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ABSTRACT: In a financial market where all investors have valuable private information,
full rationality requires that investors have unlimited ability of figuring out the equilibrium
model. Instead, I assume that due to lack of knowledge or experience, some investors do
not know the equilibrium model and use only their private information in forming their
demand. By investigating the investment behavior of these “boundedly rational” investors
contrasting it with that of the rational ones, I find that in a market where the two kinds
of investors coexist, it is the boundedly rational investors who contribute to price stability.
The welfare implication is that, although each investor benefits from conditioning his asset
demand on the information carried by the equilibrium price, it can happen that all investors

lose by doing so because the equilibrium price becomes too volatile.
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1. Introduction

Since Milton Friedman (1953) made the famous claim that rational speculation should
stabilize price while irrational speculation should destabilize, there have been a number of
works devoted to offering counterexamples, including two recent contributions by Hart and
Kreps (1986), and Stein (1987). But these works address only half of the claim made by
Friedman: they show that under certain circumstances rational speculations can destabilize
the price. What is lacking in the literature is a comparison between rational and irrational
behavior, and an examination of their different effects on price stability.

A comparison between rational and irrational investors is possible only if we have a
convincing model of irrational behavior. It is a tautology that one can obtain any “result”
by imposing on economic agents an arbitrary pattern of behavior and justifying it by
“bounded rationality.” Indeed, one apparently unappealing aspect of Friedman’s claim on
the price-destabilizing effect of irrational investors rests on the stereotypical notion that
irrational investors form their expectations of price development in a very irrational way:
they somehow believe that if price is high today it is going to go up even further tomorrow.
This way of modeling bounded rationality is at best a simplistic view of the behavior of
investors whose abilities of forming the right expectations are limited by their knowledge
and experiences. In a sense, to model some behavior that is not fully rational, we must
“rationalize” bounded rationality, or give more structure to the limit imposed on investors’
rationality.

Rationality of investment behavior in a financial market naturally concerns how in-
vestors use their available information to form expectations of asset return. This important
issue is not addressed by existing models of boundedly rational behavior in the finance lit-
erature, such as the “noise traders” in Kyle (1985) who submit random asset demand, and
the irrational traders in De Long et al. (1991) who systematically underestimate variance
of asset return. Forming expectations of asset return is often a non-trivial task, especially
when information about asset return in a financial market is private and dispersed among
investors. The standard equilibrium concept in this context is rational expectations equi-

librium (see, e.g. Grossman (1976)), where the equilibrium price is a stochastic function
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of investors’ private information and the random asset return, and is therefore informa-
tive. A rational investor observes the price and uses both his private information and
the information carried by price to determine his demand for the asset. Full rationality
thus requires the knowledge of the equilibrium stochastic price function. But to figure out
this equilibrium price function, an investor has to solve a fixed-point problem, for rational
expectations equilibrium requires each investor’s asset demand to be consistent with the
equilibrium price function and the equilibrium price in turn to be consistent with individ-
ual asset demand through market clearing. Moreover, the investor has to have extensive
knowledge about parameters of the financial market such as wealth distribution among in-
vestors and their risk preferences, since these parameters in general affect the equilibrium
price function.

The level of rationality required in rational expectations equilibrium can be too high
to be realistic. I propose a boundedly rational behavior by assuming that boundedly
rational investors do not know the equilibrium price function and are thus unable to infer
any information from prices. These boundedly rational investors can be interpreted as
“outsiders” in financial markets, or “inexperienced” investors. This interpretation captures
the notion that what distinguishes an insider from an outsider is often not the former’s
better access to valuable information, but his ability to decipher valuable information from
publicly observed information. An example of insiders is an experienced broker, who has
both the trained expertise to solve the fixed-point problem (just as economists do) and the
accumulated knowledge about the market (he knows the right values of all the relevant
parameters).

With the definition of boundedly rational investors as those who have access to valu-
able private information but who are incapable of inferring information from equilibrium
prices, I consider a financial market populated by both rational and boundedly rational
investors, all with valuable private information regarding the return of a risky asset. The
equilibrium of the model is similar to the rational expectations equilibrium in that the
equilibrium asset price aggregates the diverse information among investors. However, only
rational investors are able to exploit the information embodied in the equilibrium price,

while boundedly rational investors form their expectations of the asset return based on
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their private information only. Regarding price stability, defined as dispersion of the re-
alized price around its mean, it is found that equilibrium price becomes more stable as
relative size of boundedly rational investors increases. This result can be interpreted as a
complete rejection of Friedman’s claim: it is the boundedly rational investors that make
price stable and rational investors that contribute to its instability.

The reasoning behind the positive relation between the relative size of the boundedly
rational investors and price stability can be understood as follows. The equilibrium price
of the asset enters a boundedly rational investor’s asset demand only through the budget
constraint, while it enters a rational investor’s demand also through its informational
content. A boundedly rational investor’s demand is therefore more negatively responsive
to changes in the price than a rational investor’s demand. For example, when the asset
price is high a boundedly rational investor reduces his demand for the asset, while a rational
investor who knows the equilibrium price function infers that the asset return is likely to
be high and so he tends to increase his demand relative to the boundedly rational investor.
It follows that the investment behavior of the boundedly rational investor contributes to
price stability and that of the rational investors does the opposite.

The above result has direct welfare implications because investors, rational or bound-
edly rational, are averse to the variations in the equilibrium price. This is especially true
when investors are endowed with relatively large quantities of the asset. Clearly, regard-
less of the relative size of the boundedly rational investors in the market, it pays for each
investor to be rational, i.e., to exploit the information conveyed by the price. However,
when all investors try to do so, the asset price may become so volatile that all investors
become worse off compared with a situation where some investors are boundedly rational.

Financial markets in the emerging economies are known to be much more volatile than
in the developed countries.? Some commentators in the emerging economies have attributed
the price volatility partly to the poor experience of investors with modern financial markets.
For example, last December the leading government newspaper in China carried an article
titled “Understanding Correctly the Current Stock Market,” (People’s Daily, December
19, 1996), which identifies investors’ lack of experience as one of main sources of a 340%

increase in stock price index from April 1 to December 9 last year. The article points out
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that high volatility follows inevitably from unsustainable stock price surges, and goes on
to suggest “educating” investors on risks and other aspects of stock market as a way to
reduce stock price volatility. The view expressed by the article contradicts the result in
this paper about the relation between inexperienced investors and price volatility. High
price volatility does not come from inexperienced “speculation.” Indeed, the result in this
paper also casts doubt on the view expressed in December last year and again February
this year by Allan Greenspan, the Chairman of the Federal Reserve of the United States,
that “it’s not markets that are irrational; it’s people who become irrationally exuberant
on occasion” (The New York Times, February 29, 1997).

The basic model and the usual rational expectations equilibrium are introduced in
Section 2. Section 3 defines rational expectations equilibrium with boundedly rational
investors, establishes the result that price stability is positively related to the relative size
of the boundedly rational investors, and considers the welfare implications of bounded
rationality. The last section concludes with some remarks on extending the model to other

issues of interest.

2. The Model

2.1. Two-period Economy

The basic model is borrowed from Verrecchia (1982). A description of the model is provided
to make this paper self-contained.

Consider a two-period economy with a single consumption good and two assets. One
is a risk-free bond with a normalized return of 1. The other is a risky asset with a return

X which is distributed normally:3

X ~ N(E[X],02).

x

Let h, = 1/02 be the precision of X.



There is a continuum of investors in the economy, indexed by ¢ € [0,1]. Each investor
1 1s endowed with by; units of the risk-free bond and zy; units of the risky asset. His

preference is given by a constant risk-aversion utility function in wealth w;:

u(w;) = —exp(—w;/r),

where r is the coefficient of absolute risk tolerance. Note that for simplicity, I have assumed
that risk tolerance is the same for all investors.
Each investor ¢ has access to a private signal Y;, which is assumed to be the sum of

the random return of the risky asset X and a white noise S; with variance o2:

Y, =X+5,.

Thus Y; is normally distributed with mean E[X] and variance 0% + 02. Let hy = 1/0?
be the precision of S;. That the variance of 5; is the same for all investors amounts to
assuming that the private signals have the same “quality.”® Furthermore, it is assumed
that 5; is independently distributed across .

Timing of events is as follows. At the beginning of the first period, each investor :
learns his endowments by; and zp;. Let b and z be the per-capita endowment of the risk-free
bond and the risky asset respectively. Then a realization of X occurs, unobservable to all
investors. Each ¢ is informed of y;, a realization of his private signal Y;. Two markets are
then opened, one for the risk-free bond and one for the risky asset. Walrasian auctions for
the bond and for the asset take place in the two markets subsequently. It is assumed that
the price of the risky asset is denominated in the price of the risk-free bond, so that the
market-clearing price of the bond can be assumed to be 1. Trading takes place and the
markets are closed when the market-clearing price of the risky asset is reached through
auctions in the two markets. In the second period, a realization of X is revealed to all

investors and each investor consumes his wealth.

2.2. Rational Expectations Equilibrium

The rational expectations equilibrium (see e.g. Grossman (1976), (1977)) in this model is

a stochastic equation that relates the price of the risky asset to its unobservable return.
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Finding the equilibrium entails solving a fixed-point problem. On one hand, the stochastic
price equation is a consequence of market-clearing in the market of the risky asset where
individual demands reveal their private information about the return. On the other hand,
the stochastic price equation implies that the price reveals useful information about the
unobservable return of the risky asset, and therefore the investors in the economy should
exploit the information in forming their demands. Stated slightly more succinctly, rational
expectations equilibrium is a model of the relation between the price and the return of the
risky asset such that if all investors in the economy adopt it in forming their demands for
the asset, it will coincide with the actual relation between the price and return.

As is standard now in the literature of rational expectations equilibrium under asym-
metric information, a second source of uncertainty besides the return to the risky asset
needs to be introduced into the model. Otherwise, with the return as the single source of
uncertainty, rational expectations equilibrium would imply that the price perfectly aggre-
gates the private information of the investors so that they do not use their private signals
in forming their demands. But then it would be unclear why the price ends up providing
all the information about the return in the first place.® This second source of uncertainty is
provided by the assumption that per-capita endowment of the risky asset, Z, is a random
variable unobservable by investors in the economy. Specifically, it is assumed that Z is

normally distributed:

7 ~ N(0,02),

and Z is independent from X and each S;. Let h, = 1/02 be the precision of Z.

The introduction of the new random variable Z has the effect of preventing the price
from fully revealing the return of the risky asset. Now rational expectations equilibrium can
be defined as stochastic equation that relates the price of the risky asset to its unobservable

return and supply.

DEFINITION 2.1. A rational expectations equilibrium is a stochastic price function P(X, Z)

such that Vz, z, and y;,

1
/ Zi(bOivzoivyhP(xvz))di =%
0
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where z;(boi, z0i, Woi, Yi, P, 2)) is a solution to the constrained maximization problem

max E[— exp(—(b; + z:.X)/r)|yi, P(x, 2)]

1

such that b; + z;p < bo; + zoip.

Due to the simplifying assumptions of constant risk-aversion utility function and nor-
mal distributions in this model, the rational expectations equilibrium can be calculated
explicitly. I will not do so, however, because it can be viewed as a special case of the

equilibrium described in the next section.

3. Rationality and Volatility

3.1. Rational expectations equilibrium with boundedly rational investors

The departure from the usual rational expectations equilibrium comes from the assumption
that some investors in the economy are not fully “rational,” or “boundedly rational.” These
investors are assumed to form conditional expectations of the return X on the basis of their
private signals only. Thus, they ignore the information about the return conveyed by the
equilibrium price. One explanation is that these investors are “inexperienced” investors
who do not have the knowledge of the equilibrium price function, either due to their
inability to solve a complex fixed-point problem, or more plausibly, due to their limited
knowledge about the parameters of the economy. The second factor is most reasonable in a
heterogeneous environment where complete knowledge about the parameters that permits
one to find the equilibrium price function is improbable. If one models limited knowledge
about the equilibrium price function formally as uncertainty about the parameters, then
what is called boundedly rational investors are in fact fully rational but face incomplete
information about the parameters of the model. T will not take this approach here, both
because I want to keep the model simple enough to permit explicit calculations, and because
such generalization does not add to the insights of the results.

Let B C [0,1] and R = [0, 1]\ B be the set of boundedly rational and rational investors

in the economy, respectively. Let AP be the measure of the set B, or the relative size of
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the boundedly rational investors in the economy. A rational expectations equilibrium with
boundedly rational investors can be defined along the same lines of rational expectations

equilibrium given in section 2.2.

DEFINITION 3.1. A rational expectations equilibrium with boundedly rational investors is

a stochastic price function P(X, Z) such that Va, z, and y;,
/ Z?(boz‘azoiayiap(%z))di ‘|‘/ Z?(boi,ZOi,yi,P(SE,Z))di =z, (3.1)
1IER 1€EB

where z8(bo;, 201, yi, P2, 2)) is as defined in Definition 2.1 and 22 (bo;, zo:, yi, P(, 2)) is a

solution to the constrained maximization problem

max E[— exp(—(b; + 2:X)/r)|y:]

1

such that b; + z;p < bo; + zoip.

Calculating a rational expectations equilibrium with boundedly rational investors is
made easy in this model by the assumptions of constant risk-aversion and normal distri-
butions. The crucial consequence of these simplifying assumptions is that demand for the
risky asset, by a rational investor as well as by a boundedly rational investor, is indepen-
dent of his endowed wealth. Furthermore, the demand is linear in his private signal and
the price. The market-clearing condition then implies that the equilibrium price is linear
in the return and the supply, since the white noises in the signals cancel with each other

when aggregated in the price.%

PROPOSITION 3.2. A rational expectations equilibrium with boundedly rational investors

is given by the stochastic price equation

P=nmny+m.X—7.2,

where y i
e P
. =m0 (her), (3.3)

and
o = (1 — . )E[X]. (3.4)
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PrROOF. The plan of the proof is to postulate some linear form of the equilibrium price
equation, find demand functions z%(bo;, 204, yi, P(x,2)) and zB(boi, 20i,yi, P(z, 2)), and
then use the market-clearing condition to verify that the equilibrium price equation takes
a linear form and solve for the coeflicients in the price equation.

Suppose that the equilibrium price P is linear in return X and supply Z:
P=my+7,X—7,7. (3.5)

Since both X and Z are normally distributed, P is also normally distributed. The covari-
ance matrix of the joint distribution (X,Y;, P) is given by:

2 2
o o Opa

2 2 2
oy 0L+ 0L Opr |- (36)
o o o2

p p p

2

Note that o,y = 0p,. Also, o,

and 0,, can be expressed as functions of the unknown

coefficients 7, and =.:

2 _ 2 2 2 2
Up = Ty 0y —I_ 2025
= 1.0, 3.7
Opy = Tp05. (3.7)

Given a realization y; of Y; and a realization p of P(X, Z), 22(bo:, 20i,yi, P(2, 2)) can

be calculated as follows. By properties of normal distribution,

E[bi + ziXlyi,p| | Varl[bi + z;i X|ys, p
E[—exp(—(bi + z:.X)/r)|yi, p] = —exp (_ [ | ] n [ | ]

r 2r2
bi + = E[X|y: 2Var[ X |yi
e (LNt [ Iy,p]JrZZVar[ lye.pl\
r 2r2

Straightforward optimization leads to

r(E[X]yi, p] — p)
Var[X|y;,p]

ZiR(bOﬁZOivyivp) = (38)

Note that z£(bo;, 20i,yi, P(2, 2)) is independent of by; and zg;. The expressions E[X|y;, p]
and Var[X |y;, p] can be obtained from (3.6):

Var_l[X|y‘ pl=hs+h +M
T S x 2

2 _ 527
O30, — Opy
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E[X |y, p] = 70" + v yi + 74P,

where

7' = E[X] — 4 B[X] — 4 E[P],

v = hVar[X |y, pl,

R ar| X )
~ T 5 g (39)
Caccp Cpx

Given a realization y; of Y; and a realization p of P(X, Z), 28 (b, 20i,yi, P(2, 2)) can

be similarly calculated. The counterpart of (3.8) is

r(E[X Yi| — P
2 (boi, 206, yi, p) = (V[ar[|X?y‘] ) (3.10)
The counterpart of equations (3.9) is
Var [ X|y,] = hs + he,
E[X|yi] =0 + 75 vis
where
38 = ELX] - 4PELX),
vy = hsVar[X[y,). (3.11)

Substituting (3.9) into (3.8) and (3.11) into (3.10), substituting the resulting expres-
sions into the market-clearing condition (3.1) in Definition 3.1, and using the fact that

fieR Yi = fieB y; = x, we have the following equation:

A= M0e' +y'e t'p—p)  AOC e —p) 2 (3.12)
Var[X]yi. p] Var[X|y:]  r’ '

Two equations in the two unknowns 7, and 7, can be obtained from the above equation:

hy (A= AP)A—) A%
7o Var[X|yi,p] Var[X|y;]’
1 _(1—AB)(1—7§”)+ \B
rr.  Var[X|yi, p] Var[X |y;]’

~10 -



Substituting (3.7) and (3.9), and (3.11) into the above two equations and solving them
give (3.2) and (3.3). Finally, taking unconditional expectations of the both sides of (3.12)

with respect to = and z yields

which together with (3.5), (3.2) and (3.3) implies (3.4). Q.E.D.

Note from the above proof,
Var T [X|y;, p] — Var™! [X|y;] =

The above expression can be interpreted as the “informativeness” of the equilibrium price.
It shows how much the information about the return X embodied in the equilibrium price
improves on the information provided by the private signal y;. The informativeness of the
equilibrium price is negatively related to the correlation between the price and the return
X. It is straightforward to verify that the informativeness of the equilibrium price does

not depend on the relative proportion A? of boundedly rational investors.

3.2. Price stability

Proposition 3.2 holds for any relative proportion A?. Simple comparative statics results
can be obtained by varying AZ. In the current static model, price stability may be identified
with the variance of the price of risky asset. The question of the relation between rationality
of the investors and price stability can be addressed by a comparative statics exercise. The

following result is a corollary of Proposition 3.2.
PRrROPOSITION 3.3. a]% is a decreasing function of AP,

PROOF. From (3.2), 7, decreases with AZ. Using (3.3), (3.7) can be written as:
o, =m0y + 02/ (her)?),

from which the proposition follows immediately. Q.E.D.
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The intuition behind the proposition is simple. By (3.10) and (3.11), a boundedly
rational investor’s expectation of the return X does not depend on p, and p enters his
demand for the risky asset through the budget constraint only. This contrasts with the
demand for the risky asset by a rational investor. It is easy to see from Proposition 3.2
that in equilibrium p and x are positively correlated. Therefore ’y]f“ is positive, and the
rational investor’s expectation of the return X depends positively on p. Thus, compared
with the demand for the risky asset by a boundedly rational investor, the demand for the
risky asset by the rational investor is less negatively responsive to increases in p. As the
relative size of boundedly rational investors increases in the economy, the total demand
for the risky asset becomes more negatively responsive to increases in the price, which
makes the equilibrium price more stable. Stated differently, rational investors destabilize
the price, while boundedly rational investors stabilize it.

In fact, it is even possible that the demand by the rational investor is an increasing
function of p. From (3.8), the necessary and sufficient condition for this to occur is that
’y]f” > 1. It 1s straightforward to demonstrate that ’y]f“ < 1if A = 0, and that there are
parameter values such that ’y]f” > 1 for some AP > 0. For example, if A® = 1, then ’y]f” >1
is equivalent to h.r? > o2 + o2,

From Proposition 3.3, 7, decreases as A\? increases. It might seem unintuitive that
the equilibrium price P depends less on the fundamental X as the proportion of boundedly
rational investors increases, since boundedly rational investors rely more on their private
information about the fundamental than rational investors, who use both their own private
information and the information contained in equilibrium price. A closer examination of
equations (3.8)-(3.11) reveals that this is not the case: the “elasticity” of demand with
respect to private information is the same for the boundedly rational and rational investors.

Boundedly rational investors in this paper are inexperienced investors who do not know
the equilibrium price function and are therefore incapable of inferring information from
the price. These investors can be alternatively thought of as “fundamentalists” who are
capable of inferring information from the price but do not care to do so because they trust
only their private information about the fundamental. The opposite of fundamentalists is

Y

“chartists,” irrational investors who do not care to use their private information and rely
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exclusively on information provided by the market price (price charts) in forming their
demand. Proposition 3.3 shows that fundamentalists contributes to price stability. Since
chartists and fundamentalists behave in opposite ways, intuition suggests that chartists
should destabilize. This intuition turns out to be flawed. Following the same analysis as
in Proposition 3.2, one can show that when the market is populated by three groups of
investors, chartists, fundamentalists (boundedly rational investors), and rational investors,
the equilibrium price function is P = my + 7, X — 7.7, where’

(1= 2Dk 4+ (1= AB)h. R (1 — X9)?
T e (1= )iy £ (1 - B h2r2(1 — AO)2

m,=m /(1 — /\C)hsr),
7o = (1 — 7, )E[X],

and A% is the proportion of chartists in the population. It can be shown from the above
equations that m, decreases in A“. Thus, the equilibrium price P depends less on the
fundamental X as the proportion of chartists increases.® This is clearly because chartists
disregard their private information and so there is less information aggregation by the price.
Relatedly, the informativeness of equilibrium price, defined as Var ™ [ X |y;, p]— Var ' [X|y],
can be shown to decrease as A\ increases. However, price instability, as measured by a]%,
does not necessarily increase as A\ increases. It can be shown that the necessary and
sufficient condition for a]% to increase with A\ is

1-\B 1/(r¥hsh.) — AB(1 — \9)
12 hsh) 4 (1 =AY T = AC) = Ty J(r2h2h) + (1 = AC)2 "

Thus, changes in the proportion of chartists have ambiguous effect on price stability.

3.3. Welfare implications

The expected utility of a rational investor with by; and zy;, conditional on y; and p and

given that 25 = 2%(bo;, 20i, yi, p), can be written as

E[b; + ZZRX Yi, P Var|b; + ZZRX yu, p
Bl exp(—(bi + X))l ] = —exp (-2 St 5 Tl

= —ex _@ ex . (E[X|ylvp] — p)2 _ PZoi
A 2Var[X |y, p| r )’
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Let UR(boi, z0;) be the unconditional expected utility of a rational investor with by; and

204, before y; and p are realized. Then, by the covariance matrix (3.6), U (bg;, zo;) is given

by
—ex bOl f Yi, P _(E[X|y“p] —p)2 B p201>
Y ( ) / sz ( 2Var[X |yi, p] — ) dp, (3.13)

where 27/ Af(y;, p) is the probablhty density of the bivariate normal distribution (Y3, P),

and
A= (og +00)0y — 05,5
op(yi —EX])*  0p.(yi —E[X])(p —E[X]) (0} +07)(p — E[X])’
. — __P pPri\Jt _ z s
fyisp) eXP( Y + I 51 :
Substituting (3.8) and (3.9) into (3.13), and sufficient simplifications lead to
Var[X |y, p] boi + 20iB[X] | 5i(oio; —o7,)
UR(bys, z05) = —4 | — 2 — P P . 3.14
(bos, 2o0:) Var[X — P] P r 2r2Var[X — P] ( )

Let UB(bo;, 20i) be the unconditional expected utility of a boundedly rational investor
with bg; and zy;, before y; and p are realized. UB(boi, z9;) can be calculated in a similar

fashion as above:

Var[X |y, p] boi + z0; E[X) z2(0ko? — o))

UP (boiy 200) = =\ | pre— b1 - p__p 3.15
(bos, z0i) DX ; 2 IDIX —P] ) (3.15)
where L o
hx(ax - UPI) px

hsVar[X — P]
A comparison of (3.14) and (3.15) immediately reveals that U%(bg;, z0;) > UB(bos, 201 ),

D[X — P] = Var[X — P] —

for any by; and zg;. Clearly, this follows from the fact that a boundedly rational investors’s
demand for the risky asset is not optimal because it does not exploit the information
about the return X carried by the equilibrium price. A more interesting question is how
the relative size of boundedly rational investors affects the welfare of each rational investor
and boundedly rational investor in the economy. It turns out that answer to this question
depends on the relative size of boundedly rational investors in the economy and on the
endowment of the risky asset of the particular investor in question. For the following

proposition, define
oi(o} +037)
o2o2r? + 02(02 4 02)

Note K is a positive constant less than one.

K =
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PROPOSITION 3.4. If AP > 6262 /r? 41 — K, then both U (by;, 20;) and UB (by;, z0;) are
increasing in A\B for any by; and z;; for any given A\B . if the absolute value of zy; is great

enough, then both UR(by;, zo;) and UB(by;, 20;) are increasing in \B.

ProoF. By Proposition 3.2, the equilibrium does not depend on the distribution of
endowments by; and zg;.

The right-hand-side of (3.14) can be viewed as a function of 7,. By Proposition 3.2,
7, is a decreasing function of A\B. Taking derivatives of (3.14) with respect to 7, then

implies that dUf(by;, 20;)/d\P is proportional to

<@>2 d((a%ag — a]%x)/Var[X — P)) 1 dVar[X — P]‘ (3.16)

dm,  Var[X — P] dm,

7

It is straightforward to verify that

olor— o, _ 2o’
Var[X — P] (1 —m,)%02(hsr)? + 720’

so that the first term in (3.16) is always positive. Furthermore, dVar[X — P]/dr, is
proportional 0202 /r2 — AB_ so that the expression given by (3.16) is positive for any zo;,
if \B > o202 /r2.

Similarly, taking derivatives of (3.15) with respect to m, implies that dU B (bo;, z0;)/d\B

is proportional to

z0:\2 d((030; — 03,)/DIX — PJ) 1  dD[X - P]
<_> dry DX -P] dr, (3:.17)

7

It can be verified that

2 2 2.2 2
P UPZ _ Fwaxo-z
+(

DIX —P]  K(1—7.)20%(her)? + 2o,

2
0,0

The first term in (3.17) is therefore always positive. Moreover, dD[X — P|/dr, can be
shown to be proportional 0262 /r? +1 — K — AB, so that the expression given by (3.17) is
positive for any zo;, if \Z > 0202 /r? +1 - K.

Therefore, if \® > 0202 /r? +1 — K, both U%(by;, 20;) and UB(by;, z0;) are increasing

in AP for any by; and zp;. Furthermore, since the equilibrium does not depend on the
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distribution of endowments by; and zy;, for any given AB . if the absolute value of zg; is
great enough, then both U%(by;, 20;) and UB(by;, zo;) are increasing in \5.

Q.E.D.

Although Proposition 3.4 is stated in terms of effect of the relative size of boundedly
rational investors on the welfare of individual investors, it can be restated for the welfare
of the whole economy. For example, in an economy where all investors are endowed with
large (positive or negative) quantities of the risky asset, if some of the investors behave
in a boundedly rational fashion, then every investor, including those who are boundedly
rational, are better off in terms of greater unconditional expected utility. Thus, although
each investor benefits from conditioning his asset demand on the information carried by
the equilibrium price, it can happen that all investors lose by doing so. The reason is that
risk-averse investors, rational ones and boundedly rational ones alike, dislike volatility of
the price, especially when they are endowed with large quantities of the risky asset. By
Proposition 3.3, the equilibrium price is less volatile when the relative size of boundedly

rational investors increases, and so all investors can benefit such an increase.

4. Concluding Remarks

In some financial markets, it is possible to invest more resources to collect better private
information about the return of the asset. For example, investors can spend more time
following relevant news reports or examining the trend in the return of the asset. This
can be formalized in the present model by allowing them to choose the quality of their
private information before the markets open. Higher quality of private information, in the
form of greater precision of the signals, can be assumed to be more costly in terms of the
single consumption good. As long as the cost of acquiring better private information is
the same for all investors, this extension of the model keeps intact the idea that it is the
ability to infer information from the price, and not a greater access to superior private
information, that distinguishes the experienced investors from the inexperienced investors

in financial markets. For a rational investor, the usefulness of his private information
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depends negatively on how informative the equilibrium price is. Since boundedly rational
investors do not know how to infer information from the equilibrium price, they spend more
in collecting private information than rational investors do. Therefore, unlike the model
presented here, the informativeness of the equilibrium price will be positively related to
the relative size of boundedly rational investors. As the price becomes more informative
with greater relative size of boundedly rational investors, demands for the risky asset by
rational investors become even less negatively responsive to increases in the price, adding
to instability of the equilibrium price. It can still be shown that there is a positive relation
between the size of boundedly rational investors and price stability, but the relation will
be weaker than in the case discussed in the present paper, where rational and boundedly
rational investors have the same quality of private signals.’

The model of bounded rationality can be useful for discussing other issues in ratio-
nal expectations equilibrium under heterogeneous information. In particular, because the
equilibrium price carries valuable information, boundedly rational investors would be will-
ing to pay for advices from rational ones. Extending the model by allowing for a market
for financial consultation is an interesting topic, and it will also be interesting to investi-
gate the effects of a market of financial consultation on the informational content of the

equilibrium price and on the stability of the price.
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Footnotes

1. A draft of the paper was completed in 1994. The author would like to thank Michael
Chwe and Michael Woodford for helpful discussions. Financial support from the Sloan
Foundation Dissertation Fellowship is gratefully acknowledged.

2. See, for example, the report in March 15 issue of The Economist.

3. Throughout the paper, random variables are denoted by capitalized letters, and their

realizations are denoted by corresponding lower cases.

4. This assumption can be easily modified without changing the results of this paper. See

the last section for remarks on a more meaningful way of relaxing this assumption.
5. See Hellwig [1980] for a detailed argument.

6. See Hellwig [1980] for a formal argument based on convergence of a sequence of discrete

economies.
7. I use the same notation as the last section to ease the burden.

8. In considering the effect of an increase in A¢, I implicitly assume that the proportion of
rational investors decrease while A® remains the same. If the increase in A\ comes with
the decrease in A? while the proportion of rational investors remains the same, 7, can

either decrease or increase depending on parameters.

9. Proof of this claim is available from the author by request.



