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Abstract

We consider a price discrimination problem in which a seller has a single object for

sale to a potential buyer. At the time of contracting, the buyer’s private type is his

incomplete private information about his value, and the seller can disclose additional

private information to the buyer. We study the question of whether discriminatory in-

formation disclosure can be profitable to the seller under the assumption that, for the

same disclosure policy, the amount of additional private information that the buyer can

learn depends on his private type. We establish sufficient conditions under which it is

profit-maximizing for the seller to grant each private type of the buyer full access to all

additional private information under her control. In general, however, discriminatory dis-

closure can be optimal, because it reduces the information rent accrued to private types

of the buyer without much impact on the trade surplus.
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1 Introduction

Imagine a homeowner trying to sell her house to a prospective buyer. The seller cannot tell

whether the buyer is a rich guy who is potentially willing to pay a good price for the house

if he likes it, or someone with more limited means who is more likely to pay less money.

Regardless of whether he is the rich type or the budget type, the buyer initially has only

limited information about the house: he does not know how much he likes it and hence how

much he is willing to pay. To sell the house, the seller can grant the buyer full access to it

and allow the buyer to find out privately his willingness to pay—but only after the buyer

chooses between paying a fee in advance in exchange for the option of buying the house at the

seller’s reservation value, and paying a smaller fee for the purchase option at a higher price.

If the two contracts are properly designed, the rich type is indifferent between the two and

so is happy to accept the efficient contract, and the budget type strictly prefers the second

and inefficient one. Moreover, while the seller makes sure that budget type does no better

than rejecting the inefficient contract, she must leave some “rent” to the rich type, because

the latter gets more out of the inefficient contract than the budget type.

The above is a motivating example of sequential price discrimination of Courty and Li

(2000).1 In the present paper, we consider the possibility of using information disclosure pol-

icy as an additional instrument of price discrimination. To continue with the above example,

imagine that the seller can choose how much additional private information that the buyer

can learn prior to transaction – from opening the house for the buyer’s complete inspection,

to giving him a virtual house tour, to just showing some photos. Regardless of the buyer’s

type, more private information disclosed by the seller allows the buyer to refine the estimate

of his willingness to pay and increases the total trade surplus with the buyer. Since the

rich type is offered the efficient contract, the seller will want to allow him to learn as much

additional information as possible. However, the same is not generally true for the budget

type, because the information disclosure policy attached to the inefficient contract affects

the rent to the rich type as well as the trade surplus with the budget type. It can happen

that the information disclosure policy the seller chooses for the inefficient contract has little

impact on the realized willingness of pay for the budget type, perhaps because the budget

type already has relatively accurate information about his value, and at the same time, the

rich type initially has little information about the house and potentially a lot to learn about

it. In this case, the rent to the rich type from the inefficient contract can be reduced by

attaching to the contract a less than full information disclosure policy.

Sequential screening introduced by Courty and Li (2000), where the buyer has incomplete

private information about his value of the seller’s object for sale, is a natural and simple

1Baron and Besanko (1984) were the first to consider the problem of dynamic price discrimination. They

also introduced “informativeness measure” to quantify information rent for ex ante buyer types. However,

they did not provide sufficient conditions for their application of the first order approach to dynamic incentive

compatability.
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environment to consider the issue of discriminatory information disclosure. We depart from

sequential screening by making the following assumptions. First, the seller can disclose,

without observing, additional private information to the buyer after the two parties agree on

a mechanism. One of first papers to introduce to the literature the idea of private information

disclosure is Bergemann and Pesendorfer (2007), who study the optimal signal structures for

an auctioneer.2 In their model, bidders in the auction have no private information at the

timing of contracting, and there is a trade-off between disclosing more private information

and thus improving allocation efficiency among the seller and the bidders on one hand, and

having to elicit the private information from the bidders and thus giving up more information

rent on the other. Second, the seller can charge the buyer for accessing additional private

information. Eso and Szentes (2007) make the same assumption and show that the trade-off

identified in Bergemann and Pesendorfer (2007) disappears. In particular, they show that

under the same conditions as in the sequential screening model of Courty and Li (2000), the

seller gives up no information rent for the additional private information—all the information

rent arises from the ex ante private information that the buyer has at the time of contracting.

They argue that this result implies that the seller should release all the additional private

information under her control. Third, for the same disclosure policy chosen by the seller, the

amount of additional private information that the buyer can learn depends on his ex ante

private type. This assumption allows the seller to use discriminatory information disclosure

to further reduce the buyer’s information rent from his ex ante private information relative

to Courty and Li (2000) and Eso and Szentes (2007).

Section 2 introduces the framework of sequential screening and makes the three departing

assumptions mentioned above. We specify an “information environment” by quantifying the

seller’s information disclosure policy and ordering the buyer’s ex ante types. The central

modeling issue is: given the perfect signal structure under full disclosure, what is “partial”

disclosure? We argue that a natural and general way of modeling partial disclosure is consis-

tent with our third departing assumption that under the same partial disclosure policy the

amount of additional private information disclosed depends on the ex ante type of the buyer.

In the above motivating example of selling a house, a video of virtual tour of the house can

be more informative to the rich type than to the budget type. This is the critical modeling

choice that generally makes discriminatory information disclosure optimal.

In Section 3, we first consider the model in which the buyer’s ex ante type is discrete.

We characterize the optimal selling mechanism that incorporates both information disclosure

and sequential screening. In the case of two ex ante private types that are ordered by first

order stochastic dominance, our characterization shows that it is optimal for the seller to

fully disclose information for the dominant type, but that the optimal information disclosure

for the dominated type must balance the trade surplus with this type and the information

rent to the dominant type. We provide a sufficient condition for full information disclosure

2See also Lewis and Sappington (1994), Che (1996), Ganuza (2004), and Johnson and Myatt (2006).
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to be optimal for both types: if the seller controls all additional private information that

the buyer can acquire and can only choose either full information or no information for both

types. Numerical examples are used to show that full information disclosure for both types

is in general suboptimal. In fact, discriminatory disclosure can even extract all the surplus.

Section 4 considers the model with a continuum of ex ante buyer types. We charac-

terize sufficient conditions for the first order (local) approach to be valid in characterizing

the optimal selling mechanism that incorporates both information disclosure and sequential

screening. Using this characterization, we identify information environments under which

full information disclosure is optimal. In each of these cases, the information rent of each ex

ante buyer type is unaffected by the seller’s information disclosure policy, so any additional

private information disclosed by the seller increases the virtual surplus for this type. In gen-

eral, however, the optimal information disclosure policy is not full disclosure. We extend the

discrete example in the previous section to show that partial disclosure can extract all the

surplus. Another example with an explicit information environment is used to show that the

seller can reduce the information rent of almost every buyer type by limiting the amount of

additional private information disclosed.

In Section 5, we relate our findings to Eso and Szentes (2007). They show that there is

no information rent from any private information disclosed by the seller by comparing the

sequential screening setting with a “hypothetical” setting where the seller can observe all

additional private information she discloses after contracting with the buyer. We argue that

their result does not imply that full information disclosure is optimal when discriminatory

information disclosure is allowed, for two reasons. First, the seller’s profit in the hypothetical

setting with full disclosure may be strictly lower than the profit that the seller can attain

in the original setting. The implicit claim in Eso and Szentes (2007) that the profit in the

hypothetical setting is an upperbound on the original setting turns out to be true only if

partial disclosure means that the amount of additional private information is independent of

the ex ante type of the buyer.3 However, as shown in the previous sections, this claim does

not hold generally. Second, in the discrete type model, the profit attained by the hypothetical

seller cannot be replicated by the sequential screening seller because of a failure of revenue

equivalence, although the gap in profits disappears in the continuous type model.

Our paper belongs to the rapidly growing literature on dynamic mechanism design. For

optimal dynamic mechanism design, see Battaglini (2005), Board and Skrzypacz (2010),

Pavan, Segal and Toikka (2012), Boleslavsky and Said (2013), and references therein. For

efficient dynamic mechanism design, see Athey and Segal (2007), Gershkov and Moldovanu

(2009), Bergemann and Valimaki (2010), and references therein. Bergemann and Said (2011)

and Gershkov and Moldovanu (2012) provide excellent survey of the recent development.

3Eso and Szentes (2007) do not offer a proof of this claim. In private communication, Roland Strausz has

suggested one, which we include in Section 5 for completeness.
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2 The Model

2.1 Basic Setup

Consider the following two-period sequential screening model. A monopolist sells a good to

a single buyer. The production entails no fixed cost but a constant marginal cost c > 0,

which we sometimes also refer to as the reservation value of the seller. The buyer’s true

valuation ω ∈ [ω, ω] for the good is unknown ex ante. The buyer privately observes a signal

θ ∈ Θ about his true valuation ω. Let the prior joint distribution over ω and θ be F (ω, θ),

with corresponding density function f(ω, θ); this is taken as the primitive of the information

environment specified below. Let the marginal distribution of θ be F (θ) and denote the

corresponding density function as f(θ). The hazard rate f (θ) / [1− F (θ)] is assumed to

be increasing in θ. We assume that both the buyer and the seller are risk-neutral, and for

simplicity, do not discount.

The basic idea of information disclosure in this setting is as follows. The seller controls

an additional private signal z about ω, and can release, without observing, a signal that is

correlated with z to the buyer. Moreover, the seller can choose how much information to

release: we model this by allowing the seller to choose some σ from a set S, where each σ

represents the signal structure of some random variable, which from now on we denote as sσ

and denote its realization as s ∈ [s, s]. We note that sσ can be correlated with the buyer’s

ex ante type θ, but for notational brevity we will not make it explicit. We assume that there

is no cost of disclosing any information. In principle, the seller can discriminate different ex

ante types θ of the buyer, by providing a different signal structure σ to different buyer types.

To model this, we allow the seller to choose a particular σ from S depending on the buyer’s

reported ex ante type.

For simplicity, we assume that all information of the buyer about ω besides his ex ante

type θ is under the seller’s control. That is, the buyer may not acquire any additional private

information about ω on his own. This assumption is without loss of generality, however,

because we can always assume that the seller is obligated to disclose some minimum amount

of information, which can then be interpreted as the information that buyer can acquire on

his own. We also assume that z = ω; that is, if the seller fully discloses all the additional

private information, the buyer will learn the true value of the product. Given the assumption

of risk-neutrality, this assumption is also without loss of generality: it amounts to defining

what is the maximum amount of information under the seller’s control, as we can always

redefine the buyer’s posterior estimation of his valuation condition on θ and z as the true

valuation ω.

Formally, following Bergemann and Pesendorfer (2007), we define a signal structure as a

joint distribution function F σ(ω, θ, s), with corresponding joint density fσ(ω, θ, s), such that∫
fσ(ω, θ, s)ds = f(ω, θ)

for all ω and θ. The above constraint can be thought of as a “consistency” requirement on
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feasible signal structures, as it requires the marginal distribution over ω and θ to coincide

with the given prior distribution. Given F σ (ω, θ, s), we can define the conditional distribution

function F σ(ω|θ, s) and the marginal distribution function F σ(s) in the usual fashion. At

this point, we allow any signal structure that satisfies the above consistency condition.

Given F σ (ω, θ, s), a type-θ buyer who observes a signal s will update his belief about

ω according to Bayes’ rule. Let V σ(θ, s) denote this buyer’s revised estimate of ω after

observing s; that is,

V σ(θ, s) ≡ Esσ [ω|θ, sσ] =

∫
ωfσ(ω|θ, s)dω.

Let G (·|θ, σ) denote the distribution of V σ(θ, s) with corresponding density g (·|θ, σ), for the

type θ-buyer who knows the signal structure σ but has yet to observe the signal realization

s. We have:

G(v|θ, σ) =

∫
{s|V σ(θ,s)≤v}

dF σ(s).

Note that by the consistency condition,

Es [V σ(θ, s)] = E [ω|θ] ≡ µ(θ),

so that regardless of σ ∈ S, the mean of the posterior estimate is always equal to the

prior mean µ(θ) given the buyer’s ex ante type. This extends the idea of “private value” of

information disclosure discussed in Bergemann and Pesendorfer (2007) to the setting where

the buyer has imperfect private information. The interpretation is that the buyer’s true

valuation ω reflects the match between the buyer’s idiosyncratic tastes and the characteristics

of the seller’s product. So even though the seller observes the characteristics of her product,

she does not know how it is valued by the buyer.

Having defined a signal structure σ in S for each buyer ex ante type, we now introduce

“disclosure policy” {σ(θ)} as the seller’s choice of a signal structure from S for each reported

buyer type θ. Since both the buyer and the seller are risk-neutral, regardless of his report

θ̂, following the signal structure σ(θ̂), the buyer’s realized posterior estimate v of his true

valuation ω, instead of the realized signal disclosed by the seller, is all that matters. Thus,

by the standard Revelation Principle, for a given disclosure policy {σ(θ)}, we can focus

on direction revelation mechanisms {{x (θ, v) , t (θ, v)}}, where x (θ, v) denotes the trading

probability conditional on the buyer’s sequential reporting first his ex ante type θ and then

his posterior estimate v realized under the signal structure σ(θ), and t (θ, v) denotes the

corresponding payment made by the buyer to the seller. The goal of the seller is to choose

a disclosure policy {σ (θ)} and a selling mechanism {{x (θ, v) , t (θ, v)}} jointly to maximize

her expected profit.

To provide more structure to the above optimal design problem and quantity disclosure

policies, we introduce two orderings on {{G(·|θ, σ)}}, one with respect to θ for each fixed σ,

and the other with respect to σ for each fixed θ. Together we refer to the two orderings an

“information environment.”
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First, we restrict our analysis to families of distributions {G (·|θ, σ)} with respect to the

ex ante type θ of the buyer that satisfy one of the two conditions below for any σ ∈ S:

1. First-order stochastic dominance (FSD): G (v|θ, σ) ≤ G (v|θ′, σ) for all v and θ > θ′.

2. Mean-preserving spread (MPS):
∫
vdG (v|θ, σ) =

∫
vdG (v|θ′, σ) for all θ and θ′, and∫ v

[G (y|θ, σ)−G (y|θ′, σ)] dy ≥ 0 for all v and θ > θ′.

The existing literature on dynamic mechanism design exclusively focuses on FSD, with the

notable exception of Courty and Li (2000), who use MPS to explain why optimal sequential

screening can distort allocations by over supplying the good. For our purpose here, which

is to illustrate the possibility of optimal discriminatory disclosure, FSD would be sufficient,

but we include MPS to make our point more generally.

Second, we need an information order to rank the informativeness of the random variable

sσ chosen by the seller for each given θ. Since the distribution of v, G (·|θ, σ), is uniquely

determined by σ conditional on θ, we would like to have an information order that directly

ranks {G (·|θ, σ)} instead of sσ. Given the consistence requirement that each G (·|θ, σ) is

generated from the same prior distribution F (ω, θ), this can be achieved by adapting the

definitions of precision orders in Ganuza and Penalva (2010): random variables sσ are ordered

by “integral precision” if the corresponding conditional distributions functions {G (·|θ, σ)}
satisfy “convex order,” given as follows:

Definition 1 (Convex Order) For any fixed θ, the family of distributions {G (·|θ, σ)} is

convex-ordered if σ > σ′ implies that
∫
ϕ(v)dG (v|θ, σ) ≥

∫
ϕ(v)dG (v|θ, σ′) for any convex

function ϕ.

Recall that by consistency, the mean of G (v|θ, σ) is equal to µ(θ) for all σ ∈ S. Thus,

given that G (v|θ, σ) satisfies the consistency requirement, σ > σ′ by convex order if and only

if G (v|θ, σ) is a mean-preserving spread of G (v|θ, σ′). For some results presented below, we

need to strengthen the convex order following Johnson and Myatt (2006):

Definition 2 (Rotation Order) For any fixed θ, the family of distributions {G (·|θ, σ)} is

rotation-ordered if there exists a rotation point v+ such that

∂G (v|θ, σ)

∂σ
≥ 0 if v < v+, and

∂G (v|θ, σ)

∂σ
≤ 0 if v > v+,

for all σ.

The rotation point v+ is often the ex ante mean µ (θ). Consider two signal structures σ

and σ′ with σ > σ′. Then distribution G (·|θ, σ) dominates distribution G (·|θ, σ′) in rotation

order, in other words, σ is more informative than σ′, if

G (·|θ, σ) ≥ G
(
·|θ, σ′

)
if v < v+, and G (·|θ, σ) ≤ G

(
·|θ, σ′

)
if v > v+.
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Graphically, the rotation order requires that two rotation-ordered cumulative distributions

cross each other only once. In particular, the distribution G (·|θ, σ′) crosses the distribution

G (·|θ, σ) from below, and the density g (·|θ, σ) is more spread out. Since consistency requires

G (·|θ, σ) and G (·|θ, σ′) to have the same mean, rotation order is a special case of mean-

preserving spread, and is thus a strengthening of convex order.

The literature has proposed several ways to rank informativeness of signal structures:

(i) Blackwell (1951) sufficiency, (ii) Lehmann (1988) and Perciso (2000) accuracy, and (iii)

Athey and Levin’s (2001) monotone information order with supermodular preferences. All

these criteria order signal structures based on posteriors. Jewitt (2007) has an excellent

discussion about the relation of these criteria and shows that (i) implies (ii), and (ii) implies

(iii).

Recently, Ganuza and Penalva (2010) argue that the seller’s disclosure problem is different

from the standard statistical decision problem in that the seller supplies information but it is

the buyer rather than the seller who uses the information for decision making. In particular,

the seller is not primarily interested in supplying information to improve the buyer’s decision

making, rather she is interested in choosing information disclosure to maximize her profit. To

study the seller’s disclosure problem, they proposed the new information criterion of integral

precision, which is based on conditional expectations. Ganuza and Penalva (2010) show that

it is implied by the monotone information order in Athey and Levin’s (2001). Therefore,

integral precision order is weaker than Blackwell order or Lehmann order.

We follow Ganuza and Penalva (2010) here and allow a broader class of ordered signal

structures than the standard one with Blackwell or Lehmann. An implication is that σ > σ′

in convex order or rotation order does not mean that σ is more valuable than σ′ for the

seller in the sense of Blackwell or Lehmann. On the other hand, under incentive compatible

mechanisms, σ > σ′ in convex order always implies that σ is more valuable for the buyer

than σ′, because the buyer’s interim utility (gross of any transfer to the seller) as a function

of posterior estimate v is always convex.

2.2 Full Disclosure and Partial Disclosure

The above framework incorporates the model of sequential screening of Courty and Li (2000)

as a special case. To see this, suppose that the set of feasible signal structures is a singleton;

without loss of generality, we assume that the seller has to provide perfect information to

the buyer. This might be a result of some legal requirement. In any event, let σ represent

the signal structure under “full disclosure,” such that, for any θ ∈ Θ, there is an invertible

function Pθ that maps [ω, ω] to [s, s], with

F
σ
(s|ω, θ) =

{
0 if s < Pθ(ω)

1 if s ≥ Pθ(ω)
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Without loss of generality, we assume that Pθ is increasing. From the above conditional

distribution function, we obtain the joint distribution function F σ(ω, θ, s), as follows

F σ(ω, θ, s) =

{
0 if s < Pθ(ω)

F (ω, θ) if s ≥ Pθ(ω)

Knowing the realization of random variable sσ is the same as knowing ω for each type θ. By

construction the consistency requirement on F σ(ω, θ, s) is satisfied. The implied conditional

distribution of sσ is given by

F σ(s|θ) = Pr
(
sσ ≤ s|θ

)
= Pr

(
ω ≤ P−1θ (s)|θ

)
= F

(
P−1θ (s)|θ

)
.

Further, we have

V σ(θ, s) = P−1θ (s),

and thus

G(v|θ, σ) = Pr
(
P−1θ (s) ≤ v|θ

)
= Pr (s ≤ Pθ(v)|θ) = F (ω|θ),

which is independent of Pθ. Since S is a singleton, an information environment is simply an

ordering of {F (·|θ)}, in terms of FSD or MPS, which is the sequential screening model of

Courty and Li (2000).

The model of information disclosure in Eso and Szentes (2007) is also incorporated as a

special case of our framework. To begin, consider the random variable s~σ ≡ F (ω|θ). Let q

be a typical realization of s~σ, and Ωθ (q) be the inverse of the conditional quantile function

F (ω|θ), which gives type-θ buyer’s true valuation ω as a function of the realized q. Taking

F (ω|θ) as the function Pθ(ω) in the above formulation, we obtain that the signal structure

~σ represented by s~σ is an equivalent representation of perfect information. By the above

argument, s~σ is uniformly distributed over [0, 1] conditional on θ, as

F ~σ(q|θ) = Pr
(
s~σ ≤ q|θ

)
= Pr (ω ≤ Ωθ(q)|θ) = F (Ωθ(q)|θ) = q.

Thus, s~σ is independent of θ. This particular way of modeling full disclosure gives rise to what

Eso and Szentes (2007) refer to as the “orthogonal” decomposition of all the private infor-

mation about ω into what the buyer always knows, which is θ, and s~σ, which is independent

of θ.4

One way of modeling “partial” disclosure is to use s~σ to construct a class of signal struc-

tures S such that each σ ∈ S remains orthogonal to θ. We will refer to it as “orthogonal

disclosure.” Formally, for each σ ∈ S, let Γσ(·|q) be the distribution function of sσ conditional

on s~σ = q. Therefore, in the sense of Blackwell (1951), each σ is a garbling of ~σ. Define

F σ(s|ω, θ) = Γσ (s|F (ω|θ)) ,
4This decomposition is important for Eso and Szentes (2007) to construct the profit-maximizing problem

of a “hypothetical” seller who observes the realization of s~σ but not θ. This is a meaningful problem because

s~σ is independent of θ. Their main result is that the seller in the original setting who does not observe s~σ can

obtain the same expected profit as the hypothetical seller. Thus, the “new” information modeled by q does

not result in any information rent to the buyer. See Section 5 for details.
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from which we then have the joint distribution F σ (ω, θ, s). By construction, F σ (ω, θ, s)

satisfies the consistency requirement. Furthermore, sσ is independent of θ by construction,

with

F σ(s|θ) = Pr (sσ ≤ s|θ) =

∫ 1

0
Γσ(s|q)dF ~σ (q|θ) =

∫ 1

0
Γσ(s|q)dq,

where we have used F ~σ (q|θ) = q. Finally, since

V σ(θ, s) =

∫
Ωθ (q) dΓσ(q|s),

we have

G(v|θ, σ) =

∫
{s|V σ(θ,s)≤v}

dF σ(s),

where F σ(s) = F σ(s|θ) is given above.

In orthogonal disclosure, since the distribution of sσ is independent of θ, any order

of {F (·|θ)} with respect to θ is passed on without change to the family of distributions

{G(·|θ, σ)} with respect to θ for any σ. For example, suppose that {F (·|θ)} is ordered by

FSD: θ > θ′ implies that F (ω|θ) ≤ F (ω|θ′) for all ω. Then, Ωθ(q) ≥ Ωθ′(q) for any q ∈ [0, 1],

and thus V σ(θ, s) ≥ V σ(θ′, s) for all σ, implying that G(v|θ, σ) ≤ G(v|θ′, σ) for all v. A

similar argument holds for MPS order of {G(·|θ, σ)} with respect to θ. For the other part of

information environment, again since the distribution of sσ is independent of θ for any σ ∈ S,

the order between two signal structures σ and σ′ is also independent of θ. This implies that

the ordering of a family of distributions {G(·|θ, σ)} with respect to σ is independent of θ.

Orthogonal disclosure is simple to work with and easy to verify that the consistency

requirement is satisfied. However, it is a special model in the framework we have set up here.

In general, there is no reason to assume that each signal structure σ ∈ S is orthogonal to the

ex ante buyer type θ.

To illustrate, consider the case where partial disclosure is generated by a two-way partition

signal structure σ. Without loss of generality, for some ω̂ ∈ (ω, ω), assume that there are two

possible realized signals sL and sH of the random variable sσ, with V σ(θ, s) given by

V σ(θ, s) =

{ ∫ ω̂
ω ωdF (ω|θ)/F (ω̂|θ) if sσ = sL∫ ω

ω̂ ωdF (ω|θ)/(1− F (ω̂|θ)) if sσ = sH

Clearly, the distribution of sσ is not independent of θ:

F σ(s|θ) =


0 if s < sL

F (ω̂|θ) if sL ≤ s < sH

1 if s ≥ sH

For each θ ∈ Θ, the family of conditional distributions {G(·|θ, σ)} is given by

G(v|θ, σ) =


0 if v < V σ(θ, sL)

F (ω̂|θ) if V σ(θ, sL) ≤ v < V σ(θ, sH)

1 if v ≥ V σ(θ, sH)
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By construction, {G(·|θ, σ)} satisfies the consistency requirement. Further, if {F (·|θ)} is

ordered by likelihood ratio order with respect to θ, then both V σ(θ, sL) and V σ(θ, sH) increase

in θ,5 and thus {G(·|θ, σ)} is ordered by FSD. Finally, when S contains only σ as thus

constructed and σ, then σ is dominated in convex order by σ for each θ as they are ordered

by Blackwell sufficiency.

3 Discrete Types

We start with a discrete setting where the ex ante types is binary, θ ∈ Θ ≡ {H,L} , with

probability fH and fL respectively. Let Gθ (v|σ) denote the distribution of v conditional on

ex ante type θ and signal structure σ. We assume that the support of V (θ, s, σ) is the same

for θ = H,L and all σ ∈ S, given by [v, v].

In this section, we first characterize the optimal mechanism and disclosure policy for

general distributions. We then provide three examples, two ordered in terms of FSD and the

third in terms of MPS, in which full disclosure is not optimal.

3.1 General Characterization

Without loss of generality, we can focus on refund contracts.6 A refund contract (e, k) consists

of an advance payment e at the end of period one and a refund k that can be claimed at the

end of period two after the buyer forms posterior estimate v. A buyer will purchase if and

only if v ≥ k.
The timing of the game is adapted as follows: The seller first announces a pair refund

contracts ((eH , kH) , (eL, kL)) and disclosure policy (σH , σL) ; each type-θ buyer then reports

his type θ′ and pays the advance payment eθ′ ; after receiving a report on θ′, the seller discloses

a signal s according to signal structure σθ′ ; after observing s, the buyer updates his value

estimate v, and decides whether to claim refund kθ′ .

Under the refund contracts and the disclosure policy, we can write the seller’s maximiza-

tion problem as

max
(eH ,kH),(eL,kL)

{
fH [eH − kHGH (kH |σH)− c (1−GH (kH |σH))]

+fL [eL − kLGL (kL|σL)− c (1−GL (kL|σL))]

}
5See Theorem 1.C.5 in Shaked and Shanthikumar (2007). For θ′ > θ, F (·|θ′) dominates F (·|θ) in likelihood

ratio order if f (ω|θ′) /f (ω|θ) is increasing in ω, where f (·|θ′) and f (·|θ) are densities corresponding to F (·|θ′)
and F (·|θ), respectively.

6Refund contract and “call option” contract have a similar form. Our analysis here can also be interpreted

in terms of call options.
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subject to

(IRH) : −eH + v −
∫ v

kH

GH (v|σH) dv ≥ 0

(IRL) : −eL + v −
∫ v

kL

GL (v|σL) dv ≥ 0

(ICH) : −eH + v −
∫ v

kH

GH (v|σH) dv ≥ −eL + v −
∫ v

kL

GH (v|σL) dv

(ICL) : −eL + v −
∫ v

kL

GL (v|σL) dv ≥ −eH + v −
∫ v

kH

GL (v|σH) dv

Now we will characterize the optimal disclosure policy and the optimal selling mechanism.

As standard in solving screening problems, we first reduce the set of constraints.7

Lemma 1 Under either FSD or MPS,

(i) (IRL) and (ICH) imply (IRH).

(ii) (IRL) and (ICH) bind.

(iii) The four constraints are equivalent to binding (IRL) and (ICH), and the monotonicity

constraint: ∫ v

kL

[GL (v|σL)−GH (v|σL)] dv ≤
∫ v

kH

[GL (v|σH)−GH (v|σH)] dv. (M)

Note that if the seller is not allowed to discriminate, that is, σH = σL, then the mono-

tonicity constraint reduces to the standard one: kL ≥ kH .

Ignoring constraint (M) for the moment and substituting the expression of eH and eL

from the two binding constraints, we can rewrite the seller’s (relaxed) maximization problem

as

max
kH ,,kL

fH
∫ v

kH

(v − c) dGH (v|σH)︸ ︷︷ ︸
surplus from type H

+ fL

∫ v

kL

(v − c) dGL (v|σL)︸ ︷︷ ︸
S(kL,σL): surplus from type L

− fH
∫ v

kL

[GL (v|σL)−GH (v|σL)] dv︸ ︷︷ ︸
R(kL,σL): rent for type H


The first term is the surplus generated from trading with type H, the second term is the

surplus generated from trading with type L, and the last term is the information rent left to

the type-H buyer.

Therefore, in the optimal solution to the seller’s (relaxed) problem, the contract offered

for the type-H buyer must satisfy

(k∗H , σ
∗
H) ∈ arg max

k,σ

∫ v

k
(v − c) dGH (v|σ) ,

7Unless otherwise stated, proofs of all lemma’s and propositions can be found in Section 6.
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which implies that k∗H = c (efficient allocation) and σ∗H = σ (full disclosure). Furthermore,

the contract for type L must satisfy

(k∗L, σ
∗
L) ∈ arg max

k,σ
[fLS (k, σ)− fHR (k, σ)] .

The advance payments e∗H and e∗L then follow from binding (ICH) and (IRL).

As shown in the following proposition, the above optimal solution to the relaxed prob-

lem also satisfies the monotonicity constraint (M), and thus also solves the seller’s original

problem.

Proposition 1 Under either FSD or MPS, it is optimal to set k∗H = c and disclose all

information to the type-H buyer. The optimal allocation and information provision for type-

L buyer are given by

(k∗L, σ
∗
L) ∈ arg max

k,σ
[fLS (k, σ)− fHR (k, σ)] .

This is reminiscent to the standard result of “no distortion on the top” in the adverse

selection literature. For the case of FSD, we can obtain the usual downward distortion for

type L in allocation, that is, kL ≥ c for all signal structure σL. Under FSD, the rent R (kL, σL)

for type H type is decreasing in kL, and the surplus S (kL, σL) for type L is increasing for

any kL < c, so an increase in kL from a level below c both increases surplus and reduces rent.

For the FSD specification with restricted class of disclosure policy, full disclosure to both

types of buyers can be optimal.

Proposition 2 Suppose that the buyer’s ex ante types are order in terms of FSD, the seller

can either disclose full information or no information, and the buyer gets no additional

information under no disclosure. Then full disclosure is optimal.

In general, however, full disclosure for type L is likely to be suboptimal for two reasons.

First, more information may lead to more information rent for type H buyer. Second, since

the allocation to the low type is distorted (kL 6= c), the corresponding signal structure may

have to be downgraded as well to fit the distorted allocation. We now use examples to

illustrate this point.

3.2 FSD Example: Discriminatory Disclosure Extracts All Surplus

Here we present an example where the information structure is ordered in terms of FSD and

full disclosure is not optimal for the seller. In particular, we will show that discriminatory

disclosure (or partial disclosure) can implement the first best and extract all the surplus.

Suppose the prior joint distribution of (ω, θ) is given by:

f (ω, θ) =


1− ε if ω ∈

[
0, 12
]

and θ = L

ε if ω ∈ (12 , 1] and θ = L

ε if ω ∈
[
0, 12
]

and θ = H

1− ε if ω ∈ (12 , 1] and θ = H
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with ε < 1
2 . Hence, the ex ante types of the buyer have equal proportion: fL = fH = 1

2 , and

are ordered in terms of FSD. Consider the following disclosure policy: if the buyer reports

type H, the seller chooses full disclosure σ which releases perfect information ω; if the buyer

reports type L, the seller chooses partial disclosure σ which only reveals to the buyer whether

the true valuation ω is above or below c = 1
2 . Furthermore, the above disclosure policy is

coupled with the following selling mechanism: if the buyer reports type H, he is asked to

pay an up-front fee
∫ 1
c (ω − c) dGH (ω|σ) in exchange for a posted price c in period two; if

the buyer reports type L, he does not need to pay any up-front fee, but will be charged 3
4 in

period two for purchasing. Under this disclosure policy and the selling mechanism, it is easy

to verify that neither type of buyer will have incentive to deviate. The resulting allocation is

efficient, and the seller extracts the full surplus:

π = fH

∫ 1

c
(ω − c) dGH (ω|σ) + fLε

(
3

4
− c
)

=
1

8
(1− ε) +

1

8
ε =

1

8
.

Instead of the above discriminatory disclosure policy, the seller can also use uniform

partial disclosure to implement the first-best and extract the full surplus. The seller can

tell the buyer: regardless of your ex ante type, I will only disclose to you whether your true

valuation ω is above or below c = 1
2 , and I will charge 3

4 when you buy.

In contrast, if the seller discloses all information to both types of buyers, the setting

reduces to the standard sequential screening setting in Courty and Li (2000). It is straight-

forward to verify that the resulting allocation involves distortion and the type-H buyer enjoys

strictly positive information rent. Therefore, the seller’s profit under full disclosure is strictly

lower than the social surplus, and thus cannot be optimal.

3.3 FSD Example: Full Disclosure Is Not Optimal

Now we present another FSD example where discriminatory disclosure dominates full dis-

closure for the seller even though the former does not exacts all the surplus. Further, while

in the previous example uniform partial disclosure does well as discriminatory disclosure, in

this example the seller needs to adopt a discriminatory disclosure policy.

Suppose c = 1, fL = fH = 1
2 , and the support of v is [v, v] = [0, 3]. Suppose the seller can

choose either full disclosure (σ = σ) or minimal disclosure (σ = σ). Under full disclosure, the

distributions of the buyer’s posterior estimate v are assumed to be GL (v|σ) = 1
3v and

GH (v|σ) =


5
18v if v ∈ [0, 1]

5
18 + 4

18 (v − 1) if v ∈ [1, 2]
9
18 + 9

18 (v − 2) if v ∈ [2, 3]

The mean valuations µH and µL are µL = 3
2 , µH = 31

18 . Under minimal disclosure, the

distributions are assumed to be

GL (v|σ) =


5
18v if v ∈ [0, 1]

5
18 + 8

18 (v − 1) if v ∈ [1, 2]
13
18 + 5

18 (v − 2) if v ∈ [2, 3]
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and

GH (v|σ) =


2
18v if v ∈ [0, 1]

2
18 + 10

18 (v − 1) if v ∈ [1, 2]
12
18 + 6

18 (v − 2) if v ∈ [2, 3]

It is easy to check that types (H and L) are ordered in terms of FSD. The optimal allocations

under full disclosure (σL = σH = σ) are kH = 1 and kL = 5
4 . In contrast, under optimal

discriminatory disclosure (σ∗L = σ, σ∗H = σ), the optimal allocations are k∗H = 1 and k∗L = 13
10 .

The seller’s profit under discriminatory disclosure exceeds the one with full disclosure by 11
480 .

3.4 MPS Example: Full Disclosure Is Not Optimal

Suppose the ex ante types (H,L) are ordered in terms of MPS. Suppose the seller can choose

either full disclosure σ or no disclosure σ. Under full disclosure, the buyer observes true

values which are distributed uniformly:

ωH ∼ U [0, 1] and ωL ∼ U
[

3

16
,
13

16

]
Under no disclosure, the buyer learns nothing so maintains his prior. That is, his value

estimate will be µH = µL = 1
2 . Suppose fH = fL = 1

2 and the seller’s cost c = 3
8 . The

optimal mechanism will set σ∗H = σ, k∗H = c, and

(k∗L, σ
∗
L) ∈ arg max

kL,σL
[fLS (kL, σL)− fHR (kL, σL)] .

With full disclosure (σL = σ), kL = 3
10 and the seller’s profit is about 0.155. With optimal

discriminatory disclosure (σ∗L = σ), k∗L = 3
8 and the seller’s profit is about 0.160. Again full

disclosure is not optimal. In fact, under discriminatory disclosure, the seller extracts the full

surplus.

4 Continuous Types

Now suppose the ex ante types θ ∼ F (·) with support Θ =
[
θ, θ
]

and density f (θ) > 0 for

all θ. Given signal structure σ (θ) , each type θ is represented by a distribution of valuations

over [v, v], with distribution function G (v|θ, σ (θ)) and corresponding differentiable density

function g (v|θ, σ (θ)) . We assume that the family of distribution g (v|θ, σ (θ)) have the same

support for all θ and for all signal structures σ (θ).

By revelation principle, we can focus on direct revelation mechanisms {{x (θ, v) , t (θ, v)}}
together with disclosure policy {σ(θ)}. The seller’s problem is then

max
{σ(θ)},{{x(θ,v),t(θ,v)}}

∫ θ

θ

∫ v

v
[t (θ, v)− x (θ, v) c] g (v|θ, σ (θ)) f (θ) dvdθ
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subject to

(IC2) : v ∈ arg max
v′

x
(
θ, v′

)
v − t

(
θ, v′

)
∀θ,∀v

(IC1) : θ ∈ arg max
θ′

∫ v

v

[
x
(
θ′, v

)
v − t

(
θ′, v

)]
g
(
v|θ, σ

(
θ′
))
dv ∀θ

(IR) :

∫ v

v
[x (θ, v) v − t (θ, v)] g (v|θ, σ (θ)) dv ≥ 0 ∀θ

where (IC2) denotes the incentive compatibility constraints in period two, (IC1) denotes the

incentive compatibility constraints in period one, and (IR) denotes the individual rationality

constraints in period one.

4.1 General Characterization

As standard in the literature (Myerson 1981), we adopt the first-order approach (FOA). That

is, we solve the seller’s problem by replacing the IC constraints by their first-order conditions.

The primary goal of this subsection is to provide sufficient conditions under which FOA is

valid.

For this purpose, let us define the buyer’s ex post surplus after he truthfully reports θ

and v as

u (θ, v) = x (θ, v) v − t (θ, v) .

Define the expected surplus of the buyer of type θ by reporting truthfully as

U (θ) =

∫
v
u (θ, v) g (v|θ, σ (θ)) dv.

The following characterization of constraints (IC2) is standard, and thus we omit its proof.

Lemma 2 (Characterization of (IC2)) A mechanism satisfies (IC2) if and only if the

following two conditions are satisfied: (MON2) x (θ, v) is nondecreasing in v, and (FOC2)

u (θ, v) = u (θ, v) +
∫ v
v x (θ, z) dz.

Lemma 2 indicates that we can replace (IC2) by the first-order condition (FOC2) as long

as the allocation rule is monotone in v (MON2). Given the characterization of Lemma 2, we

rewrite U (θ) as

U (θ) = max
θ′

∫ v

v
u
(
θ′, v

)
g
(
v|θ, σ

(
θ′
))
dv

= max
θ′

∫ v

v

[
u
(
θ′, v

)
+

∫ v

v
x
(
θ′, z

)
dz

]
g
(
v|θ, σ

(
θ′
))
dv

= max
θ′

{
u
(
θ′, v

)
+

∫ v

v

[
1−G

(
v|θ, σ

(
θ′
))]

x
(
θ′, v

)
dv

}
.

Ideally, we would like to use FOA to localize (IC1) as well. Unfortunately, it is much

harder to find necessary and sufficient conditions as in Lemma 2 under which FOA is valid.
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In general, there is a gap between the necessary conditions and the sufficient conditions. In

what follows, we first derive necessary conditions for (IC1) and then sufficient conditions for

(IC1) for both FSD and MPS settings.

Lemma 3 (Necessary Conditions for (IC1)) Constraints (IC1) imply that∫ v

v

∫ θ

θ′

[
∂G (v|z, σ (θ))

∂z
x (θ, v)− ∂G (v|z, σ (θ′))

∂z
x
(
θ′, v

)]
dzdv ≥ 0, (MON1)

and

U (θ) = U (θ)−
∫ θ

θ

[∫ v

v

∂G (v|z, σ(z))

∂z
x (z, v) dv

]
dz. (FOC1)

Following the standard procedure of mechanism design, we use the first-order approach

to translate the original problem into a “relaxed” problem by replacing (IC1) and (IC2) by

(FOC1) and (FOC2), respectively. The seller’s profit in the relaxed problem can be rewritten

as

π =

∫ θ

θ

∫ v

v
[t (θ, v)− x (θ, v) c] g (v|θ, σ (θ)) f (θ) dvdθ

=

∫ θ

θ

∫ v

v
J (θ, v, σ)x (θ, v) g (v|θ, σ (θ)) f (θ) dvdθ − U (θ)

The virtual surplus function J (θ, v, σ) is given by

J (θ, v, σ) = v − c+
1− F (θ)

f (θ)
I (θ, v, σ) ,

where the term

I (θ, v, σ) ≡ ∂G (v|θ, σ (θ)) /∂θ

g (v|θ, σ (θ))

is known as the “informativeness measure” in the literature. It captures the informativeness of

the first-period type on the second-period valuations.8 Note that the virtual surplus function

depends on the disclosure policy only through the informativeness measure. In the optimal

selling mechanism, the seller will set U (θ) = 0.

In period two, (MON2) and (FOC2) are necessary and sufficient for (IC2). But in period

one, (MON1) and (FOC1) are necessary but not sufficient for (IC1). The monotonicity

condition (MON1) is too weak for (IC1). It turns out that the following stronger monotonicity

condition∫ v

v
I
(
θ, v, σ

(
θ′
))
x
(
θ′, v

)
g
(
v|θ, σ

(
θ′
))
dv is nonincreasing in θ′ for all θ ∈

[
θ, θ
]
, (AM)

8To see this, suppose G (v|θ, σ) = q for some fixed σ and constant quantile q. Then by the implicit function

theorem, the marginal impact of ex ante type θ on the ex post type v is given by

dv

dθ
= −∂G (v|θ, σ) /∂θ

g (v|θ, σ)
.

Therefore, the informativeness measure captures how informative the ex ante type is in predicting the ex post

type, for given signal structure.
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together with (FOC1), is sufficient for (IC1). We call condition (AM) the “average mono-

tonicity” condition, as it averages over allocations weighted by informativeness measure.

Proposition 3 (Sufficient Conditions for FOA) If the allocation rule {{x (θ, v)}} solves

the seller’s relaxed problem, and if it is nondecreasing in v for all θ and satisfies condi-

tions (AM), then there exist transfer payments {{t (θ, v)}} such that the selling mechanism

{{x (θ, v) , t (θ, v)}} is optimal.

For some information environments, the (AM) condition reduces to conditions familiar

in the literature. For example, if I (θ, v, σ (θ′)) is a (negative) constant as in AR(1) models

or Gaussian learning models, then the (AM) condition is equivalent to require that the

average allocation is nondecreasing in reported type θ′. Alternatively, if the ex ante types

are ordered by FSD and the seller commits to some nondiscriminatory disclosure policy σ0,

then a sufficient condition for (AM) is∫ v

v

∂G (v|θ, σ0)
∂θ

x
(
θ′, v

)
dv is nonincreasing in θ′.

This is the sufficient condition specified in Courty & Li (2000) and Eso & Szentes (2007).

4.2 Examples: Full Disclosure Is Optimal

As we shown in the discrete setting, full disclosure is unlikely to be optimal for two reasons.

First, more disclosure may increases the information rent of the higher type buyer. Second,

more disclosure will not necessarily increase the social surplus generated by the low type buyer

because the posted price in period two is not set in the efficient level. We expect the same

intuition would carry through to the continuous setting. But the analysis of continuous type

is much less tractable. Interestingly, in almost all the tractable information environments we

know in the literature, full disclosure is optimal. These information environments share a

common theme: the informativeness measure is independent of the disclosure policy. That

is, the seller’s disclosure policy does not affect the informativeness of the ex ante type about

the ex post type. Therefore, if the standard regularity conditions (i.e., the virtual surplus is

increasing in both ex ante and ex post types), then the seller’s profit generated from each ex

ante type. can be written as an expectation of a convex function. As a result, full disclosure

leads to the maximal variability and the maximal profit.

To see this, suppose J (θ, v, σ (θ)) is increasing in both v and θ. Then we can write the

seller’s profit in the relaxed program as

πσ =

∫ θ

θ

∫ v

v

[
v − c+

1− F (θ)

f (θ)
I (θ, v, σ (θ))

]
x (θ, v) g (v|θ, σ (θ)) f (θ) dvdθ − U (θ)

=

∫ θ

θ

[∫ v

v
max

{
0, v − c+

1− F (θ)

f (θ)
I (θ, v, σ (θ))

}
g (v|θ, σ (θ)) dv

]
f (θ) dθ − U (θ)

It is easy to see that the integrand in the square bracket is convex in v if the informativeness

measure I (θ, v, σ) is linear in v and independent of σ.
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Proposition 4 Suppose further that the informativeness measure I (θ, v, σ) is linear in v

and independent of σ, and J (θ, v, σ) is increasing in both θ and v. Then full disclosure is

optimal.

Here are several information environments studied in the literature in which informative-

ness measure I (θ, v, σ) is linear in v and independent of σ. Therefore, by Proposition 4, full

disclosure is optimal if the virtual surplus function is also monotone in both θ and v.

Example 1 (Eso and Szentes, 2007, FSD) Suppose type θ is drawn from support
[
θ, θ
]

with density f (·), distribution F (·) and θ > 0. Suppose a type θ buyer’s true valuation ω is

distributed normal with mean θ and precision β:

ω ∼ N (θ, 1/β) .

So the precision β is the same across all types of buyer. Additionally, the seller can release

a signal to the buyer:

s
(
θ′
)

= ω + ηθ′

where ηθ′ is i.i.d normal with precision σ (θ′) . Here σ (θ′) represents the seller’s disclosure

policy which is contingent on buyer’s report θ′ and is controlled by the seller. Let Φ and

φ denote the distribution and density of the standard normal. The posterior estimate given

σ (θ′) and θ is

v = E
[
ω|θ, σ

(
θ′
)]

=
σ (θ′) s (θ′) + βθ

σ (θ′) + β
.

Then the distribution of v conditional on θ and σ (θ′) is normal with mean θ and variance(
σ (θ′)

σ (θ′) + β

)2( 1

β
+

1

σ (θ′)

)
=

σ (θ′)

(σ (θ′) + β)β
.

Therefore,

G
(
v|θ, σ

(
θ′
))

= Φ
(√

(1 + β/σ (θ′))β (v − θ)
)

g
(
v|θ, σ

(
θ′
))

= φ
(√

(1 + β/σ (θ′))β (v − θ)
)√

(1 + β/σ (θ′))β

and

I (θ, v) = −
φ
(√

(1 + β/σ (θ′))β (v − θ)
)√

(1 + β/σ (θ′))β

φ
(√

(1 + β/σ (θ′))β (v − θ)
)√

(1 + β/σ (θ′))β
= −1

Example 2 (Courty and Li, 2000, FSD) The ex-ante type of the buyer is drawn from

support
[
θ, θ
]

with density f (·), distribution F (·) and θ > 0. Suppose a type θ buyer’s poste-

rior estimate v is given by

v = λθ + (1− λ)σ (θ) εθ
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with σ ∈ (0, 1), and εθ is i.i.d. across θ on the real line with density h (θ) and H (θ). The

distribution of v conditional on θ and θ′ is

G
(
v|θ, σ

(
θ′
))

= H

(
v − λθ

(1− λ)σ (θ′)

)
and the corresponding density is

g
(
v|θ, σ

(
θ′
))

= h

(
v − λθ

(1− λ)σ (θ′)

)
1

(1− λ)σ (θ′)

As a result, the informativeness measure is

I (θ, v) =
h
(

v−λθ
(1−λ)σ(θ′)

)
−λ

(1−λ)σ(θ′)

h
(

v−λθ
(1−λ)σ(θ′)

)
1

(1−λ)σ(θ′)

= −λ.

The aforementioned example of Eso and Szentes (2007) is a special case.

Example 3 (Courty and Li, 2000, MPS) The ex-ante type of the buyer is drawn from

support
[
θ, θ
]

with density f (·), distribution F (·) and θ > 0. Suppose a type θ buyer’s poste-

rior estimate v is given by

v = µ+ σ
(
θ′
)
θεθ

where εθ are i.i.d. on the real line with density h (·) and distribution H (·) . The function

σ (θ′) ∈ [0, 1] represents the seller’s disclosure policy depending on buyer’s report θ′ and is

controlled by the seller. The distribution of v conditional on θ and θ′ is given by

G
(
v|θ, σ

(
θ′
))

= H

(
v − µ
σ (θ′) θ

)
.

and

g
(
v|θ, σ

(
θ′
))

= h

(
v − µ
σ (θ′) θ

)
1

σ (θ′) θ
.

Therefore, the informativeness measure is

I (θ, v) =
h
(
v−µ
σ(θ′)θ

)
v−µ
σ(θ′)

(
− 1
θ2

)
h
(
v−µ
σ(θ′)θ

)
v−µ
σ(θ′)θ

= −v − µ
θ

.

It is also easy to see from the expression for the seller’s profit in the relaxed program that,

if the seller’s cost is sufficiently high so that it is higher than the rotation point v+ of the

family of distributions {G (v|θ, σ (θ))}, then we can drop the restriction that I (θ, v, σ (θ)) is

linear in v. Because if we truncated the family distributions {G (v|θ, σ (θ))} at the rotation

point v+ from below, then these distributions are essentially ordered in terms of first-order

stochastic dominance. Therefore, we have the following proposition. We omit its proof.

Proposition 5 Suppose the ex-ante types are ordered in terms of FSD. Suppose the infor-

mativeness measure I (θ, v, σ) is independent of σ, J (θ, v, σ) is increasing in both θ and v,

and {G (v|θ, σ (θ))} is rotated at the same point v+ ≤ c. Then full disclosure is optimal.
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4.3 Continuous Example: Partial Disclosure Extracts All Surplus

We present an example with continuous ex ante types where types are ordered in terms of

FSD but full disclosure is not optimal. This is a continuous type version of our earlier discrete

example. We continue to assume that the seller’s cost c = 1
2 .

Suppose the buyer’s ex ante type θ is distributed according to distribution F with support[
1
2 , 1
]
. Consider the following class of distributions indexed by θ. Suppose the true valua-

tion ω of a type-θ buyer is distributed uniformly with support [1− 1/θ, 1]. Let G (ω|θ, σ)

and g (ω|θ, σ) denote its cumulative distribution and density respectively. Then for all

ω ∈ [1− 1/θ, 1], we have

g (ω|θ, σ) = θ and G (ω|θ, σ) =
ω − (1− 1/θ)

1/θ
= 1− (1− ω) θ

It is easy to see that distributions {G (ω|θ, σ)} are ordered in terms of FSD with respect to

θ. Furthermore, the informativeness measure under the full disclosure policy σ

I(θ, ω, σ) =
∂G (ω|θ, σ) /∂θ

g (ω|θ, σ)
= −1− ω

θ

is increasing in both ω and θ. As a result, the sufficient conditions for FOA are satisfied

(Courty and Li, 2000). It can verified that if the seller adopts the full disclosure policy, under

the optimal mechanism the resulting allocation is not first-best, and the seller has to leave

positive information rent to some high type buyers.

Consider the following partial disclosure policy and selling mechanism. The seller discloses

to all types of buyer whether ω is above or below 1
2 , and charges price 3

4 in period two. This

disclosure policy, together with the posted price, implements the first-best and extracts all

the rent. The seller’s profit is∫ 1

1
2

∫ 1

c
(ω − c) g (ω|θ, σ) dωdF (θ) =

∫ 1

1
2

∫ 1

1
2

(
ω − 1

2

)
2θdωdθ =

3

32
.

Therefore, full disclosure cannot be optimal.

4.4 Continuous Example: Full Disclosure Is Not Optimal

Now we present an example with a continuum of ex ante types where discriminatory disclo-

sure, rather than uniform partial disclosure in the previous example, gets the seller a greater

profit than full disclosure, even though it does not extract all the surplus. Instead, in this

example the seller can reduce the information rent of almost every buyer type by limiting the

amount of additional private information disclosed. The key to the construction is that the

disclosure policy affects the informativeness measure.

Consider the following information environment. Suppose that the posterior estimate v

of type θ buyer given signal structure σ is

v = µ+ η (θ, σ) ε,

22



where ε is the standard normal random variable with distribution Φ and density φ. We will

assume that the function η (θ, σ) is increasing in both σ and θ. The monotonicity of η (θ, σ)

in σ captures the idea that as more information is disclosed the buyer’s valuation becomes

more heterogeneous and thus have a higher variance. The monotonicity of η (θ, σ) in θ implies

that a higher type can learn more from the seller’s disclosure, and thus its posterior estimate

v is more variable.

The distribution of the posterior estimate v is

G (v|θ, σ) = Pr (µ+ η (θ, σ) ε ≤ v) = Φ

(
v − µ
η (θ, σ)

)
.

The informativeness measure is given by

I (θ, v, σ) =
φ
(
v−µ
η(θ,σ)

)
−ηθ(θ,σ)
η(θ,σ)2

(v − µ)

φ
(
v−µ
η(θ,σ)

)
1

η(θ,σ)

= −ηθ (θ, σ)

η (θ, σ)
(v − µ) .

Therefore, as long as η (θ, σ) is not multiplicative (otherwise ηθ (θ, σ) /η (θ, σ) is independent

of σ), the informativeness measure generally depends on σ.

Now take η (θ, σ) = κeσθ with κ being some constant. Then ηθ (θ, σ) /η (θ, σ) = σ. the

informativeness measure becomes

I (θ, v, σ) = −σ (v − µ) ,

and the virtual surplus function is

J (θ, v, σ) = v − c− ρ (θ)σ (v − µ) ,

where ρ (θ) ≡ [1− F (θ)] /f (θ).

We will maintain the following assumptions for the example: (1) c > µ; and (2) σρ (θ) < 1.

Under these assumptions, J (θ, v, σ) will be increasing in v for all θ. Furthermore, as we will

show later, since J (θ, v, σ) ≥ 0 requires v > c and hence v > µ, we also have that J (θ, v, σ)

is increasing in θ for all such v.

We can now use the first-order approach to write the seller’s profit in the relaxed program

as

πσ =

∫ θ

θ

∫ ∞
−∞

[
v − c− 1− F (θ)

f (θ)
σ (v − µ)

]
x (θ, v) g (v|θ, σ (θ)) f (θ) dvdθ

=

∫ θ

θ

∫ ∞
p(θ,σ)

[
v − c− 1− F (θ)

f (θ)
σ (v − µ)

]
g (v|θ, σ (θ)) f (θ) dvdθ

=

∫ θ

θ

{∫ ∞
p(θ,σ)

[
v − c− 1− F (θ)

f (θ)
σ (v − µ)

]
d [− (1−G (v|θ, σ (θ)))]

}
f (θ) dθ

=

∫ θ

θ

{∫ ∞
p(θ,σ)

(
1− σ1− F (θ)

f (θ)

)
(1−G (v|θ, σ (θ))) dv

}
f (θ) dθ
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where p (θ, σ) is defined as

p (θ, σ) = min {v : J (θ, v, σ) ≥ 0} .

To solve this relaxed problem, we do pointwise maximization by choosing σ optimally for

each θ:

σ (θ) ∈ arg
σ∈[σ,σ]
max

{
M (σ; θ) ≡

∫ ∞
p(θ,σ)

(
1− σ1− F (θ)

f (θ)

)
(1−G (v|θ, σ (θ))) dv

}
.

Moreover, since p is chosen optimally, when we maximization with respect to σ, we can ignore

its indirect effect on M (σ; θ) through p.

For now, suppose implementability is not an issue. Since both the support
[
θ, θ
]

of ex

ante type and the support [σ, σ] of the disclosure policy can be chosen appropriately, in order

to show that full disclosure may not be optimal, it is sufficient to show that

dM (σ; θ)

dσ
< 0

for some θ and some σ. Note that

∂M (σ, θ)

∂σ
=

∫ ∞
p(θ,σ)

[
−σρ (θ) (1−G (v|θ, σ))− (1− σρ (θ))

∂G (v|θ, σ)

∂σ

]
dv.

Substituting the following expressions

G (v|θ, σ) = Φ

(
v − µ
η (θ, σ)

)
= Φ

(
1

κ
e−σθ (v − µ)

)
∂G (v|θ, σ)

∂σ
= φ

(
1

κ
e−σθ (v − µ)

)
(−θ) 1

κ
e−σθ (v − µ)

we can rewrite,

∂M (σ, θ)

∂σ
= −σρ (θ)

∫ ∞
p(θ,σ)

[
1− Φ

(
1

κ
e−σθ (v − µ)

)]
dv

+ (1− σρ (θ)) θ
1

κ
e−σθ

∫ ∞
p(θ,σ)

(v − µ)φ

(
1

κ
e−σθ (v − µ)

)
dv

= −σρ (θ)κeσθ
∫ ∞

1
κ
e−σθ(p(θ,σ)−µ)

[1− Φ (ε)] dε

+ (1− σρ (θ)) θκeσθ
∫ ∞

1
κ
e−σθ(p(θ,σ)−µ)

εφ (ε) dε.

Since both integral terms are positive and bounded from above, we can find σ and θ such

that ∂M(σ,θ)
∂σ < 0. For example, we can pick σ and θ such that (1− σρ (θ)) θ is (very) small

compared to σρ (θ).

It remains to show that full disclosure and small deviations from it are implementable.

Since our allocation rule is certainly increasing in v, we only need to check the (AM) condition

specified in our Proposition 3:

A
(
θ′
)
≡
∫ ∞
−∞

I
(
θ, v, σ

(
θ′
))
x
(
v, θ′

)
g
(
v|θ, σ

(
θ′
))
dv
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is nonincreasing in θ′. Note that

A
(
θ′
)

=

∫ ∞
−∞

∂G (v|θ, σ (θ′))

∂θ
x
(
v, θ′

)
dv =

∫ ∞
p(θ′,σ(θ′))

∂G (v|θ, σ (θ′))

∂θ
dv.

Furthermore, we can show that

dA (θ′)

dθ′
= −∂G (p|θ, σ (θ′))

∂θ

(c− µ)

[1− σ (θ′) ρ (θ′)]2
[
σ
(
θ′
)
ρ
(
θ′
)]′

+

∫ ∞
p(θ′,σ(θ′))

∂2G (v|θ, σ (θ′))

∂θ∂σ

dσ

dθ′
dv.

With non-discriminatory disclosure (full disclosure) σ, it reduces to

dA (θ′)

dθ′
= −∂G (p|θ, σ)

∂θ

σ (c− µ)

[1− σρ (θ′)]2
dρ (θ′)

dθ′
.

By definition of p

p
(
θ′, σ

)
=
c− σµρ (θ′)

1− σρ (θ′)
=

c− µ
1− σρ (θ′)

+ µ.

Therefore, given our assumption c > µ, p > µ, and ∂G(p|θ,σ)
∂θ < 0. Moreover, because

dρ(θ′)
dθ′ < 0, we must have dA(θ′)

dθ′ < 0 for all θ′.

Now suppose we consider a small deviation from full disclosure σ, so that σ (θ) is now

marginally dependent on θ. By continuity of A (θ′), we must have dA(θ′)
dθ′ ≤ 0. Therefore, such

an σ (θ) is implementable. As a result, full disclosure is not optimal.

5 Discussion

In this section we discuss how our analysis is related to Eso and Szentes (2007). In a sequential

screening framework similar to ours, Eso and Szentes (2007) define the “new” information

available to the buyer in addition to what the buyer already knows, which is his ex ante type,

through orthogonal decomposition mentioned in Section 2. They show that under certain

conditions, if the buyer’s ex-ante type is continuous and ordered in terms of FSD, the seller’s

profit in the optimal selling mechanism is the same as in a hypothetical setting when she

observes all the new information that the buyer learns after agreeing to the mechanism.

They interpret this result as establishing the optimality for the seller to fully disclose all

new information to the buyer, based on two implicit claims. First, the seller’s profit in the

hypothetical setting is an upperbound on what the seller can achieve in the original setting;

and second, this upperbound is attainable in the original setting.

In studying the optimal information disclosure policy for the seller, the indirect approach

of Eso and Szentes (2007) contrasts with the direct mechanism design approach that we have

taken in the present paper. In this section we argue that their approach does not apply

to the analysis of discriminatory disclosure, and our approach is complementary to theirs.

First, the seller’s profit in the hypothetical setting is generally strictly lower than what the

seller can achieve in the original setting. As we have argued in Section 2, under the same

partial disclosure policy the amount of additional private information released to the buyer
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can depend on his ex ante type. This is the reason why the seller can obtain a higher

profit through partial or discriminatory disclosure in the original setting than in the original

setting. However, modeled as orthogonal disclosure, partial disclosure can never strictly raise

the seller’s profit compared to full disclosure. Second, the seller’s profit in the hypothetical

setting is unattainable in the original setting if the buyer types are discrete. In the continuous

limit, however, this hypothetical profit can be approximated, consistent with the result of

Eso and Szentes (2007).

5.1 Hypothetical Setting May Not Deliver Profit Upperbound

Consider first the binary setting of Section 3, where Θ = {H,L}. Let s~σ ≡ F (ω|θ) denote the

seller’s signal after orthogonal transformation. As mentioned in Section 2, s~σ is uniformly

distributed over [0, 1] and thus independent of the buyer’s ex ante type θ. Recall that Ωθ (q)

is the inverse of the quantile function F (ω|θ), and gives type-θ buyer’s true valuation ω as

a function of the realized s~σ = q. In the hypothetical setting, the seller releases all the

information and observes the quantile s~σ. For the buyer, knowing the realized s~σ is the

same as knowing ω as he knows his ex ante type θ. However, the seller is unable to make any

inference about θ from the realized q, because the latter is independent of θ. The seller chooses

mechanism ((xH (q) , tH (q)) , (xL (q) , tL (q))) to maximize her profit subject to the buyer’s

IC and IR constraints. In this problem, IC constraints appear only in period one because

the seller observes the realization of s~σ. This hypothetical mechanism design problem can be

solved following the standard steps.9

Now, let us revisit the binary example in Section 3.2. In the hypothetical problem under

full disclosure, the seller’s optimal expected profit can be shown to be

~π =
1

8
(1− ε) +

1− ε
2− 3ε

1

8
ε <

1

8
,

which is what we have obtained in Section 3.2 in the original setting through discriminatory

disclosure.

For the continuous type setting of Section 4, the example in Section 4.3 makes the same

point as above. In the hypothetical setting with full disclosure, the seller’s optimal profit can

be shown to be ~π = 7
96 . This is strictly lower than 3

32 that we have obtained in the original

setting.

What is common between the two examples in Section 3.2 and Section 4.3 is that in

the original setting we have a partial disclosure policy coupled with a selling mechanism

that extracts the entire surplus. It is thus unsurprising that the profit in the hypothetical

setting under full disclosure is strictly lower than what can be attained in the original setting.

However, extracting the entire surplus is not the key to our point that the hypothetical setting

does not generally deliver the upperbound on the profit that can be obtained in the original

9Eso and Szentes (2007) solve it for the case of a continuum of ex ante types.
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setting. Instead, the key is that partial disclosure may allow the amount of additional private

information released to the buyer to depend on his ex ante type.

To see this, we now consider the case of orthogonal disclosure mentioned in Section 2,

which by construction retains orthogonality to the buyer ex ante type. We show that if partial

disclosure is modeled by orthogonal disclosure, then it can be replicated by full disclosure

in the hypothetical setting. Since the seller in the original setting under partial disclosure

cannot do better than the seller in the hypothetical setting for the same disclosure policy,

partial disclosure cannot strictly raise the seller’s profit compared to full disclosure. In this

case, the hypothetical setting under full disclosure does provide an upperbound on what can

be attained in the original setting. We use the binary-type setting to make the point; it can

be seen from the following argument that this is without loss of generality.

Suppose, in orthogonal disclosure, the seller publicly discloses sσ rather than s~σ, where sσ

garbles s~σ according to joint distribution Γσ (s, q), with associated density γσ (s, q). Define

conditional densities γσ (s|q) and γσ (q|s) in the usual way. The selling mechanism has the

form M = (xH (s) , tH (s) , xL (s) , tL (s)) , which is conditional on ex ante type report θ and

the publicly observable signal s. Under M, the expected payoff of type θ reporting θ′ is

U
(
θ, θ′

)
=

∫ 1

0

[∫ s

s
Ωθ (q)xθ′ (s) γ

σθ′ (s|q) ds
]
dq −

∫ 1

0

[∫ s

s
tθ′ (s) γ

σθ′ (s|q) ds
]
dq

The seller’s expected profit under M is

π = fH

∫ 1

0

[∫ s

s
[tH (s)− cxH (s)] γσH (s|q) ds

]
dq+fL

∫ 1

0

[∫ s

s
[tL (s)− cxL (s)] γσL (s|q) ds

]
dq.

Now suppose that the seller reveals s~σ instead, so that the selling mechanism has the form
~M =

(
~xH (q) ,~tH (q) , ~xL (q) ,~tL (q)

)
. Furthermore, let us define

~xθ (q) =

∫ s

s
xθ (s) γσθ (s|q) ds

and

~tθ (q) =

∫ s

s
tθ (s) γσθ (s|q) ds.

Then the expected payoff of a type θ buyer by reporting θ′ is

~U
(
θ, θ′

)
=

∫ 1

0
Ωθ (q) ~xθ′ (q) dq −

∫ 1

0

~tθ′ (q) dq

=

∫ 1

0

[∫ s

s
Ωθ (q)xθ′ (s) γ

σθ′ (s|q) ds
]
dq −

∫ 1

0

[∫ s

s
tθ′ (s) γ

σθ′ (s|q) ds
]
dq

= U
(
θ, θ′

)
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The seller’s expected profit ~π under mechanism ~M is

~π = fH

∫ 1

0

[
~tH (q)− c~xH (q)

]
dq + fL

∫ 1

0

[
~tL (q)− c~xL (q)

]
dq

= fH

∫ 1

0

[∫ s

s
tH (s) γσH (s|q) ds− c

∫ s

s
xH (s) γσH (s|q) ds

]
dq

+fL

∫ 1

0

[∫ s

s
tL (s) γσL (s|q) ds− c

∫ s

s
xL (s) γσL (s|q) ds

]
dq

= fH

∫ 1

0

[∫ s

s
[tH (s)− cxH (s)] γσH (s|q) ds

]
dq

+fL

∫ 1

0

[∫ s

s
[tL (s)− cxL (s)] γσL (s|q) ds

]
dq

= π

Therefore, full disclosure can always replicate the payoff and profit of partial disclosure.

The indirect approach of Eso and Szentes (2007) to disclosure policy first transforms

the seller’s true signal into an orthogonal one and then garbles it. Their approach applies

in the case of orthogonal disclosure, but rules out some natural disclosure policies. To see

this, consider the binary type setting where the supports of buyer’s true value [ωH , ωH ] and

[ωL, ωL] only partially overlap: ωL < ωH < ωL < ωH . It is conceivable that the seller may

disclose information that can help a type-H buyer refine his value estimate if his true value

lies in the interval [ωL, ωH ] but the same information has no value for the type-L buyer. In

our housing example, if the house has a swimming pool whose specific feature affects the

reservation value of the rich buyer but not the budget buyer, then the seller’s information

disclosure about swimming pool will only affect the value of the rich type, but not the budget

type. This disclosure possibility, however, is not compatible with the indirect approach. In

order to incorporate such disclosure policy, we depart from Eso and Szentes (2007) by directly

working with the seller’s original signal. Under our approach, as we show in Section 3.2 and

4.3, partial disclosure may extract the full surplus which is strictly higher than the seller’s

profit in the hypothetical setting.

5.2 Hypothetical Profit Is Not Attainable with Discrete Types

We again take the setting with binary ex ante buyer types. As in Eso and Szentes (2007),

we first derive the hypothetical profit for the seller in the hypothetical setting when she fully

discloses all information and observes the released information. Then we consider the original

setting where the seller can release, without observing, information to the buyer. We show

that, when the ex ante types are binary, the hypothetical profit is not attainable for the seller

by releasing all information.

Consider first the hypothetical setting where the seller can observe the released infor-

mation. Standard arguments suggest that the optimal selling mechanism (
(
~xH (q) ,~tH (q)

)
,
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(
~xL (q) ,~tL (q)

)
must take the following form:

~xH (q) = 1 iff ΩH (q) ≥ c

~xL (q) = 1 iff ΩL (q)− fHΩH (q) ≥ fLc

Define ~pH = c and ~pL be the solution of

pL −
fH
fL

(ΩH (FL (pL))− pL) = c.

If we assume that the “virtual surplus”

ω − c− fH
fL

(ΩH (FL (ω))− ω)

is increasing in ω, then we can write the seller’s hypothetical profit as

~π = fH

∫ ω

c
(ω − c) dFH (ω) +

∫ ω

~pL

[ω − fLc− fHΩH (FL (ω))] dFL (ω) .

Now suppose the seller fully discloses information, but cannot observe the quantiles

q = Fθ (ω), θ ∈ {H,L}. Consider the mechanism of “call option” or refund contract

((eH , pH) , (eL, pL)): the buyer first pays an up-front fee eθ ∈ {eH , eL} in exchange of the

second period price pθ ∈ {pH , pL} if purchase. The seller then allows the buyer to observe ω.

After observing ω, the buyer decides whether to buy; if he buys, he pays a price pθ. A type-θ

buyer buys in the second stage if and only if ω ≥ pθ. Therefore, if we let pθ be the same as

~pθ given by above, this mechanism replicates the allocation in the hypothetical setting.

By manipulating binding (ICH) and (IRL) constraints, we can write the seller’s profit

under the call option mechanism as

π = fH

∫ ω

c
(ω − c) dFH (ω) +

∫ ω

~pL

[ω − ~pL + fL (~pL − c)] dFL (ω)− fH
∫ ω

~pL

(ω − ~pL) dFH (ω) .

As a result, we have

~π − π = fH

∫ ω

~pL

(ω − ~pL) dFH (ω) + fH

∫ ω

~pL

[~pL − ΩH (FL (ω))] dFL (ω)

= fH

∫ 1

FH(~pL)
[ΩH (q)− ~pL] dq + fH

∫ 1

FL(~pL)
[~pL − ΩH (q)] dq

= fH

∫ FL(~pL)

FH(~pL)
[ΩH (q)− ~pL] dq.

Note that, under FSD, FL(~pL) > FH (~pL). In addition, ΩH (q) = ~pL for q = FH (~pL) , and

ΩH (q) is increasing in q so we have ~π − π > 0.

Therefore, with discrete types, the seller who controls information but does not observe

information cannot fully extract the surplus generated by the released information. One

can also verify that, compared to the hypothetical setting, the original setting gives higher
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information rent to the type-H buyer. This explains why the call option can replicate the

allocation but the seller has lower profit. Thus, the revenue equivalence fails when one moves

from the hypothetical setting to the original setting.

The failure of revenue equivalence, however, is sensitive to the discrete structure of the

type space. Now we show that the gap between the hypothetical profit and the profit from

call option vanishes as the number of types increases, consistent with the result in Eso and

Szentes (2007).

Given our interests, we will focus on the seller’s relaxed program in both the hypothetical

setting and the original setting. We assume that the set of ex ante types Θ takes the following

form:

Θ =
{
θ, θ + ∆, θ + 2∆, . . . , θ + (n− 1) ∆, θ

}
,

where ∆ =
(
θ − θ

)
/n. That is, we partition the interval

[
θ, θ
]

into n subintervals with interval

length ∆, and the division points of the partition are our types. Denote by θi = θ + i∆ the

i-th type with θ0 = θ and θn = θ. Let fi denote the probability of drawing type θi with∑n
i=0 fi = 1. As ∆→ 0, Θ→

[
θ, θ
]
.

Consider first the hypothetical setting where the seller releases all information and can

observe released information. The additional information released by the seller is modeled

as q = Fi (ω), for all i = 0, . . . , n. Note that q is the same across all buyer types, so q does

not contain information about the buyer’s ex-ante type θi. Let Ωi(q) be the inverse of the

quantile function Fi(ω). The seller chooses mechanism
(
~xi (q) ,~ti (q)

)
to maximize her profit

~π =
n∑
i=0

fi

∫ 1

0

[
~ti (q)− c~xi (q)

]
dq,

subject to

(ICi,j) :

∫ 1

0

[
Ωi (q) ~xi (q)− ~ti (q)

]
dq ≥

∫ 1

0

[
Ωi (q) ~xj (q)− ~tj (q)

]
dq, for all i, j

(IRi) :

∫ 1

0

[
Ωi (q) ~xi (q)− ~ti (q)

]
dq ≥ 0, for all i

With some algebra, we can rewrite the seller’s profit in the relaxed program as

~π =

∫ 1

0

[(
n∑
l=0

fl

)
Ω0 (q)−

(
n∑
l=1

fl

)
Ω1 (q)− f0c

]
~x0 (q) dq + . . .

+

∫ 1

0

[(
n∑
l=i

fl

)
Ωi (q)−

(
n∑

l=i+1

fl

)
Ωi+1 (q)− fic

]
~xi (q) dq + . . .

+

∫ 1

0
[fnΩn (q)− fnc] ~xn (q) dq
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Here the virtual surplus function is

~Ji (q) =
1

fi

(
n∑
l=i

fl

)
Ωi (q)− 1

fi

(
n∑

l=i+1

fl

)
Ωi+1 (q)− c

= Ωi (q)− 1

fi

(
1−

i∑
l=0

fl

)
[Ωi+1 (q)− Ωi (q)]− c

For implementability, we assume that Ji (q) to be increasing in i and s. Furthermore, we

assume that Ωi+1 (q)−Ωi (q) is decreasing in both i and s, which is similar to the requirement

that the informativeness measure is decreasing in both θ and v.

Following Eso and Szentes (2007), we can show that the optimal mechanism is given by

~xn (q) = 1 iff Ωn (q) ≥ c, and ~xi (q) = 1 iff ~Ji (q) ≥ c for all i ≤ n− 1. Define ~p0, . . . , ~pn such

that ~pn = c and ~Ji (~pi) = c for all i ≤ n− 1. Then we can write

~π =

n∑
i=0

fi

∫ ω

~pi

(ω − c) dFi (ω)−
n∑
i=1

∫ 1

Fi−1(~pi−1)

(
n∑
l=i

fl

)
[Ωi (q)− Ωi−1 (q)] dq

Now suppose the seller fully discloses information, but cannot observe q = Fi (ω). Con-

sider the mechanism of “call option” (ei, pi): the buyer who reports type θi first pays an

up-front fee ei ∈ {e0, . . . , en} in exchange of period two price pi ∈ {p0, . . . , pn} if purchase,

where p0, . . . , pn are defined as above. The seller then allows the buyer to observe ω. After

observing ω, the buyer decides whether to buy; if he buys, he pays a price pi. A type-θi

buyer buys in the second stage if and only if ω ≥ pi. Therefore, this mechanism replicates

the allocation in the hypothetical setting with pi = ~pi for each i = 0, . . . , n.

Following Courty and Li (2000), we can write the seller’s profit in the relaxed program

under the “call option” mechanism as

π =
n∑
i=0

fi

∫ ω

~pi

(ω − c) dFi (ω)

−
n∑
i=1

(
n∑
l=i

fl

)(∫ 1

Fi−1(~pi−1)
(Ωi (q)− Ωi−1 (q)) dq +

∫ Fi−1(~pi−1)

Fi(~pi−1)
(Ωi (q)− ~pi−1) dq

)
As a result, we have

~π − π =
n∑
i=1

(
n∑
l=i

fl

)∫ Fi−1(~pi−1)

Fi(~pi−1)
(Ωi (q)− ~pi−1) dq

<

n∑
i=1

(
n∑
l=i

fl

)
[Ωi (Fi−1 (~pi−1))− ~pi−1] [Fi−1 (~pi−1)− Fi (~pi−1)]

<

(
max
i

[Ωi (Fi−1 (~pi−1))− ~pi−1]
) n∑
i=1

[Fi−1 (~pi−1)− Fi (~pi−1)]

→ 0

because, as ∆→ 0, Ωi (Fi−1 (~pi−1))− ~pi−1 → 0 for all i. Thus, in the limit, the hypothetical

profit can be approximated arbitrarily closely.
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6 Appendix: Proofs

Proof of Lemma 1. (i) Note that from (ICH),

−eH + v −
∫ v

kH

GH (v|σH) dv

≥ −eL + v −
∫ v

kL

GH (v|σL) dv

= −eL + v −
∫ v

kL

GL (v|σL) dv +

∫ v

kL

[GL (v|σL)−GH (v|σL)] dv

≥ −eL + v −
∫ v

kL

GL (v|σL) dv

≥ 0.

which is (IRH).

(ii) (IRL) binds because otherwise the seller could increase her profit by offering a new

contract {(eH + ε, kH) , (eL + ε, kL)}. (ICH) binds because otherwise an alternative contract

{(eH + ε, kH) , (eL, kL)} would have increased the seller’s profit.

(iii) The necessity of (M) follows by adding two ICs together. To see the other direction,

note that we can use the two binding constraints, (ICH) and (IRL) to obtain:

−eH + v −
∫ v

kH

GL (v|σH) dv

=

(
−eL −

∫ v

kL

GH (v|σL) dv +

∫ v

kH

GH (v|σH) dv

)
+ v −

∫ v

kH

GL (v|σH) dv

=

∫ v

kL

GL (v|σL) dv −
∫ v

kL

GH (v|σL) dv +

∫ v

kH

GH (v|σH) dv −
∫ v

kH

GL (v|σH) dv

=

∫ v

kL

[GL (v|σL)−GH (v|σL)] dv −
∫ v

kH

[GL (v|σH)−GH (v|σH)] dv

≤ 0

= −eL + v −
∫ v

kL

GL (v|σL) dv,

which is exactly the (ICL) constraint.

Proof of Proposition 1. It is sufficient to verify that {(k∗H , σ∗H) , (k∗L, σ
∗
L)} also satisfy

constraint (M). Suppose, by contradiction, that∫ v

k∗L

[GL (v|σ∗L)−GH (v|σ∗L)] dv >

∫ v

k∗H

[GL (v|σ∗H)−GH (v|σ∗H)] dv.
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Then

fLS (k∗H , σ
∗
H)− fHR (k∗H , σ

∗
H)

= fL

∫ v

k∗H

(v − c) dGL (v|σ∗H)− fH
∫ v

k∗H

[GL (v|σ∗H)−GH (v|σ∗H)] dv

> fL

∫ v

k∗H

(v − c) dGL (v|σ∗H)− fH
∫ v

k∗L

[GL (v|σ∗L)−GH (v|σ∗L)] dv

≥ fL

∫ v

k∗L

(v − c) dGL (v|σ∗L)− fH
∫ v

k∗L

[GL (v|σ∗L)−GH (v|σ∗L)] dv

= fLS (k∗L, σ
∗
L)− fHR (k∗L, σ

∗
L)

A contradiction to the claim that (k∗L, σ
∗
L) ∈ arg maxk,σ [fLS (k, σ)− fHR (k, σ)]. Therefore,

constraint (M) holds, and {(k∗H , σ∗H) , (k∗L, σ
∗
L)} solves the seller’s original problem.

Proof of Proposition 2. It is sufficient to show that it is optimal to disclose all information

to the type-L buyer. Let σL = σ denote no disclosure, and let σL = σ denote full disclosure.

Note that, if σL = σ, we have

max
kL

fLS (kL, σ)− fHR (kL, σ) = fL (µL − c)− fH (µH − µL)

But if σL = σ, we have

max
kL

fLS (kL, σ)− fHR (kL, σ)

= fL

∫ v

kL

(v − c) dGL (v|σ)− fH
∫ v

kL

[GL (v|σ)−GH (v|σ)] dv

> fL

∫ v

c
(v − c) dGL (v|σ)− fH

∫ v

c
[GL (v|σ)−GH (v|σ)] dv

> fL

∫ v

v
(v − c) dGL (v|σ)− fH

∫ v

c
[GL (v|σ)−GH (v|σ)] dv

> fL

∫ v

v
(v − c) dGL (v|σ)− fH

∫ v

v
[GL (v|σ)−GH (v|σ)] dv

= fL (µL − c)− fH (µH − µL)

The first inequality follows from the optimality of kL, while the last equality follows from

the FSD assumption. Therefore, if the buyer learns nothing in period two, full disclosure is

optimal.

Proof of Lemma 3. First consider any θ and θ′. Incentive compatibility implies that

u (θ, v) +

∫ v

v
[1−G (v|θ, σ (θ))]x (θ, v) dv ≥ u

(
θ′, v

)
+

∫ v

v

[
1−G

(
v|θ, σ

(
θ′
))]

x
(
θ′, v

)
dv

u
(
θ′, v

)
+

∫ v

v

[
1−G

(
v|θ′, σ(θ′)

)]
x
(
θ′, v

)
dv ≥ u (θ, v) +

∫ v

v

[
1−G

(
v|θ′, σ (θ)

)]
x (θ, v) dv.
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Adding these two ICs together yields∫ v

v

[
G
(
v|θ′, σ (θ)

)
−G (v|θ, σ (θ))

]
x (θ, v) dv−

∫ v

v

[
G
(
v|θ′, σ

(
θ′
))
−G

(
v|θ, σ

(
θ′
))]

x
(
θ′, v

)
dv ≥ 0.

We can rewrite it as (MON1)∫ v

v

∫ θ′

θ

[
∂G (v|z, σ (θ))

∂z
x (θ, v)− ∂G (v|z, σ (θ′))

∂z
x
(
θ′, v

)]
dzdv ≥ 0.

Condition (FOC1) follows from the definition of U (θ) and the envelope theorem.

Proof of Proposition 3. Consider any θ and θ′, with θ > θ′. Note that

U
(
θ, θ′

)
= u

(
θ′, v

)
+

∫ v

v

[
1−G

(
v|θ, σ

(
θ′
))]

x
(
θ′, v

)
dv

= u
(
θ′, v

)
+

∫ v

v

[
1−G

(
v|θ′, σ

(
θ′
))

+G
(
v|θ′, σ

(
θ′
))
−G

(
v|θ, σ

(
θ′
))]

x
(
θ′, v

)
dv

= U
(
θ′, θ′

)
+

∫ v

v

[
G
(
v|θ′, σ

(
θ′
))
−G

(
v|θ, σ

(
θ′
))]

x
(
θ′, v

)
dv

= U
(
θ′, θ′

)
−
∫ v

v

[∫ θ

θ′
I
(
z, v, σ

(
θ′
))
x
(
θ′, v

)
g
(
v|z, σ

(
θ′
))
dz

]
dv

By envelope theorem, we have

U (θ) = U
(
θ′, θ′

)
−
∫ θ

θ′

[∫ v

v

∂G (v|z, σ(z))

∂z
x (z, v) dv

]
dz

= U
(
θ′, θ′

)
−
∫ θ

θ′

[∫ v

v
I (z, v, σ (z))x (z, v) g (v|z, σ (z)) dv

]
dz.

Therefore,

U (θ)− U
(
θ, θ′

)
=

∫ θ

θ′

∫ v

v
I
(
z, v, σ

(
θ′
))
x
(
θ′, v

)
g
(
v|z, σ

(
θ′
))
dvdz

−
∫ θ

θ′

∫ v

v
I (z, v, σ (z))x (z, v) g (v|z, σ (z)) dvdz

=

∫ θ

θ′

{ ∫ v
v I (z, v, σ (θ′))x (θ′, v) g (v|z, σ (θ′)) dv

−
∫ v
v I (z, v, σ (z))x (z, v) g (v|z, σ (z)) dv

}
dz

≥ 0,

by condition (AM). If θ < θ′, then

U (θ)− U
(
θ, θ′

)
=

∫ θ′

θ

{ ∫ v
v I (z, v, σ (θ))x (z, v) g (v|z, σ (θ)) dv

−
∫ v
v I (z, v, σ (θ′))x (θ′, v) g (v|z, σ (θ′)) dv

}
dz ≥ 0

again by condition (AM). Finally, since x (θ, v) is nondecreasing in v for all θ, by 2, the second

period IC constraints are also satisfied.
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Proof of Proposition 4. Note that if I (θ, v, σ) is linear in v and independent of σ, then

J (θ, v) is linear in v. This implies that the function

max

{
0, v − c+

1− F (θ)

f (θ)
I (θ, v)

}
is convex and is independent of σ (θ). Therefore, for fixed θ, the integral∫ v

v
max

{
0, v − c+

1− F (θ)

f (θ)
I (θ, v)

}
g (v|θ, σ (θ)) dv

is maximized by setting σ (θ) = σ, since the class of distributions {G (v|θ, σ (θ))} satisfy mean

preserving spread. Since the resulting allocation rule x (θ, v) is increasing in θ for all v and

in v for all θ, by Proposition 3, it also solves the seller’s original problem.
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