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“I had rather be the first in this village than second in Rome.”

—Attributed to Julius Caesar by Plutarch, Life of Caesar.

1. Introduction

Segregation and mixing typically coexist in the distribution of talents among organizations.

For example, productive economists are disproportionately represented in top research

departments but at the same time second-tier departments often have economists who are

more productive than some economists in a first-tier institution. A plausible explanation is

that economists who prefer to have great colleagues also recognize that the more productive

researchers within individual departments have greater access to departmental resources.

This paper builds on this idea and develops an equilibrium sorting model to explain the

pattern of talent distribution across organizations. The premise of our model is that

interactions among individuals in an organization typically involve both cooperation and

competition. In making mutually exclusive choices of which jobs to take, which schools to

attend, or which social clubs to join, economic agents are concerned with both the “peer

effect” and the “pecking order effect.”

The peer effect is well-documented in the education literature (e.g., Coleman et al.,

1966; Summers and Wolfe, 1977; Sacerdote 2001). Lazear (2001) has a model of educational

technology in which the peer effect arises because learning is reduced for all other students

when one student disrupts the class. More generally, the peer effect is seen as a consequence

of the complementarity between characteristics of agents in a match. Naturally, people

desire to join organizations with high-quality members if being in the company of high-

quality colleagues raises their own utility or productivity. But the motive to join the

company of high-quality peers can also be present without complementarity. For example,

potential employers’ imperfect information about individual student quality leads to their

use of the school average to improve on their estimate, as described in the statistical

discrimination literature (e.g., Aigner and Cain, 1977). High-quality peers can therefore

confer an informational externality on one another.

The pecking order effect is related to people’s concern for their relative status. It can

arise from the effects on self-esteem developed through interactions with other agents in
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an organization. The idea that an individual’s utility depends not only on the level of his

consumption, but also on how that level compares with that of his reference group, has a

long history in economics (e.g., Duesenberry, 1949; Frank, 1985; Solnick and Hemenway,

1998). In educational psychology, researchers speak of a “big fish–small pond” effect

(Marsh and Parker, 1984). A study of academically talented students in Israeli primary

schools finds that those who participate in special homogeneous classes for the gifted have

lower academic self-concept and greater test anxiety than do those who participate in

regular mixed-ability classes (Zeidner and Schleyer, 1998).1 The pecking order effect can

also arise when some resources within a group or an organization are allocated through

non-market means. Cole et al. (1992) describe a model in which the competition for mates

leads to a concern for relative ranking. As Postlewaite (1998) points out, such kind of non-

market allocation is ubiquitous. Resources within an organization such as corner offices or

decision making power in recruitment are often allocated according to the relative status of

the incumbents. Furthermore, people higher up in the pecking order have a greater chance

of success in internal promotion tournaments. In school choices, the pecking order effect

is present because grades are relative and depend on underlying ability of fellow students.

It is more important when grades have more serious implications, as demonstrated by the

so-called top-ten-percent law in the state of Texas, which guarantees that students who

finish in the top ten percent of their graduating class earn automatic admission to the

Texas public university of their choice.2

Even men as great as Julius Caesar at some point might not be able to have it both

ways. The rest of us are constantly reminded by the trade-off between the peer effect and

the pecking order effect. Because the groups or organizations we are trying to join have

limited capacities, individuals who are most desirable are expected to make any choice as

1 In a longitudinal study of secondary school students in Hong Kong, a city which has a highly
achievement-segregated school system, Marsh et al. (2000) find that school-average ability has a negative
effect on a student’s academic self-concept, and that lower academic self-concept in turn adversely affects
the student’s subsequent academic achievement as reflected in standardized test scores. These researchers
also find that higher perceived school status has a counterbalancing positive effect on self-concept. This
is consistent with the informational externality we discuss in connection with the peer effect.

2 For empirical evidence that the adoption of the top-ten-percent law in Texas influenced high school
students’ enrollment decisions, see Cullen, Long and Reback (2005). The relation of their empirical findings
to the theoretical results of the present paper is discussed in Section 5.1.
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they wish, while those who are least desirable have no real choice. It may thus appear that

the sorting choices can be determined sequentially, with the more desirable agents choosing

before the less desirable ones. But generally those ranked at the bottom of the first-tier

organization will want to switch to the top of the second-tier organization. Sorting choices

cannot be determined independently because for each agent both the peer effect and the

pecking order effect in an organization depend on the choices made by other agents.

This paper presents a model where agents with heterogeneous, one-dimensional type

face the trade-off between the peer effect and the pecking order effect in choosing between

two organizations of fixed sizes. We model the peer effect by assuming that individual

agents care about the average type in the organization they join, and we model the pecking

order effect through the concern for their ranking according to type within the organization.

While highly stylized, the model is meant to capture the essential features of sorting

of talents in the presence of the peer and pecking order effects. We define a “sorting

equilibrium” as an allocation of types among the organizations such that no agent whose

type is higher than the lowest type in the other organization wishes to move. Sorting

of agents is shown to result in an overlapping interval structure in the type space: the

set of types that end up in each organization is an interval, and both the highest type

and the lowest type are higher in the organization with a higher average type. Thus, in

equilibrium segregation occurs for the top and the bottom types while the intermediate

types mix between the two organizations. Further, the equilibrium overlapping-interval

pattern of segregation and mixing is locally stable.

In a transferable utility model, we interpret a rank in an organization as a relative

position and assume that complementarities exist between the agent type and the produc-

tivity of the relative position he holds in the organization. When agents bid competitively

for different relative positions in the organizations, the complementarities allow higher

type agents to outbid lower types for higher-ranked positions. The resulting competitive

equilibrium yields the same overlapping interval allocation of types in the two organiza-

tions and a positive assortative matching between types and relative positions within each

organization, as the stable sorting equilibrium without transfers. The transferable utility

model thus provides a foundation for the notion of sorting equilibrium without transfers,
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and a natural framework to evaluate the welfare properties of the sorting equilibrium. The

equilibrium allocation is inefficient; it does not maximize the aggregate utility because

agents fail to internalize the peer effect on other agents when moving across organizations

to take advantage of the pecking order effect. The result is an equilibrium allocation that

exhibits too little segregation. Under a linearity assumption on the form of complementar-

ities between the agent type and the concerns for relative position and average ability, we

show that maximizing aggregate utility requires sorting types into overlapping intervals as

in the sorting equilibrium or the competitive equilibrium, but with less overlapping.

In our model the degree of segregation, measured in terms of differences in average

ability across organizations, increases as the concern for relative ranking becomes less

important.3 In the context of school choice, this result suggests that a greater degree

of egalitarianism within schools can lead to greater segregation by ability across schools.

Similarly, for fixed salary structures in a sports league, a lower team salary cap reduces

the relative importance of the pecking order effect, and may result in a greater team

quality difference, which is counter-productive in restoring the competitive balance in the

league. Further, since the sorting equilibrium exhibits too little segregation compared to

the efficient allocation, egalitarian policies may increase the aggregate welfare. Our model

also sheds light on how organizational policies affect the sorting of talents. In a sorting

equilibrium with an overlapping interval structure, competition is most intense for agents

with intermediate ability, because they are mobile across organizations. This suggests that

a high-quality organization benefits from policies that cater more to its low-status members

than to its high-status members, while the low-quality organization benefits from policies

that cater more to its high-status members.

In the remainder of this section we review the existing literature that is most germane

to the present study. In Section 2, we present the setup where agents with identical trade-

off between average ability and relative ranking sort into two ex ante identical, equal-sized

organizations. Section 3 deals with the case of no transfers. We show that all equilibria take

3 While it is known that the peer effect alone leads to complete segregation of agents by type (Becker,
1973; Benabou, 1993; Kremer, 1993), in our model complete segregation occurs in equilibrium if the
pecking order effect is sufficiently weak, not necessarily absent.
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the form of overlapping intervals. We define stable equilibrium and show that a unique

stable equilibrium outcome exists for any trade-off between average ability and relative

ranking. In Section 4 we introduce transfers and demonstrate that the sorting equilibrium

we have identified can be implemented as a competitive equilibrium. Welfare analysis of

the equilibrium shows that there is too little segregation in equilibrium compared to the

efficient allocation. In Section 5, we offer comparative statics results regarding system-wide

and organization-specific factors that affect agents’ concern for relative ranking. We also

examine the effect on equilibrium sorting of uniform and idiosyncratic preference biases for

organizations due to attributes independent of the trade-off between average ability and

relative ranking. Section 6 concludes with a brief summary and a short discussion of some

limitations of the present paper.

1.1. Related literature

There is a rich literature on the impact of peer effect in education. Streaming students

by their ability has long been a controversial issue in education policy (e.g., Slavin 1987;

Gamoran et al., 1995). One controversy involves the conflict between efficiency and egali-

tarianism. Education researchers typically attribute the efficiency of ability streaming to

the fact that teachers can tailor their instruction to a more homogeneous group of stu-

dents (Lou et al., 2000). Economic theory suggests that positive assortative matching

maximizes the sum of outputs if the production function is supermodular (Becker 1973).

Lazear (1991) provides a micro-foundation for the existence of the peer effect in the class-

room, and discusses the implications of the peer effect for streaming, class size, and other

issues. Arnott and Rowse (1987) use a reduced-form education production function with

peer effects to derive the optimal allocation of students and educational expenditure across

classes. In the latter model, the extent of segregation by ability is limited by diminishing

returns to educational expenditure.

Peer effect also features extensively in the literature on locational choices. De Bar-

tolome (1990) develops a community choice model where families care about the provision

of a public service (schooling) in the community. Families have high or low ability chil-

dren. High ability children benefit more from expenditures on education (input effect)

and all children benefit from having more high ability children in the school (peer effect).
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Segregation occurs with only input effect or peer effect, and when both effects are present

mixed schools may obtain in equilibrium. The focus of that paper is on efficiency of school

financing. Fernandez and Rogerson (1996) study a similar model but without the peer

effect, and focus on welfare improving policies. They find that policies that increase the

fraction of relatively wealthy individuals in the poorest neighborhood make everybody bet-

ter off. Becker and Murphy (2000, chap. 5) discuss the implications of the peer effect for

residential segregation. They use a two-type model to illustrate how multiple equilibria,

tipping, and inefficiency may arise in a competitive land market when people prefer to

have “good” neighbors.

In comparison, pecking order effect has received less attention. Kremer and Maskin

(1996) study a one-sided matching model with a production function in which the more able

worker within a two-person firm gets to perform the more productive task.4 Garicano and

Rossi-Hansberg (2004) study how specialization and communication affect the equilibrium

allocation of knowledge workers. By making the allocation of job positions endogenous,

these two models capture some aspect of the pecking order effect. These models are par-

ticularly useful for analyzing earnings inequality, but they do not yield easily interpretable

results concerning the degree of segregation by ability across organizations. In our paper,

we use a reduced-form approach to study the pecking order effect, without committing to

any specific channel in which relative ranks matter—be it due to social psychological factors

such as self-esteem, to non-market means of distributing resources within organizations, or

to particular forms of production technologies. This approach allows us to develop a flex-

ible model that yields unambiguous results concerning the systematic differences between

high-quality and low-quality organizations.

The result of coexistence of segregation and mixing in the sorting of ability in the

present paper is derived in a many-to-one matching framework, where ability is one-

dimensional but enters the utility function of an agent through both the peer effect and

4 Legros and Newman (2002) consider more general models and derive conditions for pairwise matching
to be positive assortative. Hartwick and Kanemoto (1984) analyze the formation of a hierarchy of groups
where each agent’s utility from joining a group depends on a variable associated with the group and a
value associated with the agent’s rank within the group. There is no mixing in their equilibrium because
the variable associated with the group depends only on a boundary type.

– 6 –



the pecking order effect. Legros and Newman (2007) consider a pairwise matching model

with limited transferability, and derive necessary and sufficient conditions for positive as-

sortative matching of types. The many-to-one framework, in which each organization is

matched with a continuum of agents, distinguishes our paper from theirs. In our model,

with or without transfers, positive assortative matching between agent type and relative

ranking obtains within each organization, but it does not obtain across organizations in

the sense that there is mixing or overlapping of types instead of a complete segregation. In

another many-to-one framework, in which many students enroll in each school, Epple and

Romano (1998) derive a competitive equilibrium with some overlapping of student types

across schools.5 Unlike our paper, they assume that students differ by both their family

income and academic aptitude, so that the overlapping occurs in the sense that the best,

but poor, students in a school with a lower average student aptitude have higher aptitude

than the worst, but rich, students in a school with a higher average. In contrast, type is

one-dimensional in our model and mixing occurs in a stronger form, in that a proportion

of the same type agents join different organizations in trading off the peer effect against

the pecking order effect.

2. The Setup

There is a mass of 2 of agents to be allocated into two organizations, A and B. For simplic-

ity, suppose that the organizations have the same capacity of 1. Agents are characterized

by their one-dimensional type θ, also referred to as ability. The distribution of θ is given by

the distribution function F on the support [θ, θ], with the corresponding density function

f . We assume that f is continuous.

Preferences of agents over the two organizations depend on the average ability of agents

in that organization, and on their individual ranking of ability within that organization.

Although peer effects can work through many other channels—for example, agents may

prefer organizations with a less dispersed type distribution or those with a high average

5 Epple and Romano (1998) assume that the type of agents is observable. Damiano and Li (forth-
coming) consider a random pairwise matching model with one-dimensional types and characterize price
competition when type information is private.
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in the first quartile due to the benefits of role models—in this paper we focus only on

the simplest formulation of the peer effect through the average type of the organization.

At the same time, we represent the concern for the pecking order effect by assuming that

preferences of the agents are continuous in their ranking within an organization: this is

justified even if there is a discontinuous payoff from being at the top of an organization,

because any uncertainty regarding who will eventually end up at the top would render the

preferences continuous in the ex ante ranking of ability. Formally, for each i = A,B, let

mi be the average ability of agents in organization i, also referred to as the quality of i,

and let ri(θ) be the quantile rank of an agent of type θ in i. We assume that the utility

from joining organization i is given by

Vi(θ) = αri(θ) + mi, (1)

where α is a positive weight that agents put on ranking relative to quality in the organi-

zation. The payoff is zero if an agent does not join either organization.

Equation (1) embeds three assumptions about the individual utility function. First,

the concern for ranking and the concern for organization quality are additively separa-

ble; second, the marginal rate of substitution between relative rank and average ability is

type-independent; and third, the marginal rate of substitution is constant. These assump-

tions allow us to characterize equilibrium pattern of sorting in a convenient way. We will

comment on the role played by these assumptions in the analysis below.

Equation (1) is the simplest functional form that satisfies the property that all agents

face identical, constant trade-off between relative ranking and average ability. A more

general form that retains this property allows interactions between types and the concerns

for ranking and average ability, so that the utility function takes the multiplicatively

separable form,

Vi(θ) = l(θ) (αri + mi) , (2)

for some positive-valued, strictly increasing, and differentiable function l. When there are

no side transfers, equilibrium sorting is identical under equation (1) or (2); without loss

of generality we carry out the analysis under equation (1). When utility is transferable,

the form of l matters. By assuming that l is an increasing function, we are positing in (2)
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that there are complementarities between agent type and relative ranking, and between

type and average ability. In Section 4 we provide a more detailed discussion of equation

(2) and use it to characterize competitive and efficient allocations.

3. Sorting without Transfers

When transfers are not allowed, we can focus on the interaction in the individual utility

function between concerns for relative ranking and concerns for peer quality. Most of our

results in this section apply to a more general case than equation (1) in which relative rank

and average ability are not perfect substitutes. This case is represented by

Vi(θ) = v(ri(θ),mi), (3)

where v is increasing in both arguments and differentiable.

3.1. Overlapping intervals

A feasible allocation in this model is a pair (HA,HB) of cumulative type distributions

in organizations A and B such that HA(θ) + HB(θ) = F (θ) for all θ ∈ [θ, θ]. For each

i, j = A,B, i 6= j, when Hi(θ) is constant in a neighborhood of some type θ, types around

θ are all allocated to organization j only. If both HA and HB are strictly increasing in a

neighborhood of θ, then types around θ are split between A and B. Let Ti be the support

set of organization i, or the set of types that do not exclusively choose organization j,

defined as the closure of the set of types at which Hi is strictly increasing.

We assume that an agent can join organization i, either when the capacity of the

organization is not yet filled, or when the capacity is filled but the agent’s type is higher

than the lowest type of that organization. Given this assumption, a natural equilibrium

concept requires that at an equilibrium allocation no agent with the option of changing

organization should strictly prefer to do so. Since the payoff from not joining an organi-

zation is zero, the capacity of each organization will always be filled. For the following

definition, note that given a feasible allocation (HA,HB), the rank ri(θ) of type θ in each

organization i is well-defined, and is equal to Hi(θ).
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Definition 1. A sorting equilibrium is a feasible allocation (HA,HB) such that for each

i, j = A,B, i 6= j, if θ ∈ Ti and θ > inf Tj , then Vi(θ) ≥ Vj(θ).

Our equilibrium concept is a natural notion of pairwise stability in a two-sided, many-

to-one matching model with a continuum of agents on one side and two organizations on

the other side. The preference of the agents is defined by equation (1). Each organization

strictly prefers to add more agents of any type so long as the capacity constraint is not met,

and for sets of agents that meet the capacity constraints, it prefers one with a higher average

type to one with a lower average.6 Alternatively, Definition 1 corresponds to a subgame

perfect equilibrium outcome of the following extensive form game between the agents and

the two organizations. In the first stage of the game, all agents simultaneously choose to

apply to either A or B or both and pay a small cost per application; in the second stage,

after observing the pool of applicants each organization admits a subset of the pool of size

at most equal to its capacity. In this game, the payoff of a type θ agent is given by equation

(1) if admitted by organization i, and is zero if not admitted by either organization, minus

any application cost incurred. The payoff to each organization is the average type of the

admitted agents. It is straightforward to see that in any subgame perfect equilibrium

outcome all agents apply to and are admitted by one of the two organizations and each

organization has a size of 1. The condition in Definition 1 then corresponds to the no

deviation condition for type θ agent in a subgame perfect equilibrium.

Definition 1 is a simplification of reality. If agents have multi-dimensional attributes, it

is not straightforward to define higher types and lower types. For example, an organization

may hire workers who are less directly productive but who provide role models to improve

its human capital stock (Athey et al., 2000). Even when agents can be unambiguously

ranked on a single ability dimension, it is not always the case that incumbents in an

organization necessarily welcome newcomers who have high ability. Our model is more

6 For an excellent analysis of two-sided matching models with finite agents, see Roth and Sotomayor
(1990). Due to the payoff externalities introduced by the peer effect and the pecking order effect, the results
surveyed by Roth and Sotomayor do not apply to our model. Further, in the model with finite agents,
the payoff externalities cause difficulties in interpreting the notion of pairwise stability as an equilibrium
concept. Such difficulties disappear in our model with a continuum of agents, because a deviation by a
pair of an agent and an organization has a negligible impact on the payoffs of other agents.
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likely to apply when entry into an organization is controlled by an outside decision maker

who is primarily interested in maximizing the average ability of the organization. In Section

4 we allow side transfers and show that any equilibrium allocation according to Definition

1 can be supported as a competitive equilibrium where agents bid for positions of different

ranking in organizations. Now we introduce a particularly simple form of allocation.

Definition 2. A feasible allocation is of an overlapping interval form if there exist types

x, y, with x ≥ y, such that the two support sets are [y, θ] and [θ, x].

In an overlapping interval form, the support set Ti of each organization i is an interval.

There are two critical types x and y, with x ≥ y. All agents with type greater than x go to

one organization, say A. All agents with type lower than y go to the other organization.

Agents with type in the range [y, x] are present in both organizations. The following lemma

shows that all sorting equilibrium allocations take the form of overlapping intervals.

Lemma 1. Any sorting equilibrium allocation takes the overlapping interval form.

Proof. First we show that the support sets TA and TB are ordered in any sorting

equilibrium: if mA ≥ mB , then sup TA ≥ supTB and inf TA ≥ inf TB . Suppose sup TA <

sup TB . Then there is a type θ ∈ TB such that rB(θ) < 1 and rA(θ) = 1. Since mA ≥ mB ,

agents of type θ strictly prefer A. This is a contradiction since type θ has the option of

moving to A. A similar argument establishes that inf TA ≥ inf TB .

Next we show that in any sorting equilibrium the support set Ti of each organization

i, i = A,B, is an interval in the type space. Suppose not, and, without loss of generality,

suppose that TA is not an interval. Then there exist two types θ and θ̃, with θ < θ̃,

such that all types on the interval (θ, θ̃) choose organization B exclusively while types in

small neighborhoods below θ and above θ̃ are in the support set of organization A. Then,

HA(θ) = HA(θ̃) and HB(θ) < HB(θ̃). Since types θ and θ̃ have the option of switching

between A and B, both types must be indifferent between the two organizations, or

αrA(θ) + mA = αrB(θ) + mB ;

αrA(θ̃) + mA = αrB(θ̃) + mB .

The above two contradict each other (recall that ri(t) = Hi(t) in each i.) Q.E.D.
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Lemma 1 contains two results: the support sets of the two organizations are ordered,

and there are no gaps in the two support sets. The first result depends only on the

assumption that the individual utility function Vi(θ) increases with ri(θ) and mi. The

second result of no gaps in the support sets depends on the assumption that the marginal

rate of substitution between relative ranking and average ability is type-independent in

the individual utility function. However, even if relative ranking and average ability are

imperfect substitutes as in equation (3), the contradiction argument for the no-gap result

in the proof of Lemma 1 goes through. Thus, neither additive separability of the pecking

order effect and the peer effect nor the constancy of the marginal rate of substitution is

necessary for the result of overlapping intervals.7

While it has been recognized in the literature that positive complementarities lead

to assortative matching and negative complementarities tend to produce mixing, there

are few general results in the literature concerning the equilibrium allocation when both

elements are present. In principle, “mixing” can take a variety of forms and this can render

the analysis unwieldy.8 In our model, support sets contain no holes, and mixing takes the

special form of overlapping intervals, drastically simplifying the subsequent analysis.

3.2. Stable sorting equilibrium

Fix an overlapping interval allocation. Without loss of generality, we assume that TA =

[y, θ] and TB = [θ, x]. The restrictions on HA and HB imposed by the overlapping interval

form are: (i) HA(θ) = 0 and HB(θ) = F (θ) for θ ∈ [θ, y]; (ii) HA(θ) = F (θ) − 1 and

HB(θ) = 1 for θ ∈ [x, θ]; and (iii) HA(θ) and HB(θ) are strictly increasing for θ ∈ (y, x). See

7 When the marginal rate of substitution depends on the type, there may be gaps in the support sets.
For example, if the parameter α in equation (1) is replaced by a decreasing function of θ, so that higher
types are less concerned with the pecking order effect than lower types are, then the support set of the
higher quality organization may have gaps (the other support set continues to be an interval).

8 In Kremer and Maskin (1996), workers with one-dimensional, heterogeneous types form pairwise
matches to produce. There are two tasks, “manager” and “assistant,” in each matched pair, and the

output is θ2θ̃, where θ is the manager’s type and θ̃ is the assistant’s type. When types are distributed
uniformly over a relatively narrow range, total output is maximized by dividing the mass of workers
into two equal-size overlapping intervals of types that are managers and of types that are assistants, and
matching them positive assortatively. However, when the type distribution has a sufficiently large support,
the set of types that are managers and the set of types that are assistants are no longer intervals. This
feature makes the analysis of the extent of segregation in Kremer and Maskin (1996) quite intractable.
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Figure 1 for an illustration. Note that feasibility of the allocation implies that x ≥ θe ≥ y,

where θe denotes the median type in the population. There are two extreme cases of

overlapping interval allocations: if x = y = θe, we have a perfectly segregated allocation;

if x = θ and y = θ, and HA(θ) = HB(θ) = 1
2F (θ), we have a perfectly mixed allocation.

If x > y in an overlapping interval allocation, all agents of type θ ∈ [y, x] must be

indifferent between organization A and organization B. Recall that ri(θ) = Hi(θ) for each

i = A,B. The indifference conditions for the threshold types x and y are

α(2− F (x)) = mA −mB ;

αF (y) = mA −mB .
(4)

These two indifference conditions imply

2− F (x) = F (y). (5)

The above equation defines a one-to-one relation between y and x, with x = θ implying

y = θ, and x = θe implying y = θe. For all θ between y and x, a similar indifference

condition holds:

α(HB(θ)−HA(θ)) = mA −mB . (6)
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Thus, the difference in ranking for any type θ between A and B is constant on the interval

[y, x]. This implies that types between y and x are evenly split between A and B. Thus,

HA(θ) =





F (θ)− 1, if x < θ ≤ θ

1
2 (F (θ)− F (y)) , if y < θ ≤ x

0, if θ ≤ y

(7)

and HB(θ) = F (θ)−HA(θ).

With the above results, an overlapping interval allocation can be characterized by a

single variable. It is more convenient to define an equilibrium in terms of the difference in

average types, mA −mB . Denote z = mA −mB . To be consistent with our assumption

that TA = [y, θ] and TB = [θ, x], we have z ≥ 0. The largest possible value of z is µe − µ
e
,

where µe and µ
e

are the conditional mean above and below θe, respectively. Given any

z ∈ [0, µe−µ
e
], we use equations (4) to define the threshold types x and y. Note that since

x ≥ θe ≥ y, equations (4) cannot be satisfied if z > α (this occurs only if α < µe − µ
e
); in

this case we let x = y = θe, as all types prefer A to B but only types above θe have the

option of moving to A. Then, we can obtain mA as a function of z:

mA(z) =
∫ θ

θ

t dHA(t),

where HA(t) is given by equation (7). From the identity mA + mB = 2µ, where µ is the

unconditional mean of the type distribution F , we get a necessary and sufficient condition

for a sorting equilibrium with quality difference z:

D(z) ≡ 2(mA(z)− µ) = z. (8)

If there exists z ∈ (0, α) such that (8) is satisfied, then we have a sorting equilibrium

with partial overlapping, where the threshold types x and y satisfy θ < y < θe < x < θe

by equations (4). If equation (8) is satisfied by z = µe − µ
e
, then we have a perfectly

segregated equilibrium allocation, with x = y = θe. Finally, since z = 0 implies x = θ and

y = θ by equations (4), and hence equation (8) is satisfied by z = 0, a perfectly mixed

allocation is always an equilibrium.

The equilibrium condition D(z) = z may admit more than one solution in z in the

range [0, µe − µ
e
]. However, some of these solutions may be “unstable” with respect
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to small perturbations in the equilibrium allocation. Following the standard stability

concept, we say that a sorting equilibrium z is stable if D′(z) < 1.9 We have the following

characterization result for the basic model.

Proposition 1. There exists a unique stable sorting equilibrium outcome for any α, and

it is (a) perfect segregation if α ≤ µe − µ
e
, (b) partial overlapping if µe − µ

e
< α < θ − θ,

and (c) perfect mixing if α ≥ θ − θ.

Proof. We already know that D(0) = 0 for any α. Further, using equations (4) and (8),

we can show that the derivative of D(z) is given by

D′(z) =
1
α

(x− y).

From equations (4), we know that x decreases and y increases with z, and thus D(z) is a

concave function. There are three cases; see Figure 2 for an illustration. (a) If α ≤ µe−µ
e
,

then D′(0) > 1 and x = y = θe for all z ∈ [α, µe − µ
e
]. We have D′(µe − µ

e
) = 0, and

z = µe − µ
e

is the only stable solution. (b) If µe − µ
e

< α < θ − θ, then D′(0) > 1, and

D(µe − µ
e
) < µe − µ

e
because x > θe > y when z = µe − µ

e
from equation (4). There is a

unique interior stable solution to D(z) = z. (c) If α ≥ θ− θ, then D′(0) ≤ 1 and therefore

D(z) < z for all z > 0. The only solution to D(z) = z is z = 0, which is stable. Q.E.D.

The above proposition shows that segregation and mixing generally coexist in equi-

librium allocations of types across organizations. Since there is no inherent difference

between organization A and organization B, for any equilibrium in which mA > mB , there

is another equilibrium involving the same allocation but with the identities of A and B re-

versed. Nevertheless, each equilibrium is locally stable in the sense that small disturbances

to the allocation do not spread.

Proposition 1 establishes the existence of a unique stable sorting equilibrium in our

model for any utility parameter α and type distribution F . The uniqueness part of the

result is due to the assumption of linear individual utility function (equation 1), but the

9 We adopt the convention that D′(0) and D′(µe−µ
e
) are defined by continuity, from above and from

below respectively. Also, we say that z = 0 is stable if D′(0) = 1 and D(z) < z for z just above 0.
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existence part can be easily extended to the case when relative ranking and average ability

are not perfect substitutes. As we have remarked about Lemma 1, when the individual util-

ity function is instead given by equation (3), the support sets remain overlapping intervals.

In general there will not be an even split of types that are allocated to both organizations,

but we can follow the same procedure as above to construct a stable sorting equilibrium.

For any z in the permissible range of [0, µe − µ
e
], we can determine the threshold types

x and y by v(F (x) − 1,mA) = v(1,mB) and v(0,mA) = v(F (y), mB) respectively, while

indifference conditions v(HA(θ),mA) = v(HB(θ),mB) define the allocation (HA, HB) be-

tween y and x. A sorting equilibrium is then defined as before, as a fixed-point of equation

(8). A stable equilibrium always exists: either D′(0) ≤ 1, in which case perfect mixing

(z = 0) is a stable sorting equilibrium (because D(0) = 0); or D′(0) > 1, in which case an

interior stable equilibrium exists if D(µe− µ
e
) < µe− µ

e
; or otherwise perfect segregation

(z = µe − µ
e
) is a stable equilibrium.

Since an agent of a higher type has more choices of organization than an agent of

a lower type, equilibrium utility increases with type. In a perfectly mixed equilibrium

allocation, the two organizations are identical and equilibrium utility increases at the

rate of αf(θ). In a perfectly segregated equilibrium, equilibrium utility increases twice

as fast, at the rate of 2αf(θ) in both organizations, with a discontinuity at θ = θe since

the median type strictly prefers A to B. In a partial-overlapping allocation, equilibrium
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utility is continuous at the cutoffs y and x, and increases at the rate of 2αf(θ) for the

segregating types in [θ, y) and (x, θ], and at the rate of αf(θ) for the mixing types in [y, x].

Therefore, for any fixed type distribution, equilibrium utility is more sensitive to agent

type for segregated types. Inequality among agent types is more pronounced in a more

segregated outcome.

4. Sorting with Transfers

The utility function Vi(θ) = αri + mi is clearly inadequate for welfare analysis, because it

would imply that aggregate utility is the same for any allocation. We therefore resort to

the more general formulation of equation (2).

Equation (2) may be justified by a model where in each firm workers need to be

matched with tasks, and complementarity exists between the skill of a worker and the

productivity of a task. Imagine that two firms, A and B, need to hire a unit mass of

workers each. In each firm, there is a continuum of tasks and each employed worker must

be matched with a task. Tasks differ by the level of capital investment ki in each firm i,

i = A,B. The productivity of task ki is αki + mi, where mi is the average skill level of

workers in i. The output of a worker with skill level θ matched with task ki is given by

l(θ)(αki + mi). (9)

When the level of capital investment ki is uniformly distributed, we can assume without

loss of generality that ki ∈ [0, 1], and identify a task with capital investment ki as a position

of rank ki. Then this production function (9) provides a rationale for the individual utility

function in equation (2). We assume that the preference function of each agent is quasi-

linear, given by the difference between the agent’s utility (equation 2) and the agent’s

payment. As remarked earlier, unlike in previous analysis, ri in equation (2) is now a

choice variable that ranges from 0 to 1. To avoid confusion, we refer to ri as the level of

a position, and use Hi(θ) as the quantile ranking of type θ in organization i. We call a

feasible assignment of agents between the two organizations and a pairwise matching of

agents with positions in each organization simply as an allocation.
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4.1. Competitive sorting

We define a competitive equilibrium as an allocation together with two price schedules for

positions, such that each agent chooses an organization and a position in the organization

to maximize his utility, and markets clear with each agent getting exactly one position.

Formally, let pi(ri) be the price of position level ri in organization i, i = A,B. We have

the following definition.

Definition 3. A competitive equilibrium is a feasible allocation (HA,HB) and price

schedules pA and pB , such that (a) if type θ is in the support set of Hi, i = A,B, then i

and Hi(θ) solves maxj=A,B

{
maxrj

l(θ)(αrj + mj)− pj(rj))
}
; and (b) mi =

∫ θ

θ
t dHi(t).

The above definition implicitly assumes that in any competitive equilibrium higher

types are matched to higher positions in each organization. As a result, the market clearing

condition is automatically satisfied. Note that since l(θ) is strictly increasing, the positive

assortative matching of types to positions is implied by individual optimization and market

clearing, because for any two positions ri > r̃i in organization i, if a type weakly prefers

ri to r̃i then any higher type strictly prefers ri to r̃i.

We now argue that any sorting equilibrium allocation can be supported as a compet-

itive equilibrium. Suppose that (HA,HB) is a sorting equilibrium, with threshold types

x and y. Without loss of generality, we assume that mA ≥ mB . Then, the equilibrium

ranking HA(θ) of any type θ in A satisfies equation (7), with the equilibrium ranking of θ

in B given by HB(θ) = F (θ)−HA(θ). The following proposition constructs price schedules

and verifies that Definition 3 is satisfied. The reverse is also true: only sorting equilib-

rium allocations can be supported as competitive equilibrium. This is established by first

showing that in any competitive equilibrium the two support sets TA and TB are inter-

vals. Then, using the condition that types allocated to both organizations are indifferent,

we show that these types must be evenly split between A and B. Since any competitive

equilibrium must satisfy the condition that the average type in each organization taken

as given by each agent is precisely the average type that results from the organization

choices of all agents (condition (b) in Definition 3), the support sets in the competitive
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equilibrium must be overlapping intervals and the corresponding allocation is a sorting

equilibrium allocation. The proof of Proposition 2 is in the appendix.10

Proposition 2. A feasible allocation can be supported as a competitive equilibrium if

and only if it is a sorting equilibrium.

The correspondence between sorting equilibrium without transfers and competitive

equilibrium with transfers can be better understood if we think of the relative positions

in each organization as different match types. Without transfers, positive assortative

matching emerges in a sorting equilibrium because higher type agents have the priority for

higher relative positions, or higher ranks as referred to in our analysis of sorting without

transfers. With transfers, the complementarity between the agent type and the relative

position as captured in equation (9) allows higher type agents to outbid lower types for

high relative positions, resulting in the same positive assortative matching.11 Competitive

equilibrium thus provides a foundation for our intuitive concept of sorting equilibrium in

the absence of transfers.

4.2. Efficient sorting

To understand the welfare properties of the equilibrium, let us consider a planner’s problem

of choosing an assignment of types to organizations and positions to maximize aggregate

utility. We refer to the solution to the planner’s problem as the efficient allocation. Since

l is an increasing function, given any allocation, the total utility of each organization is

maximized by matching positions and agent types positive assortatively, as the average

type mi is fixed, and complementarity exists between the type of agent and the level of

position. Thus, for any feasible allocation (HA,HB), type θ will be matched to position

10 Proposition 2 holds so long as the marginal rate of substitution is type-independent, as in the case
where the individual production function is given by l(θ)v(ri, mi).

11 In our model there is also the issue of sorting agents into two organizations, besides the problem
of allocating agents to different relative positions within an organization. Proposition 2 establishes the
equivalence between sorting equilibrium without transfers and competitive equilibrium with transfers in
this two-stage matching problem. As we will show in Proposition 3 below, equilibrium is inefficient due to
the two-stage nature of our model.
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rA = HA(θ) in organization A and the maximal total utility in A is

Q(HA) = α

∫ θ

θ

l(θ)HA(θ) dHA(θ) +

(∫ θ

θ

l(θ) dHA(θ)

) (∫ θ

θ

θ dHA(θ)

)
. (10)

Aggregate utility in the two organizations is Q(HA) + Q(HB), where HB = F −HA.

The efficient allocation can be easily characterized for extreme values of α. In par-

ticular, perfect segregation is efficient when α is sufficiently small, while perfect mixing

is efficient for sufficiently large α.12 For intermediate values of α a characterization of

the efficient allocation is difficult without any restriction on l. In the remainder of this

subsection we assume that l is linear, and equal to θ without loss of generality. In the

appendix we prove the following necessary condition for efficient allocations.13

Lemma 2. Assume that l is linear. Any efficient allocation takes the overlapping interval

form with an even split of types allocated to both organizations.

In the proof of Lemma 2, we use a local variation argument to show that mixing of

types in the neighborhood of type θ implies that14

α(HA(θ)−HB(θ)) = 2(mB −mA). (11)

Compare the above to equation (6). The next proposition follows immediately.

Proposition 3. Assume that l is linear. There exists a unique efficient allocation for each

α, and it is identical to the sorting equilibrium corresponding to α/2.

12 To see this, when α is sufficiently small, the efficient allocation maximizes the second term in

equation (10). The maximum is achieved when mA and
∫

l(θ)dHA(θ) are made both as large as possible

(or as small as possible), implying perfect segregation. When α is sufficiently large, the efficient allocation
maximizes the first term in equation (10). Using integration by parts, we can show that the solution is
HA(θ) = HB(θ) for all θ, implying perfect mixing.

13 If relative ranking and average ability are imperfect substitutes in individual utility function, types
that are allocated to both organizations need not be evenly split in an efficient allocation. However, as
long as the marginal rate of substitution between relative ranking and average ability is type-independent,
as when the individual utility function is given by θv(ri, mi), the support sets in any efficient allocation
remain intervals. Thus, the no-gap result is a robust feature of efficiency, as is true in both sorting
equilibrium and competitive equilibrium allocation.

14 This result relies on the linearity assumption on l. The general condition for any θ in a mixing

interval is given by α(HB(θ)−HA(θ)) = (mA−mB)+ (lA− lB)/l′(θ), where li =
∫

l(θ)dHi(θ), i = A, B.

The splitting rule for the efficient allocation is generally not even.
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From Proposition 2, an immediate implication of Proposition 3 is that there is too

little segregation in the sorting equilibrium. The inefficiency of the sorting equilibrium can

be understood as follows.15 In a sorting equilibrium, agents choose organizations based

on their individual utility, without any regard for the external effects of their decisions on

the utility of other agents. Therefore, types that are allocated to both organizations in

equilibrium must be indifferent (see equations (4) and (6)). In particular, the equilibrium

threshold x is the highest type that weakly prefers the lower average type organization. In

contrast, since there is more segregation at the efficient allocation than in the corresponding

sorting equilibrium, we have

α(2− F (x)) > mA −mB ,

so that the threshold type x strictly prefers B, the lower average type organization. The

efficient allocation requires a lower threshold type x, and hence less mixing, because of

the need to internalize the externalities. When the threshold x is increased and some

agents of types around x are reallocated from the higher average type organization A to

B, it may appear that two kinds of externalities on other agents need to be internalized to

maximize aggregate utility. One is that the agents with types between y and x now take on

higher level positions in organization A and lower level positions in organization B (while

those with types above x and below y keep their positions in the two organizations). This

externality is not responsible for the discrepancy between the competitive allocation and

the efficient allocation, because the utility gain of each type in A exactly cancels the utility

loss of the same type in B. The other externality is that the average type in organization

A is decreased while the average type in B is increased, making all agents in A worse

15 The inefficiency of competitive equilibrium does not arise from the assumption of continuum of
agents. The proof of Proposition 2 shows that the indirect utilities of the types that are mixing between
two organizations must have the same slope at each type, which yields the same indifference condition
of equation (4) as in sorting equilibrium. This differs from the mixing condition of equation (11) in the
efficient sorting derived from a local variation argument in Lemma 2. In a discrete model, a counterpart
of equation (4) obtains because transfers have to be such that positive assortative matching between type
and rank within each organization is an equilibrium, with some modifications because when an agent
moves from one organization to the other he will change the transfer schedule and the mean in the target
organization. However, unlike the local variation argument, the modified equation (4) cannot capture all
the externalities generated by an agent moving from one organization to the other. In particular, an agent
moving from A to B does not internalize the decrease in the average type in A.
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off and all agents in B better off. This is the externality that fails to be internalized in

a sorting equilibrium when agents with types around x move from A to B. Due to the

complementarity between agent type and the average ability in an organization, agents of

the threshold type x must be discouraged from such a move to maximize aggregate welfare.

5. Comparative Statics and Welfare

The analysis leading to Proposition 1 shows that the equilibrium allocation can be reduced

to a single variable z, which in turn depends on the parameter α and the distribution

function F . As the equilibrium value of z increases from 0 to µe − µ
e
, the threshold type

x decreases from θ to θe and y increases from θ to θe. Thus, the equilibrium allocation

becomes more segregated both in terms of a greater quality difference between the two

organizations, and in terms of a smaller range of mixing.16

In this section, we consider comparative statics regarding the degree of segregation.

Part of this comparative statics analysis follows directly from the characterization of the

unique stable sorting equilibrium in Section 3. In this case there is no ambiguity regarding

how to measure the degree of segregation. In other cases we need to suitably extend the

main model, by generalizing the overlapping interval form of allocation.17 Throughout this

section we will identify the degree of segregation with the equilibrium quality difference

between the two organizations.

Due to the equivalence between the sorting equilibrium without transfers and the com-

petitive equilibrium with transfers established in Proposition 2, we will use the aggregate

utility given in equation (10) as the welfare measure. For quantitative statements about

welfare effects of parameter changes, we adopt the assumption that l(θ) is linear, which

16 Kremer and Maskin (1996) define a segregation index as the ratio of between-organization variance
to the sum of between-organization variance and within-organization variance. In our model, it can be
shown the between-organization variance decreases with x, and the within-organization variance increases
in x. Thus, the value of the Kremer-Maskin segregation index falls with x.

17 In an earlier version of the present paper, we also consider how the degree of segregation is affected
when the relative size of the two organizations changes, when higher types care less about the pecking
order effect, and when there are more than two organizations.
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further restricts (10). Finally, if a parameter change affects the aggregate utility in an effi-

cient allocation as characterized by Proposition 3, we will use the ratio of the equilibrium

aggregate utility to the efficient aggregate utility as the relative welfare measure.

5.1. Egalitarianism and segregation

Suppose the pecking order effect becomes more important relative to the peer effect. This

change is represented by a rise in α. Then, according to Proposition 1, perfect segregation

becomes less likely to be the stable equilibrium while perfect mixing becomes more likely

to be the stable equilibrium. Furthermore, in an equilibrium with a partial overlapping of

support sets, equations (4) imply that the threshold type x increases and y decreases for

any fixed z, with more types evenly split between y and x. As a result, the whole function

D(z) shifts down as α increases. More precisely, we have

∂D(z)
∂α

= − 1
α

(x− y)(2− F (x)) < 0.

Thus the equilibrium z decreases. We state this result as a proposition.

Proposition 4. An increase in the weight of the pecking order effect relative to the peer

effect reduces the extent of segregation between two organizations.

The above result can be generalized to the case where relative ranking and average

ability are not perfect substitutes in individual utility functions. As we have remarked

on Proposition 1, stable sorting equilibria can be shown to exist when the individual util-

ity function is given by equation (3). At any such equilibrium with allocation (HA,HB)

and quality difference z, when ∂v(ri,mi)/∂r increases at every ri and mi, the equilib-

rium quality difference z decreases. To see this, note that the indifference conditions

v(HA(θ), mA) = v(HB(θ),mB) in the overlapping interval can be rewritten as

∫ mA

mB

∂v(HA(θ),m)
∂m

dm =
∫ HB(θ)

HA(θ)

∂v(r,mB)
∂r

dr.

When ∂v(r,m)/∂r increases at every r and m (while ∂v(r,m)/∂m remains unchanged),

organization B becomes more attractive for each type θ. Since v is an increasing function of

r, to restore the indifference condition v(HA(θ),mA) = v(HB(θ),mB), we need to increase
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HA(θ) and decrease HB(θ). Similarly, x increases and y decreases. As a result, mA(z)

(and hence D(z)) decreases at each z, and the equilibrium value of z decreases.

Proposition 4 has important implications regarding the effects of egalitarian policies in

organizations.18 Suppose, for example, that a school board decides that all schools within

its district adopt a more egalitarian approach to education. This means that top students

within a school receive less attention and fewer scholarships or prizes, while students lower

down the ladder of academic ability have greater access to the limited opportunities that

help make a valuable educational experience (e.g., representing the school in external

competitions). A more egalitarian policy can also be achieved by a more compressed

distribution of grades, so that outsiders cannot so easily distinguish the top students from

the bottom ones. Such a change in policy would lead to a fall in α. As the advantages

from being at the top of a school diminishes, students will compete harder to enroll in

the school with higher average student ability. Paradoxically, our analysis suggests that a

policy toward greater egalitarianism within a school may lead to an outcome with greater

segregation across schools.

The Texas top-ten-percent law mentioned in the introduction takes education policies

in the opposite direction of egalitarianism. Cullen, Long and Reback (2005) study the

residential-school choices of families with eighth-graders that for some exogenous reasons

have moved to a Texas school district affected by the law. They find that any student

who chooses a high school other than the one that would have been chosen before the law

is likely to choose one in which the student expects to be in the top ten percent. As a

result of these strategic school choices, the Texas law was not only a success in terms of

achieving the policy goal of restoring the racial mix in the Texas public university system,

but it also led to increased mixing of high school graduates by test scores, consistent with

our comparative statics analysis above.

18 In some professions, the peer effect comes from the fact that being associated with high ability
colleagues tends to enhance one’s human capital formation. To the extent that the pecking order effect
arises from the consumption motive (e.g., self-esteem) while the peer effect arises from the investment
motive, younger workers are expected to have a smaller relative weight α than do older workers. Proposition
4 then suggests that the distribution of talent across firms is more concentrated for younger cohorts of
workers than it is for older cohorts.
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To study the welfare effects of a policy change such as the Texas law, we need to

distinguish between the direct effect of an increase in α on the aggregate utility as given

in (10), with l(θ) = θ, and the indirect effect through increased segregation in equilibrium.

Further, an increase in α also changes the aggregate utility at the efficient allocation

through a direct effect (the indirect effect is zero by the definition of efficiency), so we

need to measure the welfare effects by the ratio of the equilibrium aggregate utility to the

efficient aggregate utility. It immediately follows from Proposition 1 and Proposition 3 that

the welfare ratio is equal to 1, both when α ≤ µe− µ
e
, in which case both the equilibrium

and the efficient allocations involve perfect segregation, and when α ≥ 2(θ − θ), in which

case both allocations involve perfect mixing. For α ∈ (µe − µ
e
, θ − θ), the equilibrium

allocation has a partial overlapping interval form, and the indirect effect of an increase in

α on the welfare ratio is negative, because there is more segregation by Proposition 4, which

exacerbates the inefficiency of the equilibrium by Proposition 3. For α ∈ (θ − θ, 2(θ − θ)),

there is perfect mixing in equilibrium, and the indirect effect is nil. To study the direct

effects of an increase in α on the welfare ratio, for any given overlapping interval allocation

represented by (7), we rewrite the aggregate utility Q(HA) + Q(HB) as

α

(∫ y

θ

θF (θ)f(θ) dθ +
∫ x

y

1
2
θF (θ)f(θ) dθ +

∫ θ

x

θ(F (θ)− 1)f(θ) dθ

)

+

(∫ x

y

1
2
θf(θ) dθ +

∫ θ

x

θf(θ) dθ

)2

+

(∫ y

θ

θf(θ) dθ +
∫ x

y

1
2
θf(θ) dθ

)2

,

where the first term (α times the sum in the bracket) is the contribution to the aggregate

utility from the concerns for the pecking order effect, and the second term (including both

squared terms) is the contribution from the peer effect. Using equation (5), we can take

Q(HA)+Q(HB) as a function of x only. By taking derivatives, we can easily show that the

first term is increasing in x while the second term is decreasing in x. Since in equilibrium

the highest type in the lower organization B is greater than the corresponding type in an

efficient allocation by Proposition 3, an increase in α puts a greater weight on the first

term, which is greater in the equilibrium allocation than in the efficient allocation, and

simultaneously a smaller weight on the second term, which is smaller in the equilibrium

allocation. Thus, the direct effect of an increase in α on the welfare ratio is positive.
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Whether the positive direct effect or the negative indirect effect dominates depends on α:

for α close to µe − µ
e

the indirect effect of greater and more inefficient segregation domi-

nates, so that a policy such as the Texas law that reduces α makes the welfare relatively

higher, while for α close to θ − θ the direct effect dominates, as the contribution to the

aggregate utility from the pecking order effect gets a greater weight.

5.2. Meritocracy

In the last subsection we have considered the effect of across-the-board changes in α, but

in reality organization policies are often not coordinated. Now we examine the effects of

relative changes in α. Consider an increase in αB , the weight on relative ranking in the

lower quality organization, while αA remains unchanged. This makes organization B more

attractive for all agents. In order to isolate the effect on equilibrium sorting arising from

changes in B that alter the trade-off between the pecking order effect and the peer effect

in B, from the effect arising from changes that make B universally more attractive, we

look at a “compensated” change in αB . To do so, we assume that the utility for type θ

from each organization i = A,B is

Vi(θ) = αi

(
ri(θ)− 1

2

)
+ mi. (12)

Under this formulation, an increase in αB means that all agents in organization B ranked

above the median become better off while those ranked below are made worse off.19 For

example, a compensated increase in αB occurs if organization B adopts a more meritocratic

personnel policy without increasing the overall level of compensation to its employees.

When αA 6= αB , we can still apply a similar argument as in Lemma 1 to show that the

support sets of the two organizations are intervals. However, in equilibrium one interval

may strictly contain the other one. To see this, assume αA > αB without loss of generality.

The highest type, θ, prefers A to B if

1
2
(αA − αB) + z > 0,

19 For simplicity we choose the median as the reference rank. From the following analysis we can see
that the choice of the reference does not affect the mixing of types. Further, when αA = αB , the reference
rank does not affect the range of mixing either. Thus the equilibrium under equation (12) is the same as
the equilibrium under equation (1) when αA = αB .
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while the lowest type, θ, prefers B to A if

−1
2
(αA − αB) + z < 0.

Thus, if in equilibrium the quality difference z is between − 1
2 (αA − αB) and 1

2 (αA − αB),

the very high types will all choose A, while the very low types are forced to stay with A,20

giving rise to a generalized form of overlapping intervals.

We restrict our attention to comparative static analysis of the partial overlapping

interval equilibria. Starting from one such equilibrium with z > 0, when αB increases, there

is a stronger incentive for the threshold type x to switch from A to B. This tends to increase

x, resulting in a decrease in z. We refer to this negative effect on the quality difference as

the “threshold effect.” When αB increases, there is also an “allocation effect” on the quality

difference, which is positive. To see this, note that for types θ ∈ [y, x] to be indifferent

between the two organizations, we must have a constant difference αAHA(θ)− αBHB(θ).

This implies a mixing rule of a fraction αB/(αA + αB) of each type θ going to A and the

rest going to B. Thus, an increase in αB reduces the fraction of types in [y, x] allocated

to organization B. This tends to reduce B’s average ability (for fixed thresholds x and

y). The following proposition provides a sufficient condition for the threshold effect to

dominate the allocation effect, and therefore for an increase in αB to narrow the degree of

segregation between organizations A and B.

Proposition 5. Suppose that the density function f is symmetric about the median. At

a partial-overlapping equilibrium with z > 0 and αA ≥ αB , a compensated increase in αA

lowers the equilibrium average ability mA of organization A, while a compensated increase

in αB raises the equilibrium average ability mB of organization B.

The proof of this proposition is in the appendix, where we also establish a sufficient

condition on αA and αB for the existence of a partial-overlapping interval equilibrium.

The intuition behind this result follows from the partial-overlapping structure. Recall that

20 In any sorting equilibrium agents of type θ will never end up in B, which they strictly prefer.
Otherwise, the lowest type in organization A would strictly prefer to switch to B. See the proof of
Proposition 5 in the appendix for a characterization of all sorting equilibria.
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types below y do not have the option of switching from organization B to A. Reallocating

resources away from these low types toward agents higher up in the hierarchy therefore

makes organization B more attractive to agents with relatively higher ability. Similarly,

types above x strictly prefer to stay in organization A. Reallocating resources away from

these individuals toward agents lower down in the pecking order helps organization A

retain its talent. In a partial-overlapping allocation, since individuals with intermediate

levels of ability are indifferent across organizations, competition for talent is most intense

in this segment of the market. Thus, if the objective of organizations is to improve the

overall ability of their incumbents, they should try to reallocate internal resources in order

to attract this specific group of individuals. In a low quality organization, people with

intermediate levels of ability are relatively high in the pecking order. So a more merito-

cratic approach to personnel policies that appeals to this group will enhance the quality of

the organization. In a high-quality organization, however, meritocratic personnel policies

are not appealing to people with intermediate levels of ability, since they are relatively

low in the pecking order. Policies that are suitable for low quality organizations can be

counterproductive for high quality organizations.

The attempt by Princeton University to combat grade inflation in its undergraduate

programs, and the concerns and controversies it generated provide a cautionary tale of

how to, and how not to, use a meritocratic policy to compete for talent. In April 2004,

Princeton University became the first major university to ration A’s in its undergraduate

courses, from then 46% down to 35%. In discussions about the wisdom of this move,

Princeton students and officials have raised the concern that Princeton graduates risk

losing out to graduates from other elite universities in applying for jobs and to graduate

schools (USA Today, March 27, 2007). If anticipated, this concern may have a lasting

effect on Princeton’s admissions, as talented high school graduates who receive other offers

may decide not to come to Princeton, which would lower the average student ability at

Princeton and justify the negative bias against Princeton graduates on the job market and

in graduate school applications. Although it seems early to assess the impact of Princeton’s

grade reform, the fact that no other elite college so far has followed Princeton’s lead suggests

that the potential negative effect on admissions is a real concern.
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5.3. Organizational biases, snowballing and tipping

So far we have assumed that the quality of an organization depends solely on the average

type of agents who choose it. But some organizations may be preferred for exogenous

reasons, such as geographical location, physical endowments, and so on. Consider therefore

a modification of the basic model in Section 2. Suppose that preferences for the high quality

organization A are instead given by

VA(θ) = αrA(θ) + mA + δ,

where δ is a parameter representing an attribute of organization A that makes it more

appealing relative to organization B.21 Modifying equations (4) and (6) with the addition

of δ, we can easily see that in an equilibrium with partial overlapping intervals, an increase

in δ reduces x and raises y, without affecting the result of an even split between y and x.

More precisely, we have
∂D(z)

∂δ
=

1
α

(x− y) > 0.

Thus, the whole function D(z) shifts down, resulting in a greater value of equilibrium z.

This result is stated as the following proposition.

Proposition 6. An increase in the preference bias for the high quality organization

increases the extent of segregation between two organizations.

The comparative statics result remains valid when relative ranking and average ability

are not perfect substitutes in individual utility functions, as in equation (3). With the

preference bias δ for organization B, the equations that determine the threshold types

become v(F (x) − 1,mA) = v(1, mB + δ) and v(0,mA) = v(F (y),mB + δ). Since v is an

increasing function of m, an increase in δ raises x and reduces y. Moreover, the indifference

condition for a type θ ∈ (y, x) at a stable equilibrium with allocation (HA,HB) becomes

v(HA(θ), mA) = v(HB(θ),mB +δ). An increase in δ makes organization B more attractive

21 We allow δ to be either positive or negative. A similar argument as below can be used to show that
the sorting equilibrium exists as long as the bias parameter for the (equilibrium) high organization δ is
not too negative.
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for θ. To restore the indifference, we need to increase HA(θ) and decrease HB(θ). As a

result, D(z) decreases pointwise and the equilibrium value of z decreases.

Proposition 6 can be strengthened to yield a “multiplier effect” in our sorting model.

From the equilibrium condition (8) we have

dz

dδ
=

∂D(z)/∂δ

1−D′(z)
>

∂D(z)
∂δ

,

where the inequality follows because D′(z) ∈ (0, 1) by the local stability of the equilibrium

with partial overlapping. Thus, an increase in the preference bias for A not only increases

the equilibrium quality difference z between A and B, but also increases z by a greater

amount that what is directly implied by the increase in the bias. A heuristic pseudo-

dynamic story is that, at the stable sorting equilibrium with partial overlapping, a small

increase in δ causes the top ranked agents in B to defect to A, which further increases

the quality difference between the two organizations and yet more defections from B to

A. Thus, there is a multiplier effect, or “snowballing,” in our model. However, our

sorting equilibrium is also locally stable, so that the snowballing caused by an increase in

δ eventually stops as fewer and fewer top ranked agents from B defect to A as a result of

previous defections. In other words, there is no “tipping” in the sense that a small increase

in δ cannot lead to complete segregation with all types above the median going to A.

That the local stability of our sorting equilibrium is simultaneously responsible for

both the presence of snowballing and the absence of tipping makes the present model a

parsimonious framework to understand the phenomenal transformation of Silicon Valley

from a decidedly low-tech “Valley of the Heart’s Delight,” and the more recent slowdown

in its growth. Although Silicon Valley had a long tradition of research and innovations

associated with the U.S. Navy and Stanford University, this initial “hardware” advantage

alone cannot explain the explosive growth in the concentration of the high-tech industry in

the area since the 1970’s. Instead, it was the decisions of high-tech talents to come to Silicon

Valley that created a lasting advantage over other potential high-tech centers. Further,

even though the hardware advantage appeals to all high-tech talents equally, only the top

talents have the priority in taking advantage of it, as in our sorting equilibrium in the non-

transferable model. Equivalently, as in a competitive equilibrium with transfers, the top
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talents outbid lower talents for scarce high relative positions due to the complementarity

between talent and relative position, and they are the ones that fueled the initial growth of

Silicon Valley. As the growth continued, the newly arrived had less impact, and eventually

the growth would halt in the absence of a fresh impetus. Conversely, as the housing market

price skyrocketed and the traffic congestion went from bad to worse, or when the dot com

bubble burst in the early 2000’s, it was the less talented in Silicon Valley who were first

squeezed out. From 2002 to 2006, middle-wage jobs—paying up to $80,000 a year—fell

from 52% to 46% of the work force (The New York Times, February 19, 2008). The same

force that eventually put a break on the explosive growth of Silicon Valley is also at the

heart of its strength and resilience to keep on reinventing itself.

5.4. Heterogeneous biases

Different agents may not value the other organizational attributes in the same way. For

example, agents typically have different locational preferences. Let us consider a model

where the utility of a type θ agent from choosing organization A is given by

VA(θ) = αrA(θ) + mA + σδ, (13)

where σ is a positive parameter representing the degree of heterogeneity in tastes, and δ is

a random variable distributed according to G, with support [δ, δ] and a continuous density

function. For simplicity, we consider the case where the median of the distribution G is

zero, so that there is no aggregate bias for either organization.

Under equation (13), the equilibrium allocation takes the form of a generalized version

of overlapping interval structures. When σ is relatively large, then the highest type agents

will be present in both organizations. In particular, if σδ < µ
e
− µe and σδ > µe − µ

e
,

the equilibrium allocation will not involve high type agents choosing exclusively the high

quality organization. More generally, for each type θ, the fraction of agents choosing

the high quality organization A increases in the quality difference z and decreases in

the ranking difference rB(θ) − rA(θ). In the appendix, we show how to characterize the

sorting equilibrium in this model, and establish the following result regarding the degree

of heterogeneity in the idiosyncratic preferences for other organizational attributes.
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Proposition 7. At a stable equilibrium, the degree of segregation decreases (z decreases)

as the degree of heterogeneity in the idiosyncratic preferences increases (σ increases).

The logic of the above result is that a greater degree of heterogeneity in the idiosyn-

cratic preferences reduces the importance of the trade-off between average quality and

relative ranking to agents’ organizational choices. For any quality difference z there are

more agents who prefer the low quality organization B for idiosyncratic reasons as σ in-

creases. The equilibrium quality difference shrinks as a result.

The above result has an interesting implication for the design of benefit packages for

organizations. Suppose an organization can choose between raising salaries by some total

amount or providing in-kind benefits that cost the same amount. Suppose that different

employees value the in-kind benefits differently. Then, our analysis suggests that the in-

kind benefits are more effective for the lower quality organization to attract talent, whereas

cash wages are more effective for the higher quality organization to retain talent. Again,

the intuition for this result follows from the overlapping interval allocation. Top talents in

organization A strictly prefer staying in A to moving to B under given cash wages. When

the form of compensation switches to in-kind benefits, some of these top talents become

better off because the benefits are worth more than the cash wages, but these individuals

will stay in A regardless. For those who value the in-kind benefits less than the cash wages,

however, they will consider moving to organization B. On balance, therefore, increasing

the variance of the value of benefits hurts the high-quality organization.

The above comparative statics analysis may be part of the logic behind Harvard

University’s recent decision to increase tuition aid to students of middle class and upper-

middle class families. Starting from the academic year of 2008, Harvard will offer generous

tuition cuts to students with household incomes from $120,000 to $180,000, increasing the

university’s spending on financial aid from $98 million to $120 million (The New York

Times, December 10, 2007). Given that the stated goal of this financial aid initiative is to

make Harvard more affordable and more attractive to high-achieving high school graduates,

an outside observer may question whether at least part of the increase in the spending

could have been used to subsidize specific academic and extracurricular activities that

these students care about. Examples of these activities include highly valuable but unpaid
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research opportunities with professors, unpaid summer internships and overseas studies,

which Harvard officials are concerned that often only the wealthy students can afford. In

reality, as in our model, it is prohibitively costly to fine tune the financial aid program

to match specific subsidies to talented high school graduates Harvard wants to attract, so

that the real choice is between a blanket program of the kind that Harvard just adopted

and a broad collection of individual subsidy programs that may suit the needs of some

students but not those of others. The comparative statics analysis following Proposition 7

suggests that a blanket program is more suitable for a university, like Harvard, that is in

the enviable position of having to keep its talented freshman class from being poached by

competing universities. Our analysis also suggests that the more effective response to the

Harvard initiative is not to imitate it, but to take the opposite approach of using targeted

individual subsidy programs to appeal to those students who would enjoy Harvard less due

to the pecking order effect.

6. Conclusion

We have presented a sorting model with heterogeneous types where the equilibrium al-

location of agents to organizations is determined by agents’ concerns for average ability

comparisons across organizations and for their relative ranking within the organizations.

Sorting of agents is shown to result in an overlapping interval structure in the type space

that allows coexistence of segregation and mixing. This result enables us to easily charac-

terize the degree of segregation (measured by mean ability difference) across organizations.

When transfers are possible, we construct a model of endogenous task allocation with com-

plementarity between agents and task as well as complementarity among agents in the same

organization. In such an environment, the competitive equilibrium in which people bid for

tasks in organizations corresponds precisely to our stable sorting equilibrium. The efficient

sorting of agents to organizations in this environment also takes the form of an overlapping

interval allocation, but efficiency requires a greater degree of segregation than in the sort-

ing (or competitive) equilibrium. In comparative statics analysis, we show that a greater

emphasis on relative ranking within organizations leads to less segregation across organi-

zations. Since the equilibrium allocation involves too little segregation, a greater weight
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on the pecking order effect may lead to a further welfare loss compared to the efficient

allocation. Finally, because agents with intermediate ability are the most mobile across

organizations, personnel policies that cater to this group (i.e., the low status members in

high-quality organizations, and the high-status members in low-quality organizations) are

particularly effective for raising the average ability of the organization.

The main limitations of the present paper are the assumptions of capacity constraints

and one-dimensional characteristics, and the absence of objective functions for organi-

zations. Each of the three is worth further investigation. The assumption of capacity

constraints may be profitably replaced by participation constraints on the side of agents or

the side of organizations. The assumption of one-dimensional characteristics is standard

in the sorting literature, but needs to be relaxed to enhance the applicability of our model.

Finally, modeling the objective functions and strategies of organizations can further our

understanding of equilibrium distribution of talents among organizations. Extension of

the present model in these directions is beyond the scope of this paper, but the model

presented here can prove fruitful in investigating these issues in sorting.

Appendix

Proof of Proposition 2. (i) Suppose that (HA, HB) is a sorting equilibrium. For each

organization i = A,B and each position ri ∈ [0, 1], let the price schedule pi be defined by

p′i(ri) = αl
(
H−1

i (ri)
)
,

up to an integration constant to be determined below. Then, for any type θ ∈ Ti, the

first order condition of the optimization problem maxri l(θ)(αri + mi)− pi(ri) is satisfied

at ri = Hi(θ). Since pi is convex by construction, the second order condition of the

above optimization problem is satisfied. Thus, it is optimal for type θ ∈ Ti to choose

the position of rank Hi(θ) among all positions in i. The implied indirect utility of θ is

Ui(θ) = l(θ)(αHi(θ) + mi)− pi(Hi(θ)), implying that

U ′
i(θ) = l′(θ)(αHi(θ) + mi). (A.1)
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Given any pA(0) and pB(0), the indirect utility functions UA(θ) (for θ ∈ [y, θ]) and

UB(θ) (for θ ∈ [θ, x]) are thus well-defined and continuously differentiable. Choose pA(0)

and pB(0) such that UA(y) = UB(y), and UB(θ) ≥ 0. Since (HA,HB) is a sorting equilib-

rium, equation (6) is satisfied, and so it follows from equation (A.1) that UA(θ) = UB(θ)

for all θ ∈ [y, x].

It remains to argue that no type θ in Ti but not Tj will deviate from i to j. Consider

some type θ > x in A. The deviation utility ŨB(θ) of this type in organization B is

maximized at rB = 1. This is because ŨB(θ) is concave, and its derivative evaluated at

rB = 1 has the same sign as α(l(θ) − l(x)), which is positive. To show that type θ will

not deviate to rB = 1, we need UA(θ) > l(θ)(α + mB) − pB(1). This holds because by

construction UA(x) = l(x)(α + mB) − pB(1), and U ′
A(θ) = l′(θ)(αHA(θ) + mA), which is

strictly greater than l′(θ)(α+mB). The argument for why it is not optimal for type θ < y

to deviate from B to A is similar.

(ii) Let (HA, HB) be a feasible allocation and suppose that (HA,HB) can be supported

by a competitive equilibrium allocation, with price schedules pA and pB . Note that in

any competitive equilibrium allocation each price schedule pi, i = A,B, is continuous;

otherwise, at a point of discontinuity, say ri, there would be an excess supply for positions

just above ri. To show that the two support sets are both intervals, suppose without

loss of generality that there is a gap in TA, with types on the interval [θ, θ̃] allocated to

organization B and at least some types just below θ and just above θ̃ are allocated to A.

Since UB(θ) = UA(θ) by continuity, a necessary condition for the gap is U ′
B(θ) ≥ Ũ ′

A(θ),

where UB is the indirect utility for types between θ and θ̃ and ŨA is the deviation utility

for the same types.22 Since each type t on the interval (θ, θ̃) must find it optimal to

choose its equilibrium position HB(t) among all positions in B ranked between HB(θ) and

HB(θ̃), the envelope theorem implies that U ′
B(t) = l′(t)(αHB(t) + mB). Since a deviating

type t ∈ (θ, θ̃) can always choose the position in A corresponding to type θ, we have

Ũ ′
A(t) ≥ l′(t)(αHA(θ) + mA). Thus,

l′(θ)(αHB(θ) + mB) ≥ l′(θ)(αHA(θ) + mA).

22 Following the standard mechanism design literature (e.g., Stole, 1996), we can show that the indirect
utility functions are differentiable almost everywhere.
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Similarly, using the deviation condition of type θ̃, we have

l′(θ̃)(αHA(θ̃) + mA) ≥ l′(θ̃)(αHB(θ̃) + mB).

However, since HA(θ) = HA(θ̃) and HB(θ̃) > HB(θ), the above two inequalities contradict

each other, implying that there cannot be a gap in TA.

If the support sets of a competitive equilibrium allocation (HA,HB) overlap on some

interval [y, x], then we have equation (A.1) from individual optimization of types on the

interval within each i among the positions ranked between Hi(y) and Hi(x). Since each

such type θ is indifferent between A and B, we have the same indifference conditions (6)

as in a sorting equilibrium. Thus, types on the interval [y, x] are evenly split. It follows

from condition (b) in Definition 3 that (HA,HB) is a sorting equilibrium. Q.E.D.

Proof of Lemma 2. First, we show that if for some ε > 0 and some type θ, HB is

strictly increasing on (θ, θ + ε) and HA is strictly increasing on (θ − ε, θ), then

α(HA(θ)−HB(θ)) ≤ 2(mB −mA).

For any sufficiently small ε > 0, let γ(ε) solve

HA(θ)−HA(θ − γ(ε)) = HB(θ + ε)−HB(θ).

Since HB is strictly increasing just above θ and HA is strictly increasing just below θ, we

have that limε→0 γ(ε) = 0. Define a new allocation (Hε
A,Hε

B) such that

Hε
A(t) =





HA(t), if t 6∈ (θ − γ(ε), θ + ε)

HA(θ − γ(ε)), if t ∈ (θ − γ(ε), θ)

HA(θ − γ(ε)) + F (t)− F (θ), if t ∈ [θ, θ + ε)

and Hε
B = F−Hε

A. The allocation (Hε
A,Hε

B) modifies (HA,HB) by redistributing all agents

of type on the interval (θ−γ(ε), θ) to organization B and all types on the interval [θ, θ+ ε)

to organization A. Let ∆(ε) be the difference in aggregate utility between (Hε
A, Hε

B) and
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(HA,HB). We have

∆(ε) =α

(∫ θ+ε

θ

t (HA(θ − γ(ε)) + F (t)− F (θ)) dF (t)−
∫ θ

θ−γ(ε)

tHA(t) dHA(t)

)

+ α

(∫ θ

θ−γ(ε)

t (F (t)−HA(θ − γ(ε))) dF (t)−
∫ θ+ε

θ

tHB(t) dHB(t)

)

+

(
mA +

∫ θ+ε

θ

t dHB(t)−
∫ θ

θ−γ(ε)

t dHA(t)

)2

−m2
A

+

(
mB +

∫ θ

θ−γ(ε)

t dHA(t)−
∫ θ+ε

θ

t dHB(t)

)2

−m2
B .

Evaluating ∆(ε) and its first two derivative at ε = 0 we have ∆(0) = ∆′(0) = 0 while

∆′′(0) is proportional to α(HA(θ)−HB(θ))− 2(mB −mA). Thus, if α(HA(θ)−HB(θ)) >

2(mB − mA), it is possible to increase aggregate utility by redistributing agents of type

close to θ according to (Hε
A, Hε

B).

Next, we claim that the support set of each organization is an interval in the efficient

allocation. To see this, suppose there is a gap in TA. Then, there exist two types θ and

θ̃, with θ < θ̃, such that all types between θ and θ̃ are allocated to B, and at least some

types just below θ and just above θ̃ are allocated to A. Then, by the result we have just

established, we have
α(HB(θ)−HA(θ)) ≥ 2(mA −mB);

α(HB(θ̃)−HA(θ̃)) ≤ 2(mA −mB).

These two inequalities contradict each other, because HA(θ) = HA(θ̃) and HB(θ) < HB(θ̃).

The lemma follows immediately, because types allocated to both A and B must be evenly

split, and a unit mass must be allocated to each organization. Q.E.D.

Proof of Proposition 5. First, we provide a characterization of stable sorting equi-

librium. Without loss of generality assume αA ≥ αB . We allow z to range from µ
e
− µe

to µe − µ
e
. For any such z, we can determine the support sets TA and TB , as follows.

Suppose for now 1
2 (αA−αB) < µe−µ

e
. For any z > 1

2 (αA−αB), we have TA = [y, θ] and
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TB = [θ, x], where x and y solve

αA

(
(F (x)− 1)− 1

2

)
− 1

2
αB + z = 0;

−1
2
αA − αB

(
F (y)− 1

2

)
+ z = 0.

(A.2)

For z between − 1
2 (αA − αB) and 1

2 (αA − αB), we have TA = [θ, θ] and TB = [y, x], where

αA

(
(F (x)− 1)− 1

2

)
− 1

2
αB + z = 0;

αA

(
F (y)− 1

2

)
+

1
2
αB + z = 0.

Finally, for z < − 1
2 (αA − αB), we have TA = [θ, x] and TB = [y, θ], where

1
2
αA − αB

(
(F (x)− 1)− 1

2

)
+ z = 0;

αA

(
F (y)− 1

2

)
+

1
2
αB + z = 0.

If 1
2 (αA − αB) ≥ µe − µ

e
, then only the second case arises. In each of the three cases the

resulting quality difference D(z) is given by 2(mA(z) − µ), where mA(z) is the average

ability in organization A using the corresponding thresholds and the mixing rule of a

fraction αB/(αA +αB) of each type in [y, x] going to A and the rest going to B. As before,

a stable sorting equilibrium is then a z such that D(z) = z and D′(z) < 1.

Next, we provide a sufficient condition for the existence of a partial-overlapping stable

sorting equilibrium with z > 0 when αA > αB . Start with αA = αB = α. We argue that

if α is between 2(µe − µ) and 2(θ − µ), then an overlapping equilibrium with z > 0 exists

when αA marginally increases or αB decreases marginally. To see this, note that D(z) < z

at z = µe − µ
e
, because αA, αB > 2(µe − µ) implies x > θe by equation (A.2). At

z = 1
2 (αA − αB), from equation (A.2) we have F (x̂) = 1 + αB/αA and F (ŷ) = 0. Thus

D

(
1
2
(αA − αB)

)
= 2

(
µ−

∫ x̂

θ

θf(θ)
F (x)

dθ

)
.

By taking derivatives with respect to αA or αB at αA = αB = α, we can show that

D
(

1
2 (αA − αB)

)
> 1

2 (αA−αB) because α < 2(θ−µ). Thus there exists at least one stable

equilibrium with partial overlapping.
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Finally, for comparative statics when αA ≥ αB , note that at any stable sorting equi-

librium, the sign of dz/dαA is the same as ∂mA/∂αA. We have

mA(z) =
∫ x

y

αB

αA + αB
tf(t) dt +

∫ θ

x

tf(t) dt,

where y and x depend on z and αA through equation (A.2). The sign of ∂mA/∂αA is the

same as (
F (x)− 3

2

)
x +

1
2
y − αB

αA + αB

∫ x

y

tf(t) dt.

Upon integration by parts, and using equation (A.2), the above can be rearranged to

x− y

αA + αB

(
F (x)− 2 +

αA − αB

2αA

)
+

αB

αA + αB

∫ x

y

(F (t)− F (θe)) dt. (A.3)

We know that at z = 1
2 (αA − αB), the threshold types satisfy F (x̂) = 1 + αB/αA and

F (ŷ) = 0. At any partial-overlapping interval equilibrium with z > 0, we have x < x̂, and

hence the bracketed term in (A.3) is less than F (x̂)−2+ 1
2 (αA−αB)/αA ≤ 0. Furthermore,

(A.2) and the symmetry of f imply that x − θe ≤ θe − y when αA ≥ αB . Therefore, the

integral in (A.3) is also negative. We thus have dz/dαA < 0 when αA > αB . Similar

calculations show that dz/dαB > 0 under the same conditions. Q.E.D.

Proof of Proposition 7. Without loss of generality, assume mA ≥ mB . The per-

missible range of z is [0, µe − µ
e
]. If σδ < µ

e
− µe and σδ > µe − µ

e
, a positive fraction,

1−G(−z/σ), of the highest type agents will choose A and the rest will choose B. When

z > σδ all agents of the highest type θ will choose A.

Let HA(θ) be the type distribution function in organization A. Then for any θ < θ, a

fraction 1−G(−(z + α(2HA(θ)− F (θ)))/σ) of type θ agents prefer A to B. Thus,

H ′
A(θ) = (1−G (−z/σ − α(2HA(θ)− F (θ))/σ)) f(θ). (A.4)

The above is a differential equation in HA, with the boundary condition HA(θ) = 1. A

unique solution to the differential equation (A.4) exists; see, for example, Verhulst (1996).

Let HA(θ; z) be the solution to the differential equation. We assume that the solution

satisfies the capacity constraint of A; otherwise if the solution is negative for some θ,
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redefine HA(θ; z) as 0. Note that the solution to the differential equation cannot exceed

F (θ) at any θ, hence the capacity constraint of B is never violated.

We have thus established that for any given z, there is a unique allocation of types

between the two organizations consistent with the quality gap z. As before, an equilibrium

with z is defined by D(z) = z, and the equilibrium is stable if D′(z) < 1. Note that D(0) =

0 because H ′
A(θ) = 1

2f(θ) and therefore the solution to (A.4) is given by HA(θ; 0) = 1
2F (θ)

for all θ. At the other end, we have D(µe − µ
e
) ≤ µe − µ

e
, with strict inequality if and

only if σδ > µe − µ
e
. Thus, a stable sorting equilibrium exists.

Finally, we argue that an increase in σ shifts HA(θ; z) downward in that HA(θ; z) is

ordered by first order stochastic dominance for any z ∈ (0, µe−µ
e
). To establish this claim,

first note that HA(θ; z) = 1 for all σ, and the slope is smaller for the solution corresponding

to a greater σ. Next note that no two solutions corresponding to different σ’s can cross

at any other point, since at any crossing the solution corresponding to a greater σ has a

smaller slope by equation (A.4). An increase in σ then shifts down the function D. Since

D′(z) < 1 at a stable equilibrium, the quality difference z decreases. Q.E.D.
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