slack in the first round and consider

the following modification to the original mechanism:

1. Marginally lower x1 by raising σ1.

2. Raise xt(2) in such a way that x1xt(2) remains fixed. This is achieved by lowering

σt(2).

Step 2 ensures that the equilibrium play from round t(2) + 1 onward is not affected by

the modification. However because we are changing x1, there is no prior round before

round 1 to adjust for the resulting change in U1(γ1). Instead we calculate the change in

U1(γ1) and V1(γ1) directly and show that both changes are positive.

The following proposition summarizes the results from our series of lemmas.

Proposition 3. Suppose r∗(γ1) ≥ 2. In an optimal mechanism, there can be at most one round

with slack. If there is a round with slack, it cannot be the first round.

Proof. Let t(j) be the earliest round with slack and t(j′) be the latest round with slack. By

Lemma 3, the mechanism cannot be optimal if j′ = j + 1. Since there is slack in round t(j)

and no slack in round t(j + 1), by Lemma 4, we can construct a mechanism for which the

earliest round with slack is t(j + 1) and the latest round with slack is t(j′), and which is

payoff-equivalent to the original mechanism. If j′ = j + 2, these two rounds with slacks

will be adjacent and therefore the mechanism cannot be optimal by Lemma 3. If j′ > j+ 2,

we proceed iteratively to a mechanism for which the earliest round with slack is t(j + 2)

and the latest round with slack is t(j′), and which is payoff-equivalent to the original

mechanism. Since the number of rounds is finite, this construction eventually produces

a mechanism with two adjacent rounds with slack, which by Lemma 3 contradicts the

assumption that it is optimal. So an optimal mechanism can have at most one round with

slack. Furthermore, by Lemma 5, this round (if it exists) cannot be the first round.

Proposition 3 establishes that all (but possibly one) active rounds in an optimal mech-

anism are without slack. By the Maximal Concession Lemma, this means that the unin-

formed players adopt the largest feasible probabilities of conceding in these active rounds.

Moreover, since Ut(i)+1(γt(i)+1) = 1 − 2γt(i)+1λ when there is no slack in round t(i), this

also means that the uninformed players are making no concession (i.e., xt(i)+1 = 1) right

after the round when they have made the maximal concession. In other words, an ac-

tive round must be followed by an inactive round. After that, in the next active round

t(i + 1), they will make the maximal concession again provided there is no slack in round

t(i + 1). In this sense equilibrium play exhibits a stop-and-start pattern, alternating be-
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tween maximal concession and no concession, until the deadline play kicks in after round

t(r), when they make no concession from round t(r) + 1 through round T − 1, followed

by full concession (i.e., xT = 0) at the deadline.

4.4. Optimal delay mechanism

For the time being assume that γ1 is such that r∗(γ1) ≥ 2. When there is no slack in some

round t(i), the belief evolves according to γt(i+1) = g(γt(i)). Recall from our discussion of

the Maximal Concession Lemma that the greatest extent of belief updating feasible occurs

when there is no slack in an active round. Such belief evolution is determined by equation

(9); hence it takes at least r∗(γ1) active rounds for belief to reach from γ1 to γ∗. Since the

initial belief γ1 is given and the end belief γT must be γ∗ (Proposition 2), the fact that

there can be at most one round with slack (Proposition 3) implies that there are exactly

r∗(γ1) active rounds in an optimal mechanism.

Recall also that the “residue” η defined in (4) satisfies 1 < η ≤ (λ + ∆)/λ. There are

two cases to consider; the first case turns out be a special case of the second. In the first

case, η = (λ + ∆)/λ. The belief reaches from γ1 to γ∗ with r∗ rounds of randomization,

with no slack in any of the r∗ rounds. In the second case, η < (λ + ∆)/λ. To satisfy the

restriction imposed by Proposition 3, there must be r∗ − 1 rounds of randomization with

no slack, and one round of randomization with slack. By Lemma 4, which round is given

the slack is payoff-irrelevant; let us assume that the round with slack is r∗, the last active

round before the deadline.11

For each i = 1, . . . , r∗ − 2, we have δt(i) = ∆. The equilibrium belief evolves according

to γt(i+1) = g(γt(i)) and the equilibrium probability of persisting is xt(i) = χ(γt(i)). The

condition that there is no slack at round t(i) requires:

Ut(i)+1(γt(i)+1) = 1 − γt(i+1)λ − γt(i+1)χ(γt(i+1))λ −
t(i+1)−1

∑
t=t(i)+1

δt = 1 − 2γt(i+1)λ,

which gives
t(i+1)−1

∑
t=t(i)+1

δt =
λ∆

λ + ∆
.

Note that the total delay between successive active rounds is constant across i. How

11Although it is optimal to choose any round t(j), j ∈ {2, . . . , r∗}, to have slack, the choice of j = r∗ is
special because such a mechanism would be “time-consistent.” If j 6= r∗, when the game reaches round
t(j), the mechanism would no longer be optimal because it violates Lemma 5.
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this sum is distributed across the intervening rounds is immaterial. However, since the

sum is less than ∆, the optimal mechanism can be implemented with just one intervening

inactive round between any two successive active rounds. This corresponds to the first

line of the delay mechanism described in case (c) of our Main Result.

For round t(r∗ − 1), no slack implies that δt(r∗−1) = ∆. Further, the equilibrium belief

evolves according to γt(r∗) = g(γt(r∗−1)) and the equilibrium probability of persisting is

xt(r∗−1) = χ(γt(r∗−1)). The condition that there is no slack at round t(r∗ − 1) requires:

1 − γt(r∗)λ − γt(r∗)xt(r∗)λ −
t(r∗)−1

∑
t=t(r∗−1)+1

δt = 1 − 2γt(r∗)λ. (10)

To solve this equation, note that xt(r∗) must be such that the posterior belief after round

t(r∗) is equal to γ∗. Using this and the fact that (1 − γ∗)/(1 − γt(r∗)) = η, we obtain:

xt(r∗) =
1 − (1 − γt(r∗))η

γt(r∗)η
. (11)

Given the above expression, solving (10) gives:

t(r∗)−1

∑
t=t(r∗−1)+1

δt =
λ(η − 1)

η
.

Since η ≤ (λ + ∆)/λ, the above is less than or equal to λ∆/(λ + ∆). So the optimal

mechanism can be implemented with just one intervening inactive round between t(r∗ −
1) and t(r∗). This corresponds to the second line of the mechanism described in case (c)

of our Main Result.

At round t(r∗), there may or may not be slack depending on whether η is equal to its

upper bound or not. The equilibrium probability of persisting xt(r∗) is given by equation

(11) above, and by construction the posterior belief upon a regular disagreement would

become γ∗. To find the effective delay that would implement these features, we use the

fact that UT(γT) = 1 − λγ∗ and the indifference condition at round t(r∗) to obtain:

T−1

∑
t=t(r∗)

δt =
γt(r∗)(1 − γ∗)λ

1 − γt(r∗)
= λ(η − 1 + γ∗).

Although how the above effective delay is distributed is payoff-irrelevant, we can always
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choose δt(r∗) = λ(η − 1) ≤ ∆ and

T−1

∑
t=t(r∗)+1

δt = γ∗λ.

When η = (λ + ∆)/λ so that there is no slack in round t(r∗), the above distribution is

the only optimal way. The rounds t(r∗) + 1 through T − 1 constitute the deadline play

in an optimal delay mechanism.12 This corresponds to the third line of the mechanism

described in case (c) of our Main Result.

Finally, at the last round T, since the belief is γT = γ∗, choosing δT = ∆ would induce

the uninformed to play xT = 0, which always ends the game with the Pareto efficient

decision. This corresponds to the last line of the mechanism described in case (c) of our

Main Result.

Summing over all rounds, the total delay is

T

∑
t=1

δt = (r∗ − 2)

(

∆ +
λ∆

λ + ∆

)

+

(

∆ +
λ(η − 1)

η

)

+ λ(η − 1 + γ∗) + ∆. (12)

In an optimal mechanism, the payoff to the uninformed is given by

U1(γ1) = 1 − 2γ1λ +
λ∆

λ + ∆
. (13)

The payoff to the informed player V1(γ1) can be obtained using equation (8).

The above analysis completes the derivation of the optimal delay mechanism assum-

ing that r∗(γ1) ≥ 2 and that the ex ante payoff W1(γ1) is greater than the coin flip payoff

1 − λ. The next lemma deals with the case of small γ1, which corresponds to case (b) of

our Main Result.

Lemma 6. Suppose r∗(γ1) = 1. If T ≥ 2 in an optimal delay mechanism, then round 1 is the

only active round before the final round T and there is no slack in round 1.

Proof. First, suppose the mechanism induces two or more active rounds prior to the final

round. Then logic of the proof of Proposition 2 still applies. This means that we can

assume without loss of generality that the deadline belief is γ∗ if there are two or more

rounds of randomization. Note further that for such a mechanism, the logic of the proof

12The effective delay can be larger than the bound ∆. In this case, the uninformed player persists for more
than one round in the deadline play.
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of Proposition 3 remains valid. This means that there is no slack in all except one of

these active rounds, which contradicts the assumption that r∗(γ1) = 1. Therefore when

we deal with an optimal mechanism for the case γ1 ≤ g−1(γ∗), we can without loss of

generality restrict attention to mechanisms that involve only one active round prior to the

final round.

Suppose x1 for such a mechanism induces a deadline belief γT ≤ γ∗. From the in-

difference condition for the uninformed, the effective delay σ1 associated with such a

mechanism satisfies x1σ1 = λγT. Now, consider the payoff to the uninformed. Since

U1(γ1) = 1 − λγ1 − λγ1x1, his payoff is maximized when x1 is minimized. The payoff to

the informed is V1(γ1) = 1− x1σ1 = 1− λγT, which is maximized when x1 is minimized.

By the Maximal Concession Lemma, x1 is minimized at x1 = χ(γ1), with associated pos-

terior deadline belief γT = g(γ1). An optimal sequence of delays that can implement this

outcome is given by δ1 = ∆,

T−1

∑
t=2

δt = g(γ1)λ = γ1λ − (1 − γ1)∆.

At the final round, choosing δT = ∆ induces xT = 0.

To complete the derivation of optimal delay mechanisms given in the Main Result,

we compute the ex ante payoffs for the dynamic delay mechanisms (cases (b) and (c))

and compare them with the payoffs from a coin flip (case (d)) and from the one-round

delay mechanism with maximum delay (case (a)). The calculations are relegated to the

Appendix.

Proposition 4. There exist γ and γ, with γ∗ < γ < γ < 1, r∗(γ) = 1, and r∗(γ) ≥ 2 if

and only if ∆ < (
√

2 − 1)λ, such that the one-round delay mechanism with maximum delay is

optimal if and only if γ1 ≤ γ, and flipping a coin is optimal if and only if γ1 ≥ γ.

4.5. Finite delay

So far we have restricted our analysis to finite delay mechanisms, with a deadline round

T. In this subsection, we allow for infinite delay mechanisms, that is, any infinite sequence

{δt}∞
t=1. Assuming that the payoff from never implementing either alternative is worse

than the payoff from implementing any alternative, we show that any infinite delay mech-

anism is effectively finite. That is, there exists an N such that the induced game ends with

probability one before round N in any equilibrium.

Lemma 7. Any infinite delay mechanism is effectively finite.
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Lemma 7 follows from a series of claims. First, we show that in any equilibrium that

induces a distribution of end times with unbounded support, the informed is persisting

with probability one at all times. This is done by showing that at any time when it is

optimal for the uniformed to persist it is uniquely optimal for the informed to do the same.

This property implies that in any such equilibrium, the belief γt of the uninformed player

is eventually decreasing and hence will converge. The conclusion that the mechanism is

effectively finite follows from demonstrating that γt must converge to zero, which makes

it optimal eventually for the uninformed to concede with probability one.

By Lemma 7, we can restrict to finite mechanisms and infinite mechanisms that are

effectively finite. In either case we can apply backward induction to show that Vt ≥ Ut

for all t in any equilibrium, which leads to the following result.

Proposition 5. In any delay mechanism, the informed player persists with probability one in any

equilibrium.

The above proposition holds for any delay mechanism and any equilibrium. The proof

in the appendix makes it clear that the argument does not invoke properties that rely

on optimality of the delay mechanism under consideration. This in turn validates our

approach in this section of restricting to symmetric perfect Bayesian equilibrium in which

the informed player always persists under finite delay mechanisms.

5. Discussion

5.1. Continuous-delay limit

We have seen in Section 2.1 that in the absence of costly delay, there is no incentive com-

patible mechanism that Pareto dominates a coin flip in our committee model. That is, if

the uniform upper bound ∆ on delay is identically zero, flipping a coin is the only sym-

metric incentive compatible outcome. From the continuous-delay model of Damiano, Li

and Suen (2012), we already know that the set of incentive compatible outcomes is dis-

continuous at ∆ = 0. In this subsection, we derive the limit of optimal delay mechanisms

characterized in the present paper as ∆ converges to zero, and show that it coincides with

the optimal deadline in the continuous-delay model of Damiano, Li and Suen (2012) (after

adjusting for the differences in the payoff structure in the latter model).

As ∆ goes to 0, from (13) we have

lim
∆→0

U1(γ1) = 1 − 2λγ1.
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The total number of rounds of course goes to infinity, but we have

lim
∆→0

(

1 +
∆

λ

)r∗
= lim

∆→0

1 − γ∗
1 − γ1

,

which implies

lim
∆→0

r∗∆ = −λ log(2(1 − γ1)).

Furthermore, since (λ + ∆)/λ ≥ η ≥ 1, η goes to 1 as ∆ goes to 0. Therefore, the limit of

the total delay (12) is

lim
∆→0

T

∑
t=1

δt = −λ log(2(1 − γ1)) +
λ

2
.

Using equation (8) for the relationship between U1(γ1) and V1(γ1), we obtain:

lim
∆→0

V1(γ1) = 1 − 2λ − 2λ
1 − γ1

γ1

(

3

4
− log(2(1 − γ1))

)

.

For the optimal deadline mechanism we consider in Damiano, Li and Suen (2012), the

value function V∗(γ) satisfies the differential equation:

dV∗(γ)
dγ

= −1 − 2λγ − V∗(γ)
γ(1 − γ)

.

Furthermore, the optimal deadline mechanism entails the boundary condition V∗(1/2) =

1 − λ/2. Solving this differential equation gives V∗(γ) = lim∆→0 V1(γ).

5.2. General payoff structures

The committee model of Damiano, Li and Suen (2012) has the same information structure

as the present model, but with a slightly different payoff structure that in some sense is

more general. The following table illustrates a general payoff structure that incorporates

both models as special cases.

L M R

l (ν + β, ν) (ν + β, ν) (ν + β, ν)

r (ν, ν + β) (ν, ν + β) (ν, ν + β)

In the above table, ν is the common value component of each player’s payoff when the

correct decision is made in a common interest state, i.e., l is chosen in state L or r is chosen

in state R. Likewise, ν < ν is the common value component when the wrong decision is
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made in a common interest state or when either alternative is chosen in the conflict state

M. The non-negative private value component in each player’s payoff is only obtained

by the player whose ex ante favorite alternative is chosen, and it depends on the state and

on the alternative chosen: β is obtained in the conflict state M, and β and β in the common

interest states with the former corresponding to the correct alternative and the latter the

wrong one. In the present committee model we have β = β = 0 and β = ν − ν (with

ν = 1 and ν = 1 − 2λ), while in Damiano, Li and Suen (2012) we have β = β = β > 0.

By allowing the private value components β, β and β to take on different values, we

can use the above general payoff structure to capture a variety of mixtures with common

values and private values. Of course, for L and R to be common interest states, we need

β < ν − ν. This assumption also ensures that in delay mechanisms the informed player

always persists in equilibrium.

A full characterization of optimal delay mechanisms under the general payoff struc-

ture is cumbersome because the Linkage Lemma no longer holds. Unlike in the present

payoff structure, the informed player gets ν + β when the uninformed opponent con-

cedes, which is different from the payoff of ν + β that the uninformed player gets. Fur-

thermore, the coin-flip payoff for the informed player, (ν + ν + β)/2, is different from the

coin-flip payoff of for the uninformed player, which is ν + β/2 in the conflict state and

(ν + ν + β)/2 in the corresponding common interest state. As a result, maximizing the

total delay while keeping the payoff to the uninformed player unchanged and maintain-

ing his willingness to persist through the game is not the same as maximizing the payoff

to the informed player.

Despite the failure of the Linkage Lemma, the qualitative features of optimal delay

mechanisms established in the Main Result (finite delay, efficient deadline belief and stop-

and-start) are all robust with respect to the payoff structure. The critical feature of the

model turns out to be the information structure, not the payoff structure. The dichotomy

between the equilibrium analysis of the uninformed player and the welfare analysis of

the informed player, repeated exploited in our localized variational approach, is possi-

ble because the informed player knows the state and in any equilibrium under a delay

mechanism always persists with probability one. To illustrate this point, we briefly ex-

plain how to establish Lemma 3 under the general payoff structure, which is the key to

the stop-and-start feature of optimal delay mechanisms.

To show that a mechanism with slack in two consecutive rounds t(i) and t(i + 1) is

suboptimal, we use the same localized variation exercise of changing σt(i−1), σt(i) and

σt(i+1) to keep γt(i) and γt(i+2) unchanged. The expressions for σt(i−1), σt(i) and σt(i+1)
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involving the free variable γt(i+1) are the same as the ones in the proof of Lemma 3 in the

appendix, except that λ is replaced with β/2. Since the sequence {γt, xt, Ut} is unaffected

in the variation for t ≥ t(i + 2), so is Vt(i+2). We can then write Vt(i−1) forward as a

function of the single variable γt(i+1). The only non-linear term that depends on γt(i+1)

involves 1/(1 − γt(i+1)), and has a positive coefficient. Thus, the expected payoff of the

informed player, Vt(i−1), is a convex function of γt(i+1). As in the current proof of Lemma

3, since there is slack in both round t(i) and round t(i + 1), γt(i+1) is in the interior of the

feasible set, which implies that the mechanism cannot be optimal.13

The reason that the coefficient of the term involving 1/(1 − γt(i+1)) is positive is that

an increase in γt(i+1) requires a decrease in σt(i−1) and an increase in σt(i+1) to keep re-

spectively γt(i) and γt(i+2) constant. The former change has a greater impact on Vt(i−1)

because the impact of the latter is “discounted” by the concessions made by the unin-

formed player during the intervening round of t(i).

5.3. General delay mechanisms

As a mechanism design exercise, the optimal delay problem analyzed in this paper has

the novel feature that the designer has limited commitment power. We have explained

in Section 2.2 that this feature is responsible in our model for making the design prob-

lem a dynamic one. It is well-known that with limited or no commitment, the standard

revelation principle no longer applies in the sense that there is no canonical class of mech-

anisms that the designer could restrict to without sacrificing implementation capacities.

In our problem, the only private information that the two players have is given at the

outset. Requiring them to report it to the designer once and for all would fail to exploit

the possibility of using dynamic delay mechanisms to mitigate the impact of limited com-

mitment power. The approach we take in this paper is to restrict to a class of mechanisms

or game forms that is natural in the setting of committee decision-making, and try to pro-

vide insights that are robust in problems of strategic information aggregation. The class

of mechanisms we consider is dynamic and has the interpretation that in each round a

direct revelation mechanism is played, in spite of the fact that the private information in

our model is persistent.

One implicit restriction in the delay mechanisms introduced in Section 2.2 is that the

direct revelation mechanism played in each round has no delay once the state is revealed

13Lemma 4 also hods. We still have the payoff-equivalence result for the same reason: it remains true
that (1 − g(γt(i))(1 − g−1(γt(i+2)) = (1 − γt(i))(1 − γt(i+2)) for properly redefined function g. This is due
to the fact that the terms in Vt(i−1) that are involved in the localized variation argument are independent of
the payoff structure for the informed.
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on the equilibrium path. This involves two assumptions. First, if one player concedes

while the other player persists, in equilibrium the state is revealed to be the common in-

terest state corresponding to the latter’s ex ante favorite alternative, which is immediately

implemented. Second, if both players concede, in equilibrium the state is revealed to be

the conflict state and the alternative is chosen without delay by a coin flip. A natural ques-

tion is whether these two assumptions are without loss of generality in that they follow

from the optimality of delay mechanisms. The answer turns out to be negative.

To illustrate, we reconsider one-round delay mechanisms, allowing for possible delay

(and inefficient decisions) even after the state is revealed on the equilibrium path. As in

Section 2.2, we assume that the initial belief of the uninformed player γ and the upper-

bound on delay ∆ satisfy γ > γ∗, so that the first-best outcome cannot be implemented.

The revelation principle applies in this setting. To simplify, we consider only symmetric

mechanisms, given by {(δA, qA), δR, δD}, where, after an agreement in which one player

concedes while the other persists, δA ≤ ∆ is the imposed delay, and qA is the probability of

implementing the agreed alternative (and 1 − qA is the probability of implementing the

other alternative); after a reverse disagreement in which both players concede, δR ≤ ∆

is the imposed delay before a coin flip; and after a regular disagreement in which both

players persist, δD ≤ ∆ is the imposed delay before a coin flip. The truth-telling incentive

condition for the informed player is given by

V A ≡ −δA + qA + (1 − qA)(1 − 2λ) ≥ −δR + 1 − λ ≡ VR.

The truth-telling condition for the uninformed player is

γVR + (1 − γ)V A ≥ γV A + (1 − γ)(−δD + 1 − λ) ≡ γV A + (1 − γ)VD.

To maximize the ex ante payoff given by

1

2 − γ
(γVR + (1 − γ)V A) +

1 − γ

2 − γ
V A,

we need to the choose to the minimum value of VD, which is 1−λ−∆, by setting δD = ∆.

This is the same outcome of maximum delay after a regular disagreement that we have as-

sumed in the one-round delay mechanisms introduced in Section 2.2. Furthermore, either

V A or VR, or both, must attain their respective maximum value, for otherwise increasing

both of them by the same amount would raise the ex ante payoff without violating the

two incentive conditions. The maximum value of V A is 1, by setting δA = 0 and qA = 1;
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and the maximum value of VR is 1 − λ, by setting δR = 0. However, if V A = 1 then from

the two incentive conditions it is optimal to have VR = 1− λ, which violates the incentive

condition for the uninformed because γ > γ∗. The optimal one-round delay mechanism

instead has VR = 1 − λ, and V A binds the incentive condition of the uninformed player

and is given by

V A = 1 − λ +
1 − γ

2γ − 1
∆,

which is strictly less than 1 because γ > γ∗. Thus, the one-round delay mechanism with

maximum delay considered in Section 2.2 is not optimal, because we have assumed that

there is no delay in implementing the agreed alternative after only one player concedes.

Intuitively, an appropriate delay after an agreement reduces the incentive for the unin-

formed player to act as if informed and helps information aggregation.14

We can enrich the delay mechanisms considered in the present paper by allowing pos-

sible delay, subject to the same limited commitment bound, after an agreement and after a

reverse disagreement in the direct revelation mechanism played in each round. Moreover,

the three sequences of delays can be potentially history-dependent. A complete charac-

terization of optimal delay mechanisms in such a general setting is beyond the scope of

this paper. We hope to return to it in future research.

14Indeed, the optimal general one-round delay mechanism characterized above gives a higher expected
payoff to the uninformed player as well as the informed than the one-round delay mechanism with maxi-
mum delay in Section 2.2, and unlike the latter, it Pareto dominates flipping a coin for all γ < 1. However,
as the one-round delay mechanism with maximum delay considered in Section 2.2, it converges to flip-
ping a coin as ∆ goes to zero, and is thus dominated by the continuous-delay limit of our optimal dynamic
mechanism given in Section 5.1.
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Appendix

Proof of Proposition 1. Suppose by way of contradiction that xT > 0 in an optimal mech-

anism. This implies

γT ≥ λ + δT

2λ + δT
>

1

2
.

Let t′ be the last round before T for which conceding is weakly preferred to persisting.

If there is slack in round t(r), then t′ = t(r); if there is no slack in round t(r), then t′ =

t(r)+ 1. Such t′ must exist because the delay mechanism would be wasting time in rounds

1 through T − 1 otherwise.

We first obtain some bounds for the total delay during the period of “deadline play.”

Claim 4.

T−1

∑
t=t′+1

δt < UT(γT)− (1 − 2γTλ);

δt′ +
T−1

∑
t=t′+1

δt ≥ UT(γT)− (1 − 2γt′λ).

At round t′, since persisting is not strictly preferred to conceding by the uninformed,

we have the indifference condition

1 − γt′λ − γt′xt′λ = (γt′xt′ + 1 − γt′)

(

−δt′ −
T−1

∑
t=t′+1

δt + UT(γT)

)

+ γt′(1 − xt′),

which can be rewritten as

γt′xt′

(

1 − λ + δt′ +
T−1

∑
t=t′+1

δt − UT(γT)

)

= (1 − γt′)

(

−δt′ −
T−1

∑
t=t′+1

δt + UT(γT)

)

− (1 − γt′) + γt′λ.

We note that 1 − λ + δt′ + ∑
T−1
t=t′+1 δt − UT(γT) > 0: otherwise, the right-hand-side of the

above is strictly positive because γt′ > γT > 1/2, which is a contradiction. Given that the

left-hand-side expression is positive, it must be increasing in xt′ . Evaluating the indiffer-

ence condition at xt′ ≤ 1 gives the second inequality of Claim 4. If t′ + 1 = T, ∑
T−1
t=t′+1 δt

is defined to be 0. The first inequality is obtained from the condition that uninformed

player strictly prefers persisting to condition at round t′ + 1 if t′ + 1 < T. If t′ + 1 = T,
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the first inequality is not required to hold. This proves the claim.

We will establish that when xT > 0, marginally reducing the equilibrium deadline be-

lief would improve the ex ante payoff. This can be achieved by the following modification

to the original mechanism:

1. Introduce two “extra rounds” s′ and s such that t′ < s′ < s < t′ + 1. Set δs′ = 0 and

set δs = UT(γT) − (1 − 2γTλ) − ∑
T−1
t=t′+1 δt ≡ ζ. Subtract the amount ζ from δt′ in

round t′.

2. Marginally raise δs from its original value of ζ in step 1, while at the same time

raising δs′ from its original value of 0 in such a way to keep −δs′ + Us(γs) fixed.

Step 1 of this construction is feasible because Claim 4 and the fact that γt′ ≥ γT imply

ζ ∈ [0, ∆) and δt′ − ζ > 0. Given this construction, the effective delay σt′ remains un-

changed at round t′. Moreover, the uninformed is just indifferent between persisting and

conceding with xs = 1 at round s. At round s′, since δs′ = 0, xs′ = 1 is consistent with

equilibrium. This step has no effect on the equilibrium play in all other rounds and it has

no effect on the ex ante payoff.

Step 2 of the construction attempts to marginally lower γT by reducing xs from its

original value of 1 to a value below 1. Since δs = ζ < ∆, there is slack at round s, so the

modification is feasible. The effect on the ex ante payoff depends on whether the value of

UT(γT) is changed by this step.

There are two cases to consider. In case (i), the uninformed player strictly prefers

persisting to conceding at round T under the original mechanism. In this case, marginally

changing δs would lower γT marginally but would leave xT = 1 under the modified

mechanism. The value of UT(γT) would be fixed at 1−λ− δT . Since xt′+1 = . . . = xT = 1,

the uninformed is indifferent between persisting and conceding at round s if

1 − γsλ − γsxsλ = (1 − γs + γsxs)

(

1 − λ − δs −
T

∑
t=t′+1

δt

)

+ γs(1 − xs).

For fixed γs, we can differentiate with respect to xs to obtain:

(1 − γs + γsxs)
dδs

dxs
= −γs

(

δs +
T

∑
t=t′+1

δt

)

.

Therefore dδs/dxs < 0. In other words, step 2 would require us to raise δs.

In case (ii), the uninformed player is indifferent between persisting and conceding at
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round T under the original mechanism. In this case, lowering γT would change the value

of UT(γT). The indifference condition at round s is:

1 − γsλ − γsxsλ = (1 − γs + γsxs)

(

UT(γT)− δs −
T−1

∑
t=t′+1

δt

)

+ γs(1 − xs),

where UT(γT) = 1 − λγT − λγTxT, and γT depends on xs through Bayes’ rule. Differen-

tiate with respect to xs to obtain:

(1 − γs + γsxs)
dδs

dxs
= γs

(

−1 + λ − δs −
T−1

∑
t=t′+1

δt + UT(γT)

)

+ (1 − γs + γsxs)
dUT(γT)

dγT

dγT

dxs
.

We have already established the claim that the first term on the right-hand-side is nega-

tive. Furthermore, dγT/dxs > 0 by Bayes’ rule, and

dUT(γT)

dγT
= −(1 + xT)λ − γT

dxT

dγT
λ < 0,

because the indifference condition at round T ensures that dxT/dγT > 0. Thus we again

have dδs/dxs < 0 in this case.

For both cases (i) and (ii), when xs falls, other things being equal, this would increased

Us(γs). Our construction in step 2 raises δs′ in such a way to keep the continuation value

−δs′ + Us(γs) constant. Since Us(γs) = 1 − γsλ − γsxsλ, the change in δs′ needed to keep

the continuation value constant is dδs′/dxs = −γsλ < 0. In other words, step 2 would

require us to raise δs′ .

In this construction, when we change xs = 1 in step 1 to x̃s = 1 − ǫ in step 2, the total

delay changes by

−(dδs′/dxs + dδs/dxs)ǫ > 0.

Moreover, since xT > 0 in step 1, we have x̃T > 0 in step 2 by choosing ǫ to be small.

Therefore, it is a best response for the uninformed player to persist throughout in the

modified mechanism. Finally, by construction, U1(γ1) remains unchanged by our local

variation method. Lemma 1 then implies that V1(γ1) is increased. The original mecha-

nism cannot be optimal.

Proof of Proposition 2. Suppose to the contrary that γT < γ∗. There are two cases: (i)
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γt(r) ≤ γ∗; or (ii) γt(r) > γ∗. Since r∗(γ1) ≥ 2, there exist another active round t(r − 1)

before round t(r).

Take case (i) first. We consider the following modification to the original mechanism:

1. Change σt(r) in such a way to make the uninformed just indifferent between persist-

ing and conceding at x̃t(r) = 1. This is achieved by setting σ̃t(r) = γt(r)λ.

2. Change σt(r−1) in such a way to keep the continuation payoff for the uninformed at

round t(r − 1) fixed. This is achieved by setting σ̃t(r−1) = σt(r−1) − γt(r)(1 − xt(r))λ.

With step 1, the new equilibrium belief after round t(r) is γ̃t(r)+1 = . . . = γ̃T =

γt(r). Note that the requisite delay σ̃t(r) can always be obtained by adding “extra rounds”

between t(r) and t(r) + 1 if necessary. Thus step 1 of the construction is feasible.

From the indifference condition at round t(r − 1) under the original mechanism,

σt(r−1) =
γt(r−1)λ

γt(r−1)xt(r−1) + 1 − γt(r−1)
− γt(r)xt(r)λ > γt(r)(1 − xt(r))λ.

Thus σ̃t(r−1) > 0, which means that step 2 is feasible.

Since the uninformed persists through rounds t(r − 1), . . . , T − 1 and concedes at

round T (because γ̃T = γt(r) < γ∗) in the equilibrium of the modified mechanism, the

payoff to the informed at round t(r − 1) is

Ṽt(r−1)(γt(r−1)) = 1 − xt(r−1)

(

σ̃t(r−1) + σ̃t(r)

)

.

His payoff under the original mechanism is

Vt(r−1)(γt(r−1)) = 1 − xt(r−1)

(

σt(r−1) + xt(r)σt(r)

)

.

Thus,

Ṽt(r−1)(γt(r−1))− Vt(r−1)(γt(r−1)) = xt(r−1)xt(r)

(

σt(r) − γt(r)λ
)

.

From the indifference condition for the uninformed player at round t(r) under the origi-

nal mechanism,

xt(r) =
γt(r)λ − (1 − γt(r))σt(r)

γt(r)σt(r)
.

Thus, xt(r) < 1 implies σt(r) > γt(r)λ. We conclude that Ṽt(r−1)(γt(r−1)) > Vt(r−1)(γt(r−1)).

Next, consider case (ii). Suppose we modify the mechanism so that the game ends

with deadline belief γ̃T instead of γT, where γ̃T ∈ [g(γt(r)), γ∗]. This is achieved by:
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1. Change σt(r) to induce equilibrium x̃t(r) that satisfies

γ̃T

1 − γ̃T
=

γt(r)

1 − γ̃t(r)
x̃t(r).

2. Change σt(r−1) in such a way to keep the continuation payoff for the uninformed

at round t(r − 1) fixed. This is achieved by setting σ̃t(r−1) = σt(r−1) − γt(r)(x̃t(r) −
xt(r))λ.

Using the fact that UT(γ̃T) = 1 − γ̃Tλ, the indifference condition at round t(r) gives

the requisite amount of effective delay in step 1 of the construction:

σ̃t(r) =
γt(r)λ

γt(r) x̃t(r) + 1 − γt(r)
.

Note also that this equation implies x̃t(r)σ̃t(r) = γ̃Tλ.

We have already shown in the analysis of case (i) that σt(r−1) > γt(r)(1 − xt(r))λ. This

implies that σ̃t(r−1) > 0 for case (ii) as well. Thus step 2 of our modification is feasible.

The change in payoff to the informed, Ṽt(r−1)(γt(r−1))− Vt(r−1)(γt(r−1)), is:

xt(r−1)

(

σt(r−1) + xt(r)σt(r)

)

− xt(r−1)

(

σ̃t(r−1) + x̃t(r)σ̃t(r)

)

= xt(r−1)

(

γt(r)(x̃t(r) − xt(r))λ + γTλ − γ̃Tλ
)

= xt(r−1) (h(γ̃T)− h(γT)) λ,

where

h(γ) ≡
γ(γ − γt(r))

1 − γ
.

Since h(γ̃T) is convex, it reaches a maximum when γ̃T is either γ∗ or g(γt(r)). Evaluating

the value of the function at these two points, we obtain:

h(γ∗)− h(g(γt(r))) = (γ∗ − g(γt(r)))
λ

λ + ∆
> 0.

Since h(γ̃T) reaches a maximum at γ∗ for any γ̃T in the interval [g(γt(r)), γ∗], and since γT

also belongs to that interval, we have h(γ∗) > h(γT). We conclude that Ṽt(r−1)(γt(r−1)) >

Vt(r−1)(γt(r−1)) when γ̃T is chosen to be equal to γ∗.

In both cases (i) and (ii), the modified mechanism does not change the uninformed

player’s strategy in rounds 1 through t(r − 1). Thus U1(γ1) is not affected by the mod-
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ification. But since Ṽt(r−1)(γt(r−1)) is increased, an induction argument back to round 1

shows that Ṽ1(γ1) is increased by the modification. The original mechanism cannot be

optimal.

Proof of Lemma 3. From the indifference condition at round t(i), we have

σt(i) =
γt(i)(1 − xt(i)xt(i+1))λ

1 − γt(i) + γt(i)xt(i)
.

We can use Bayes’ rule to express this in terms of the belief γt(i+1):

σt(i) =
(γt(i) − γt(i+2))(1 − γt(i+1))λ

(1 − γt(i))(1 − γt(i+2))
.

Likewise the indifference condition at round t(i + 1) is

σt(i+1) =
γt(i)xt(i)λ

1 − γt(i) + γt(i)xt(i)xt(i+1)
+

γt(i)xt(i)xt(i+1)λ

1 − γt(i) + γt(i)xt(i)xt(i+1)
+ Ut(i+2)(γt(i+2))− 1.

All the terms except the first one are constant for fixed γt(i) and γt(i+1). We can use Bayes’

rule again to transform the first term and obtain:

σt(i+1) =
γt(i+1)(1 − γt(i+2))λ

1 − γt(i+1)
+ constant.

Finally to maintain γt(i) fixed, we need to adjust σt(i−1) to make sure that the continuation

value Ut(i)(γt(i))− σt(i−1) is held constant. This implies that

σt(i−1) = −γt(i)xt(i)λ + constant = −
γt(i+1)(1 − γt(i))λ

1 − γt(i+1)
+ constant.

Summing up the three terms, we obtain

t(i+1)

∑
t=t(i−1)

σt =
λ(γt(i) − γt(i+2))

1 − γt(i+2)

(

1 − γt(i+1)

1 − γt(i)
+

1 − γt(i+2)

1 − γt(i+1)

)

+ constant.

This is a convex function of γt(i+1), so it attains a maximum at the boundaries of the

feasible set. If there is no slack in both round t(i) and round t(i + 1), then γt(i+1) is in the

interior of the feasible set. This mechanism cannot be optimal.
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Proof of Lemma 4. From the proof of Lemma 3, we can evaluate the total delay ∑
t(i+1)
t=t(i−1)

σt

at the point γt(i+1) = g−1(γt(i+2)) (i.e., no slack at round t(i + 1)) and the point γt(i+1) =

g(γt(i)) (i.e., no slack at round t(i)). They give exactly the same value of

t(i+1)

∑
t=t(i−1)

σt =
λ + ∆

λ
+

1 − γt(i+2)

1 − γt(i)

λ

λ + ∆
+ constant.

The two mechanisms are payoff-equivalent.

Proof of Lemma 5. Using the payoff from concession at round t(2) to write the payoff to

the uninformed player, the indifference condition at round 1 can be written as

γ1(1 − x1xt(2))λ = (1 − γ1 + γ1x1)σ1.

Given our construction, γ1 and x1xt(2) are both fixed. Therefore,

dσ1

dx1
= −

γ2
1(1 − x1xt(2))λ

(1 − γ1 + γ1x1)2
< 0.

This means that to lower x1 requires raising σ1. Since there is slack in round 1, raising σ1

is feasible.

Similarly, the indifference condition at round t(2) can be written as

γ1x1λ + γ1x1xt(2)λ = (1 − γ1 + γ1x1xt2)(σt(2) + 1 − Ut(2)(γt(2))).

In the above equation, the values of γ1, x1xt(2), and Ut(2)(γt(2)) are held constant. There-

fore,
dσt(2)

dx1
=

γ1λ

1 − γ1 + γ1x1xt(2)
> 0.

This means that to lower x1 requires lowering σt(2). Since σt(2) > 0 in the original mecha-

nism, this step is also feasible.

The effect of this modification on the payoff to the uninformed is

dU1(γ1)

dx1
= −γ1λ < 0.

Therefore, lowering x1 (while holding x1xt(2) constant) increases the payoff to the unin-

formed.
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Since γT = γ∗ in both the original and the modified mechanism, persisting throughout

the game is a best response to the equilibrium strategy of the uninformed. Therefore

equation (8) holds. The effect of a change in x1 (while holding x1xt(2) constant) on the

payoff of the informed can be calculated by:

dV1(γ1)

dx1
=

1

γ1

dU1(γ1)

dx1
+

1 − γ1

γ1

(

dσ1

dx1
+

dσt(2)

dx1

)

=
1 − γ1

γ1

dσ1

dx1
+ λ

(

−1 +
1 − γ1

1 − γ1 + γ1x1xt(2)

)

< 0.

Hence, both the informed and the uninformed can be made better off by the modified

mechanism if there is slack at round 1.

Proof of Proposition 4. Fix any γ1 ∈ (γ∗, (λ + ∆)/(2λ)). In the one-round delay mech-

anism with maximum delay, the probability that the uninformed player persists is given

by

x1 =
γ1λ − (1 − γ1)(λ + ∆)

γ1∆
,

which is strictly less than 1 because γ1 < (λ + ∆)/(2λ). The expected payoff is

U1 = 1 − γ1λ − γx1λ

for the uninformed, and

V1 = 1 − x1(λ + ∆)

for the informed. By (7), the difference between the ex ante payoff W1 and the coin-flip

payoff 1 − λ can be shown to have the same sign as

2γ1λ∆

1 − γ1
−
(

γ1λ

1 − γ1
+ (λ + ∆)

)(

γ1λ

1 − γ1
− (λ + ∆)

)

.

It is straightforward to verify that the above expression is positive at

γ1 = g−1(1/2) =
λ + 2∆

2(λ + ∆)
.

Further we can show that the above expression is decreasing in γ1 for all γ1 > γ∗. Thus,

the ex ante payoff W1 under the one-round delay mechanism with maximum delay is

strictly greater than the coin-flip payoff of 1 − λ for all γ1 ∈
(

γ∗, g−1(1/2)
)

.
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Next, fix any γ1 ∈ (γ∗, g−1(γ∗)). Note that g−1(γ∗) ∈
(

g−1(1/2), (λ + ∆)/(2λ)
)

.

First, we compare the ex ante payoff W1(γ1) under the mechanism derived in Lemma 6

with W1 under the one-round delay mechanism with maximum delay derived above. By

Lemma 6, the expected payoff is

U1(γ1) = 1 − γ1λ − γ1χ(γ1)λ

for the uninformed, and

V1(γ1) = 1 − g(γ1)λ

for the informed. By (7), the difference between W1(γ1) and W1 under the one-round

mechanism with maximum delay can be shown to have the same sign as

(λ + ∆)2

(

γ1λ

1 − γ1
− (λ + ∆)

)

− γ1λ

1 − γ1

(

(2λ + ∆) +
γ1λ

1 − γ1

)(

(λ + 2∆)− γ1λ

1 − γ1

)

.

The above expression is negative at γ1 = γ∗, positive at γ1 = g−1(1/2), and increasing in

γ1 for all γ1 > γ∗. It follows that there exists a unique γ ∈
(

γ∗, g−1(1/2)
)

such that the

one-round delay mechanism with maximum delay dominates the mechanism derived in

Lemma 6 if and only if γ1 < γ. Second, we compare the ex ante payoff W1(γ1) with the

coin-flip payoff of 1 − λ. The difference between W1(γ1) and 1 − λ can be shown to have

the same sign as

2λ(λ + ∆)(1 − γ1)− (λ + (1 − γ1)(λ + ∆))(γ1λ − (1 − γ1)∆).

The above expression is strictly increasing in γ1. Further, at γ1 = g−1(γ∗), we show below

that the difference W1(γ1)− (1 − λ) is positive if and only if ∆ < (
√

2 − 1)λ.

Finally, fix any γ1 ∈ (g−1(γ∗), 1). Using the expressions (13) for U1(γ1) and V1(γ1)

from (8), we obtain from (7) that

W1(γ1)− (1 − λ) =
1

γ1(2 − γ1)

(

(1 − γ1)
2

T

∑
t=1

δt − (2γ1 − 1)λ +
λ∆

λ + ∆

)

.

The derivative with respect to γ1 of the terms in the bracket on the right-hand-side of the

above equation is given by

(1 − γ1)
2 d

dγ1

(

T

∑
t=1

δt

)

− 2(1 − γ1)
T

∑
t=1

δt − 2λ.
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Using (12) and the definition of r∗ from (3), we have

d

dγ1

(

T

∑
t=1

δt

)

=
λ

η2

dη

dγ1
+ λ <

2 − γ1

1 − γ1
λ,

as η > 1. Thus, the difference W1(γ1)− (1 − λ) can cross zero only once and from above.

As γ1 approaches 1, we have W1(γ1)− (1 − λ) < 0. At γ1 = g−1(γ∗), using (12) we have

that

W1(g
−1(γ∗))− (1 − λ) =

λ2(λ2 − (2λ + ∆)∆)

(2λ + ∆)(3λ2 + 3λ∆ + ∆2)
,

which is positive if and only if ∆ < (
√

2 − 1)λ. The proposition follows immediately.

Proof of Lemma 7. Fix an infinite mechanism {δt}∞
t=1 and suppose that it is not effec-

tively finite. This is equivalent to assuming that there exists an equilibrium in which the

uninformed persists with strictly positive probability in every round (i.e., xt > 0 for all t).

First, we claim that there is no equilibrium in which the probability that the informed

persists in round t, yt, equals 0 for some t. To see this, note that in any such equilibrium

xt > 0. From the optimality of the uninformed persisting in round t we have that

1 − λ − λγtxt ≤ 1 − (1 − γt)2λ − γtxt(1 + δt − Ut+1),

where Ut+1 is the uninformed continuation equilibrium payoff. Because the informed

can always persist and then mimic the equilibrium behavior of the uninformed, from the

optimality of the informed conceding we have

1 − λ − λxt ≥ 1 − xt(1 + δt − Ut+1).

Combining the two inequalities, we have

xt(1 + δt − λ − Ut+1) ≥ 2λ,

which is not possible because by assumption δt ≤ ∆ < λ and Ut+1 is bounded from below

by 1 − 2λ.

Second, we claim that in any equilibrium in which both xt and yt are strictly positive

for all t, the equilibrium payoff Vt to the informed is at least as large as the equilibrium

payoff Ut to the uninformed for all t. To see this, note that by assumption both Ut and Vt

are equal to the expected payoff from the strategy of persisting at t and in each succeeding
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round. For the uninformed this gives

Ut = γt

(

1 − E

[

N−1

∑
s=t

δs

∣

∣

∣

∣

∣

{xs}s≥t

])

+ (1 − γt)

(

1 − 2λ − E

[

N−1

∑
s=t

δs

∣

∣

∣

∣

∣

{ys}s≥t

])

,

where N is the terminal round when the game ends, which has unbounded support, and

the expectation is taken with respect to the distribution of N when faced with an opponent

with a continuation strategy {xs}s≥t and {ys}s≥t respectively. Note that both expectations

exist by the assumption that ({xs}, {ys})s≥t is an equilibrium strategy profile. From the

strategy of the informed to persist in each round starting at t,

Vt = 1 − E

[

N−1

∑
s=t

δs

∣

∣

∣

∣

∣

{xs}s≥t

]

.

By conceding at time t the uninformed can always obtain a payoff at least as large as

1 − 2λ, so optimality of the equilibrium strategy requires that Ut ≥ 1 − 2λ. Since the

second term in the expression for Ut above is no larger than 1 − 2λ while the first term is

a fraction of Vt, we have Vt ≥ Ut.

Third, we claim that yt = 1 for all t. To prove the claim we show that whenever the

uninformed weakly prefers persisting to conceding, the informed strictly prefers persist-

ing. Let γt be the belief of the uninformed player. For the uninformed player to weakly

prefers persisting to conceding, we must have

γt [1 − xt + xt(−δt + Ut+1)] + (1 − γt) [(1 − yt)(1 − 2λ) + yt(−δt + Ut+1)]

≥ γt [(1 − xt)(1 − λ) + xt(1 − 2λ)] + (1 − γt) [(1 − yt)(1 − λ) + yt] .

Since

(1 − yt)(1 − 2λ) + yt(−δt + Ut+1) < (1 − yt)(1 − λ) + yt

for all yt, we have

1 − xt + xt(−δt + Ut+1) > (1 − xt)(1 − λ) + xt(1 − 2λ).

By the previous claim we know that Ut+1 ≤ Vt+1, hence

1 − xt + xt(−δt + Vt+1) > (1 − xt)(1 − λ) + xt(1 − 2λ),

implying that the informed player strictly prefers persisting to conceding in round t re-
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gardless of xt.

Finally, we claim that xt = 0 for some t, which establishes the lemma. By the second

claim above, there is τ such that yt = 1 for all t ≥ τ. The equilibrium belief γt of the

uninformed player decreases in t for t ≥ τ and is bounded from below by 0. Since the

delay mechanism is not effectively finite, γt converges and always persisting is optimal

for the uninformed at any t. If the limit of γt is strictly positive, from Bayes’ rule we have

limn→∞ ∏
τ+n
t=τ xt > 0, which implies that limn→∞ ∏

τ+n
t=τ′ xt can be made arbitrarily close

to 1 by taking τ′
> τ and sufficiently large. However, at τ′, always persisting results in

no alternative being implemented with probability close to 1 and yields a payoff to the

informed strictly lower that the payoff from implementing any alternative, contradicting

the equilibrium condition. If γt converges to zero instead, then for t large enough the

expected payoff to the uninformed from conceding is close to the first best payoff of 1

while the strategy of persisting from t onward leads to no alternative being implemented

with probability close to 1, again contradicting the equilibrium condition.

Proof of Proposition 5. Consider first a finite delay mechanism and an equilibrium that

ends with probability 1 in the deadline round T. In this case, we write the continuation

payoffs for the uninformed and the informed player after the last delay δT and before a

coin flip as UT+1 = VT+1 = 1 − λ.

Next, consider any finite delay mechanism that has an equilibrium ending with prob-

ability 1 in some round N before the deadline round T, or any infinite mechanism, which

by Lemma 7 can only have equilibria where the game ends with probability 1 in some

round N. Since the the game ends with probability 1 in round N, in any such equilib-

rium the uninformed player concedes, with xN = 0, and because the game does not end

with probability 1 before N, xt > 0 for each t < N. Given this, in such equilibrium the

informed player persists, with yN = 1. It follows that in this case the payoffs are

UN = 1 − γNλ ≤ VN = 1,

regardless of the belief γN of the uninformed player.

Now, suppose that Ut+1 ≤ Vt+1 for some t ≤ min{T, N}, we know from the proof of

Lemma 7 that if the uninformed player weakly prefers persisting to conceding in round t

then the informed player strictly prefers persisting to conceding. Since xt > 0 and yt = 1,
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the expected payoffs for the uninformed and informed player in round t are

Ut = γt(1 − xt + xt(−δt + Ut+1)) + (1 − γt)(−δt + Ut+1);

Vt = 1 − xt + xt(−δt + Vt+1).

It is straightforward to use the above expressions, and the assumption that Ut+1 ≤ Vt+1

to verify that Ut ≤ Vt. The proposition follows immediately from induction.
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